Appendix

In Section[A] we present a set of general technical lemmas that are essential for proving the results
in the paper. In Section [B| we present the necessary lemmas to establish the proof of the result for
Algorithm|[T] which focuses on the utilization of the LMO for both variables. Subsequently, in section
we analyze and demonstrate the convergence rate of Algorithm [I]in Theorem [@.2]and Corollary
K.3] for nonconvex-concave (NC-C) scenario and in Theorem [4.4] for nonconvex-strongly concave
(NC-SC) scenario. Moving forward to Section D] we introduce the lemmas essential for verifying
the correctness of Algorithm 2] which involves employing the LMO for the minimization variables
and the PO for the maximization variable. Furthermore, in Section E], we investigate and establish
the convergence rate of Algorithm [2]in Theorem [5.1] and Corollary [5.2] for NC-C scenario and in
Theorem [5.3|for NC-SC scenario. Finally, in Sections [FJand [G] details of our numerical experiment
and supplementary plots are provided. To simplify the notations, we will drop the associated space
from the norms unless it is not clear from the context. For instance ||z|| , and ||z|| . will be replaced
by ||z|| and ||z||,, respectively.

Definition .1. Let f, : X — R be a function such that f,(z) £ maxyey L(z,y) — & ||y — Yol
Moreover, we define y7; (z) = argmin, ¢y L(z,y) — 5 [ly — yol?.

A Technical Lemmas

We will now present technical lemmas that will be utilized in the proofs.

Lemma A.1. [29] The solution map y;, : X — Y is Lipschitz continuous. In particular, for any
z,T € X
Ly,

I

2(Z) = y(2)] <

Proof. First note that since £,,(z, -) is strongly concave for any z € X, we have that
* (= * * [ = * * [ — * 2
(W (@) =y (@) T (Vy Lu(e, 9 (2)) = VyLula,yi(2) + p ||y (@) — v (@) < 0. (©6)

Moreover, the optimality of y; (7) and y},(z) given that £, (z,y) = L(z,y) — § |ly — yo||* implies
that foranyy € Y,

(v = 4:(2)) "V Lo(@, (7)) <0, @
(v~ y5(2) "Vy L2,y (2)) < 0. ®

Lety = yi(x mland y=y:(z) 1nland summing up two inequalities, we obtain
(W (2) = y(2)) T (Vy Lu(@,9,,(2)) = VyLy(z,y(2))) < 0. ©

By combining[9]and [6| we have
|y (@) = (@) < — Y (@) (Vy Lu(Z, () = Vy Lou(2,y(T)))
(a ) . B

where (a) follows from Assumptlon n The result follows immediately from the above inequality.
O

Lemma A.2. [29] The function f,(-) is differentiable on an open set containing X and V f,,(z) =
V. L(x,y;;(x)) where y;,(z) £ argmin,cy L,(x,y). Moreover, f, has a Lipschitz continuous
gradient with constant Ly, £ Ly + L2, /.

Proof. From Danskins’s theorem [5] one can obtain f,(-) is differentiable and Vf,(z) =
V.L(x,y},(z)). Therefore, we have

IV fu(@) = Vu(@)l = Vo Lla, yi(@) = VoLl y,(2))

< Ly ||$ - || + Ly Hy;(:c) - y;(x/)H
L2
< Ly [lz — /|| + # Jz — /||,
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where the last inequality holds by Lemmal[A.T]

B Required Lemmas for Theorems 4.2 and [4.4]

Lemma B.1. Let {ax}r>0 be a sequence of non-negative real numbers such that apy1 <
max{1/2,1 — M;./ay }ar, + M for some My, My > 0 and any k > 0. Then,

/3
9 2 M.
Q. S Wmax{ao, ]\4,12} + (]\4?) + MQ, vk Z 1. (10)

Proof. We use induction to show the result. Indeed, for k¥ = 1 we have that a; < max{1/2,1 —
Mi\/ag}ag + My < ag + Ms which clearly satisfies (I0). Now, suppose holds for k& > 1,
and we show the inequality for k£ + 1. We begin by examining the recursive relation agy; <
max{1/2,1 — M;./ay }a, + M and analyzing the different cases in which the maximum occurs on
different terms.

(CASET) max{1/2, lfMlﬁ/ 1} = 3: Inthis case, clearly a; 1 < 2ai < ﬁ max{ag, %}Jr
(R34 M) < (k+3)2 max{ao, e+ (af 472)2/% + My where we used the fact that (k +3)? <

2(k + 2)? for any k > 1.

(CASE ILa) max{1/2,1— M /ay} = 1 — My /ax and ay, < 573557 max{ao, MQ}+(Mz )2/3: In
this case, one can observe that from the recursive inequality together with the current assumption we
have that a1 < ap + My < 2(k+2)2 max{ag, M2} + (M2)2/3 + M,y < (k—33)2 max{ay, %12} +
(%2 )2/3 4 M2.

(CASEILb) max{1/2,1 — My\/ar} = 1 — My /az and i > g5 max {a(h ML} + (May2/3;

Let Iy £ 5pigyr max {ao, 1\3—12} + (§7)/%. From the recursive inequality and (T0) we conclude

that

IN

9 2 Mo
(1= Mi/Ty) (W max{ao, ]\/[2} + My + (M1)2/3> + M,
i

2 9 3
= max{ao, ]\412} m (1 + k—|—2> (]. - M1 vV Fk)
M2 2/3
+(1— Mi/Th) <M2+ (M) >+M2. (11)

Ak+1

1

Next, we simplify the first two terms on the right-hand side of the above inequahty by providing some
upper bounds. In fact, a simple calculation reveals that (1 — M;y/T';) <1 — =5 +2 holds if and only

2
if M2Ty, > ﬁ which is true for any £ > 1 since %ﬁ max{ag, %} > Moreover,

(’H'Q)2 :
from the fact that Ty > (§72)%/® for any k > 1, one can easily verify that My < ({72)*/*M; /Ty <

(My + (§7)*/*) M1 /T, therefore, (1 — Myv/Ty)(Mz + (572)%/%) < (§7)%/? for any k > 1.

Using these two inequalities within (TT]) and the fact that (1 4 +2)(1 T +2) < 1, we conclude that

a1 < max{ao, %}ﬁ + (%)2/3 + M- which completes the induction and henceforth the
1

result of the lemma. O

In the following, we provide the proof of Lemma[4.T| which offers an upper bound on the decrease of
L, (z,y;,(z)) — L.(z,y) based on the consecutive iterates.

Proof of Lemma Let w, 2 Z(yx + pr) + 8||y1€—pk|| v where v, €
argmax| <1 (VyLyu(Zk, yx), v). From the definition of the conjugate norm, one can verify that

(VyLyu(zk,yi), k) = ||VyLyu(zk, yi)||,. Moreover, we note that since yx,pr, € ¥ and Y is a-
strongly convex we have that uj, € Y. Recalling that p, = argmax, ¢y (V, Ly (2k, yr), y) we
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conclude that
Yk — i, Vy L@, yr)) < (ye — e, Vo L (Tk, Yi))
5 (k= P VL)) — 5 ok = el 19, o, i,
(12)
Next, with a similar argument and using concavity of L,(z,-) for any y € Y, we have

that (yr —pr, VyLu(zr, yk)) < Lu(r,yr) — Lu(zk,y,(zr)). Now, recall that Hy =
L, (wk, vy (2k)) — Lu(2k, Y& ), then from (I2) we obtain

1 «
W — Prs Vo Lo(@r, yr)) < 5 WUk — Prs Vi Lp(Tr, i) — 3 lyx — el IV Louzr, yr)ll,

2V
1
2

IN

% (6%
(k. — (), Vy Lylzr, yr)) — 3 e — pell® IV y Lo (s yi) ],
1 o
in ) [y —Pk“2 ||Vy£u($k,yk)||* : (13)

Now, we will show one-step progress for the update of y; ;. Indeed, from Lipschitz continuity of
VL, (x,-) we have that

(Lyy +p)
2

Adding L, (1, y}, (1)) to both sides of the above inequality, using (T3), and rearranging the terms
lead to

Lol yi(@n) = Luloeyin) < (1= 20) Hi = 015 i = pell* 1V £ (i) .

(Lyy + 1)
2

< ma {11 —L v e )||}H (14)
X a) Y2 RN ) )

B 2 8(Lyy+ﬂ) phu Tl Ykl i

Ly, yr) < L@k, Yrg1) + 0r (VyLy(Th, yi), Y — D) + ot lyx — pill”-

+ o ||y —kaI

where the last inequality follows from the choice of step-size oy =
min{1, m IVyLy(@e, yr)ll, }-

Let us define y;, = max { 11— STTh IVyLyu(zr, i), } We will provide an upper bound for

V&, by lower bounding ||V, L, (zk, yk) ||, in terms of the function value using strong concavity of
L,,. In fact, since for any x € X, we have that yZ( r) = argmin, ¢y £, (7, y) then one can conclude

thatforany y € Y, L, (v, y};(z)) — L, y) Hy Yy (z )H2 Then, using concavity of £, (x, -)
we obtain that

Lu(@,y,(2) = Lu(z,y) < (VyLu(z,y),yp(2) —y)
< ”vy['#( Y ||* Hy# _yH

< IV, Luw )l 2 (2wl — L)

L), > \/ B(L,.(2,y:(x)) — L,.(z,y)). This immediately implies that v; <
max{3,1 — m\/ % - Now using this lower bound within (T4) we obtain the following
result.

* 1 Q
L(wr, Yy (or) — Lu(Ths Y1) SmaX{QJ 8f(L\yC+,u vV H }Hk (15)

The next step is to lower bound the left-hand side of the above inequality in terms of Hy 1.
This is indeed possible by invoking Lipschitz continuity of V., £ and the fact that y;(zx) =
argmax,cy L, (zx,y). In particular, one can easily verify that £, (zx, y; (2x)) — L. (Tk, Y1) >
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Lk, Yy (vh11)) — Lu(2k, Yk11), therefore, using Lipschitz continuity of VL, (-,y) for any
y € Y, we obtain
Lo,y (wx) = L@, Y1) > L@t Y, (Th11)) — Lo(Thr1s Yrr1)
+ (Vo Ly (@r, U (2h41)) = VaLly(Trg, Yes1), Tk — Thy)
— Lys H$k+1 - mkHQ
> Ly(r+1, Y (2k)) — Lou(Thr1, Y1)
— (Laa llzrsr = zall + Ly [|yrsr = (@) ) s — 2l
— Lys kaJrl - kaz
> Hyey1 = LyamDy Dx — 2L0u DX, (16)
where the penultimate inequality follows from Cauchy-Schwarz inequality and Lipschitz continuity
of VL, (x,-) for any 2 € X, and the last inequality follows from the update of zj; as well as

boundedness of X and Y. Finally, using the above lower bound within (T3] leads to the desired
result. O

C Convergence Analysis for Algorithm 1|

In this section, we prove the convergence result for Algorithm [I] which includes NC-C and NC-SC
scenarios.

C.1 Proof of Theorem[4.2]

To show the convergence rate result, we consider implementing the result of Lemma[B.T]on (§) by

letting a, = Hy,, M, = %, and My = (7). Therefore,
9 256( Ly, + )2 8v2(Ly, + 1)E(7) 2
H. < — Hy, ——vv 17 & vy . 17
’“—<k+2>2m‘“‘x{ O e }+ ””( a /i ) 0

Based on this inequality, we can obtain an upper bound on the distance between iterate y; and the
regularized solution yj; (z). Subsequently, we will show the convergence results in terms of dual
and primal gap functions.

In particular, we note that using strong concavity of £, (z,-) for any € X, we have that H;, >

g ||yk — y;(zk)’ ?; therefore, from one can deduce that for any & > 1,

256(Lyy + p)?

}+5(T)

9
% Hyk - y:(mk)HQ < mmax {HO’

a2y
2/3
+ 8V2(Lyy + p)E(T) (18)
an/p
Now using the fact that Gy (zx,yx) = (VyL(Tk,yx), Pk — Yr) one can easily verify that

(VoL (@, Yr), Pk — k) > Gy (@k, yx) — pD%. Moreover, from Lipschitz continuity of V, L, (x, -)
we conclude that

Gy (zhs yk) < (VyLp(@r, ), P — Yi) + D3,
< <Vy‘cu(xka yk)7 y* (l'k) - yk> + /.LD%/
L,, + .
< Hy+ 2228 g~y @) + uD3
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Therefore, using (I7) we conclude that for any k& > 1,

256(Lyy + p)?

9c,,
(k+2)? a?p

L (33 + e\
o i

where ¢, £24 L, /1. which proves the bound for the dual gap function.

gY(xk’7yk) S maX{H07

} + ¢, E(7)

¢, + uD3, (19)

Next, we show the convergence rate result in terms of the primal gap function. Recalling that
fu(z) = minyey L£,(x,y), from Lipschitz continuity of V f,, we obtain

2
— x|

fu(@rs1) < fu(ze) + (Vfu(zk), Thi1 — o)
= fulxr) + (Vfu(zr) = Vo L(@r, yr), Tho1 — k) + (Vo £(Th, Yr), Thy1 — Tk)

2
— x|

fu
2
< ful@e) + Lya ||uk — vy (@) lznse1 — 2l + (VaL(@r, yr), Tos1 — k)
L
+ 2 e — il

where in the last inequality we used Lipschitz continuity of V,£(z,-) for any 2 € X. Using (T8)
within the above inequality, recalling the update of ;11 = 75 + (1 — 7)xy, boundedness of X,
and rearranging the terms we obtain

L
T (Vol(xr, yr), 2k — sx) < fular) — fu(Trg1) + 2f" D%

16(L
+LU$TDX\/>|:7 max Ho M
k42 /it

+VER + (22 Lumee) (ﬂ)lm].

Summing the above inequality over k € K where K = {[K/2],..., K — 1}, dividing both sides by
7K /2, and noting that Gx (x, yx) = (Vo L(Tk, Yr), Tx — Sk) imply that

2 Z Gx (T, i) < 2(fu(zo) = fulzk)) N Lf“TDg(

TK K
keK
2v/2Ly, 3log(K + 1) 16(Lyy + 1)
D  Hy, —2 2
+ \/‘Lj X|: K max 0 a\/ﬁ
N\ 1/3
+ VE() + (gt ) T, (20)

Moreover, we have that f,,(20) — fu(2k) < f(z0) — f(zx )+ 5D5 < f(zo) — f(a*)+ 5 D5 and

defining t £ argming - Gx (zx, yx ), implies that % Y oner 9x (T, yr) > Gx (w1, yr). Therefore,
(20) together with the dual bound in (T9) and noting that ¢ > K /2 leads to the desired result. ~ [J

C.2  Proof of Corollary[d.3]

Note that when 7 < 1, then we have that £(7) = O(L,,7), hence,
— f(z* Lyw+ L2, /)7 log(K)L,.L Lol
Gx(zt,y1) <O f(zo) — /(@) + ( v/ ) + 0g(K) Lys Ly, + VLyaT
TK K uK \/ﬁ

(Ly Luu7)1/3
+ 2/3 )

L3 L23:23 oL
<O vy vy vy .
gY(ﬂftaZ/t) = </142K2 + /1/4/3 + L +/J’
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Minimizing the above upper bounds simultaneously in 7 by considering i as a parameter implies
that 7 = O(u®/ Lgy) Then replacing 7, we can minimize the upper bounds in terms of ;¢ which

vV Lya

implies that 1 = O(75 ). Therefore, we conclude that 7 = O(ﬁm) and Gz (x¢,yt) =

Gx (x4,y:) + Gy (we,y:) < O(1/K'/6). Therefore, an e-gap solution can be computed within
O(e~%) iterations by setting 7 = O(€®) and 1 = O(e). O

C.3 Proof of Theorem 4.4

Recall that we assume L£(z, ) is fi-strongly concave for any € X and we set ¢ = 0 in Algorithm
Following similar steps as in Lemma .| one can readily obtain

(Y — i, Vo L(Tr,yr)) < Yk — uk, Vy L(xk, y))

1 «
= ) (Y —pk,vyﬁ(mkayk» Y lyx _pk||2 HVyﬁ(%yk)ll*

1 «
< —5Hi = % Iy = pil* 1V, Lo, @b

Note that in this setting y*(x) £ argmax,cy L£(z,y) is uniquely defined as satisfies the result of

Lemma Moreover, from the update of yx1 and Lipschitz continuity of V,£L(x,-), one can
obtain

L
L(xg, yr) < L(xk, Ye1) + ok (Vy L(Tk, Yr), Y — Pr) + %01% gk — pill”-

Adding L(x,y*(zk)) to both sides of the above inequality and rearranging the terms lead to

* g (0%
Llany"@n) = Llowsyee) < (1= F5) He— o s lye = pel [V LCns )

L 2
+ 702 g —
<maxd i 1- OV, L), VH
max — _ X
> 9’ 8Lyy Y ks Yk )|l k>

where the last inequality follows from the choice of step-size o, = min{1, 4(%%) \Vy Lz, yi)ll, }-

Then defining H, £ L(zg,y*(xx)) — L(xk, yx) for any k > 0, and following the same steps for
proving (I3), we obtain the following one-step improvement bound

1 av/ [ ~ ~
Lz, y" (xr)) — L(Tk, Yp41) < max -, 1 — Vi Hy, » Hy. (22)
2" 8./2L,,

Next, we can find a lower-bound for the left-hand side of the above inequality similar to (T6) to
conclude that

aVi

~ 1
Hiy 1 <max{ -, 1 — ————
e

ﬁk} Hy, + &(7). (23)

Now, to show the convergence rate result, we consider implementing the result of Lemma [B.T|on 23)

by letting ay = Hy, My = 8\‘;5‘/5 ,and My = £(7) which implies that
vy

~ 9
H < —— Hy, = —_—
SRR ma"{ " a2 aVii

Following similar steps as in the proof of inequality (T9) and using (24) instead of lead to the
following bound for the dual gap function

2/3
9c; _ 256L2 8v/2L,,E(7)
< =B H, vy & B St e S 0. 25
Gy (zr, yr) < Uit 2 maX{ o } +cpé(T) + ( </ o (25)

. 2/3
o, 2" o)+ (8\@%5 m) S e
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The upper bound on the primal gap function can be obtained by following the same lines as in the
proof of Theorem [.2]to obtain (20). In particular, one can show that

2 2 _ L
gX(Inyt) < ? ,;CQX(xlwyk) < (f(xo)TKf(xK)) + [QTDX
2V2Ly, ) r3log(K +1) 16L,,
+ 7 Dx[ % max{\/l?o, =~/

1/3
—F\/S(T)+-<8V@Zf%§KT)> }. (26)

Letting 7 = O(W in (23) and (26) imply that Gx (24, y¢) < O(1/K'/*) and Gy (x4, ;) <

O(1/K'/?). Therefore, to achieve Gx (¢, y) < € Algorlthm |I| with 1 = 0 requires O(e~%)
iterations while achieving Gy (7, y;) < € requires O(e~2) iterations. O

D Required Lemmas for Theorems 5.1 and [5.3]

Lemma D.1. Suppose Assumptions - 2.6|and|2.7] - hold and {(xk, yx) } k>0 be the sequence generated
by AlgorlthmE| Letop, =0 < . Then for any k > 0,

2
L, 20
Nk — vy (@r)|| < pllyk—1 =y (@) || (27)
where p £ max{|l — o(Ly, + p)|,|1 — oul}.
Proof. Let L,(z,y) = L(z,y) — & |ly — yo|? and recall that yy(z) = argmin, y £, (z,y); there-

fore, from the optimality condition we have that y; () = Py (y;(z) + oV, L,.(z, y;;,(x))) for any
x € X. From the update of y, and the non-expansivity of the projection operator, we have that

Nwk — v (@r)|| < |lyr—1 + oVyLy(@r, ye—1) — (Wh(zk) + oV Lz, ) (x) || -
Now, let us define function g;, : Y — R such that g, (y) = 1 lyll> + 0L, (2x, y). Note that for any
k >0, gi(-) is continuously differentiable and has a Lipschitz continuous gradient with parameter

p =max{|l —o(Ly,+p)|,|1—op|}. Therefore, one can immediately conclude the result by noting
that Vgi,(yk) = yx + oVy L (2k, Yi)- 0

Lemma D.2. Under the premises of Lemma|D.1| assume i, = 7 > 0, we have

Lya
lr = vz ()| < " [lvo — i (o) | + ﬂp7ﬂx

w1 —p)

Proof. From Lemmaﬂwe have that Hyk - yu Tk || <p Hyk 1— y# Tk H Using the triangle
inequality we conclud

o =il < o s = sl + o) = i)

(@) Ly»
<p (Hyk_lyZ(xk_1M|+;Z|xkxk_1H>

(®) )
(T )

© L.

<p Hyo — Y, (o H + ﬁTDXv (28)

where (a) follows from Lemmal[A.1} (b) follows from the assumption that X is a bounded set with
diameter D > 0, and (c) is derived from Lemma|[D.1] O
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E Convergence Analysis for Algorithm 2]

In this section, we prove the convergence result for Algorithm [2] which includes NC-C and NC-SC
scenarios.

E.1 Proof of Theorem 5.1]
From Lipschitz continuity of V f,, we have that

fu(@rr) < fular) + (Vu(@r), 2rg1 — 2x)
= fulxr) + (Vfu(zr) = Vo L(@r, yr), Th1 — 2x) + (Vo £(Th, Yr), Thy1 — Tr)

2
— x|

L
+ 25 aw - ol
< ful@e) + Lya ||uk — vy (@) lzne1 — 2l + (VaL(@r, yr), 2es1 — k)
L
+ 2 s — @,

where in the last inequality we used Lipschitz continuity of V£ (z, -) for any 2 € X. Next, using
Lemma (D.2)) in the above inequality, recalling the update of 11 = 75+ (1—7)xy, and rearranging
the terms we obtain

TV L(Th, Yi)s T — Sk) < fu(xk) - fu(xk-i-l) + Lyo:TDka HyO - y;(l‘o)H

L? L L?
| el Bee g Zue ) a2
p(l—p) 2 2p

Summing the above inequality over k € K where K = {[K/2],..., K — 1}, dividing both sides by
7K /2, and defining Gx (w1, yx) = (Vo L(xk, Yr), T — Sx) imply that

2 Z Gx (zh, i) < (fu(iﬂo) - fu(IK» n 2fyp:§KDX Hyo — yﬁ(ﬂco)H

kek (1
2L2 Lfﬂ 5
+ Ly + 7 TD%. 29)
Note that f,,(zo) — fu(zk) < f a:o) + £D3 < f(xzo) — f(2*) + £ D3 Finally, we let

t £ argmingc Gx (zk, yi), then 2 Zke,c Qx(xk, Yr) > Gx (x4, yr). Therefore, 29) leads to the
bound on the primal gap function.

Next, we obtain an upper-bound for the dual gap function Gy (xg,yr) =
Llye — Py (yr + VyL(2k,yx))|. In particular, using the triangle inequality we have that
for any k£ > 0,
1
Gy (Tk, y) < p ( |lye — Py (v + oV L(z, yi))||

+ 1Py (i + 0V Ll yi)) = Py (g + 0V, Ll i) )

IN

1
= Uy = sl + o IVy Lolar, y)) = VyLlzr, yi)l)

IN

1
pu lye — Y41l + Dy, (30)

where the second inequality follows from non-expansivity of the projection mapping and the last
inequality follows from the definition of V, £,, and boundedness of set Y.

On the other hand, using the triangle inequality one can observe that for any k£ > 0,
k1 — vell < Jywsr — vl (aan)|| + |l (2x) — wel| + |9 (@re1) — () |

2Ly, Ly
< 20* |lyo — (o) + (1”) TDx + =Dy, 31)
where the last inequality follows from Lemma[A-T|and[D.2] Finally, the desired result follows from
plugging (3T)) in (30) evaluated at k& = ¢, and noting that p* < p/2, O
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E.2 Proof of Corollary[5.2]

Theorem [5.1]implies that
1 L L2 p L2
Gx (wiom) < O + =2 4 (2 Ly + =207, (32)
(0 we) K (1-pK  \p(l-p) I
K L L,z
Gy (w, ) < O 4 00 sp g 200 ) (33)
o ou(l—p) = op

Selecting 7 = O(1/K3/*) and u = O(1/K'/*), together with the fact that p —op)k <

<(1
exp(—opkK) = O(exp(—K3/%)) implies that G (¢, y:) = Gx (¢, yt) + Gy (24, yt) < O(1/KY4).
Therefore, to achieve Gz (x4, y;) < € Algorithm [2|requires O(e~?) iterations.

O

E.3 Proof of Theorem

The proof follows the same steps as in the proof of Theorem [5.1] First, one needs to note that since
L(z,-) is fi-strongly concave for any = € X, y*(z) = argmax,cy L£(z,y) is uniquely defined for
any v € X. Therefore, the result in Lemma- ID.2|will be modified as follows

Ly.p
Iy =y (ze) | < 7" llyo — y* (x0) | + =—-2—=7Dx,
(1 —p)

where § £ max{[l — o L,,|, |1 — oil}.

Next, following the same argument for showing equation (29) and (3T)) we conclude that

< = < D —
gX(xtvyt) =K k;cg)((xkayk) = K + (1 —ﬁ)K X ||y0 Yy (LU())”
212 j 12,
+ | = + L D%, (34)
(u(l —p) fi ) *
and
1 25t OLs
Gy (@e,y) = — lyees = well < 7= llyo = " (@o)| + ﬁ_”p) Dx
2~K/2 2L, Lz
<2 o -y (o) |+ —2? Dy Bmopy s
op(l —p) oL

Finally, selecting 7 = O(1/K'/?) implies that G (1, y:) = Gx (x4, y:)+Gy (21, ,) < O(1/K'/?).
Therefore, to achieve Gz (74, y;) < € Algorithm 2 requires O(e~?2) iterations. O

F Experiment Details

In this section, we provide the details of the experiment to solve Dictionary Learning problem in
Example[2] In particular, we consider solving the following SP problem

min  max L [A - D'C’||%+y<ﬁ||A—D’C||2F—5>,

(D’,C")eX y€[0,B]
where X = {(D",C') [ [|C'||. <, [|d}|l2 < 1,Vj €{L,...,q}}.

2n/

Dataset Generation. We generate the old dataset matrix A = DC € R™*™ where D € R™*? is
generated randomly with elements drawn from the standard Gaussian distribution whose columns
are scaled to have a unit ¢5-norm, and C = WUVT where U € RP*! and V e R™*!
are generated randomly with elements drawn from the standard Gaussian distribution. The matrix

C € R9*" is generated by adding ¢ — p columns of zeros to C. The new dataset A’ € R™*1 s
generated randomly with elements drawn from the standard Gaussian distribution.

Initialization. All the methods start from the same initial point g = (Dy), Cy)) and yo = 0 where D’
is generated randomly with elements drawn from the uniform distribution in [0, 0.1] whose columns
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are scaled to have a unit £o-norm, and C{, = 0, . For all the algorithms we set the maximum
number of iterations & = 103.

Implementation Details. In this experiment, we let n = 500, m = 100, p = 50,1 = 5, ¢ = 60,
n’ =103 6 = 1074, r = 5, and B = 1. We compare the performance of our proposed methods
R-PDCG (Algorithm [T) and CG-RPGA (Algorithm [2) with the Alternating Gradient Projection
(AGP) algorithm presented by [49] and the Saddle Point Frank Wolfe (SPFW) algorithm proposed by
[L16]. Although the theoretical result for SPFW only holds in the convex-concave setting with certain
assumptions, we have included it in our experiment to enable a comparison with another method that
employs the LMO in both primal and dual updates. Moreover, we compare these methods in terms of
the gap function defined in Definition [2.T]and infeasibility corresponding to the nonlinear constraint
in (@). Since the algorithms use different oracles, to have a fair comparison we plot the performance
metrics versus time (second). In Figure 3] we compared the gap versus iteration and running time of
algorithms for a fixed duration.

— ~ o~
_-R-PDCG ~\~\ —RPDCG ~\.\
o CG-RPGA “Sao = =CG-RPGA ~o
107 7 AGP ~ 10 |-« AGP S
SPFW SPFW
0 100 200 300 400 500 600 5 10 15 20 25 30 35
iteration time(s)

Figure 3: Comparing the performance of our proposed methods R-PDCG (blue) and CG-RPGA
(red) with AGP (magenta) and SPFW (green) for a fixed amount of time in the Dictionary Learning
problem.

G Additional Experiments

To highlight the performance of our proposed methods for the example of Robust Multiclass Classifi-
cation problem described in Example[I} we compared different methods in terms of the number of
iterations. Figure @ shows the performance of the methods in terms of the gap function versus the
number of iterations within a fixed time. Notable, AGP takes only a few iterations due to its need for
full SVD. In Figure 5] we conducted additional iterations of AGP to offer a more precise evaluation
of its performance in comparison to other algorithms, considering a 1000-iteration count.

—R-PDCG 3 —R-PDCG
=—=CG-RPGA 4 ==CG-RPGA
-¥-AGP 4 H6:AGP
SPFW 10 SPFW
E
\ Q;] I
”'w S RREr 1
G Wt N
1 ML 107! |
[ |
1
L
0 200 400 600
0 200 400 600 800 1000 iteration
(a) revl (b) news20

Figure 4: Comparing the performance of our proposed methods R-PDCG (blue) and CG-RPGA (red)
with AGP (magenta) and SPFW (green) in the Robust Multiclass Classification problem.
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Figure 5: Comparing the performance of our proposed methods R-PDCG (blue) and CG-RPGA (red)
with AGP (magenta) and SPFW (green) in the Robust Multiclass Classification problem considering
a fixed iteration count.
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