
Appendix

In Section A, we present a set of general technical lemmas that are essential for proving the results
in the paper. In Section B, we present the necessary lemmas to establish the proof of the result for
Algorithm 1, which focuses on the utilization of the LMO for both variables. Subsequently, in section
C, we analyze and demonstrate the convergence rate of Algorithm 1 in Theorem 4.2 and Corollary
4.3 for nonconvex-concave (NC-C) scenario and in Theorem 4.4 for nonconvex-strongly concave
(NC-SC) scenario. Moving forward to Section D, we introduce the lemmas essential for verifying
the correctness of Algorithm 2, which involves employing the LMO for the minimization variables
and the PO for the maximization variable. Furthermore, in Section E, we investigate and establish
the convergence rate of Algorithm 2 in Theorem 5.1 and Corollary 5.2 for NC-C scenario and in
Theorem 5.3 for NC-SC scenario. Finally, in Sections F and G, details of our numerical experiment
and supplementary plots are provided. To simplify the notations, we will drop the associated space
from the norms unless it is not clear from the context. For instance ∥x∥X and ∥x∥X∗ will be replaced
by ∥x∥ and ∥x∥∗, respectively.

Definition .1. Let fµ : X → R be a function such that fµ(x) ≜ maxy∈Y L(x, y) − µ
2 ∥y − y0∥2.

Moreover, we define y∗µ(x) ≜ argminy∈Y L(x, y)−
µ
2 ∥y − y0∥2.

A Technical Lemmas

We will now present technical lemmas that will be utilized in the proofs.
Lemma A.1. [29] The solution map y∗µ : X → Y is Lipschitz continuous. In particular, for any
x, x̄ ∈ X ∥∥y∗µ(x̄)− y∗µ(x)

∥∥ ≤ Lyx

µ
∥x̄− x∥ .

Proof. First note that since Lµ(x, ·) is strongly concave for any x ∈ X , we have that

(y∗µ(x̄)− y∗µ(x))
⊤(∇yLµ(x, y

∗
µ(x̄))−∇yLµ(x, y

∗
µ(x)) + µ

∥∥y∗µ(x̄)− y∗µ(x)
∥∥2 ≤ 0. (6)

Moreover, the optimality of y∗µ(x̄) and y∗µ(x) given that Lµ(x, y) = L(x, y)− µ
2 ∥y − y0∥2 implies

that for any y ∈ Y ,
(y − y∗µ(x̄))

⊤∇yLµ(x̄, y
∗
µ(x̄)) ≤ 0, (7)

(y − y∗µ(x))
⊤∇yLµ(x, y

∗
µ(x)) ≤ 0. (8)

Let y = y∗µ(x) in 7 and y = y∗µ(x̄) in 8 and summing up two inequalities, we obtain

(y∗µ(x)− y∗µ(x̄))
⊤(∇yLµ(x̄, y

∗
µ(x̄))−∇yLµ(x, y

∗
µ(x))) ≤ 0. (9)

By combining 9 and 6 we have

µ
∥∥y∗µ(x̄)− y∗µ(x)

∥∥2 ≤ (y∗µ(x̄)− y∗µ(x))
⊤(∇yLµ(x̄, y

∗
µ(x̄))−∇yLµ(x, y

∗
µ(x̄)))

(a)

≤ Lyx

∥∥y∗µ(x̄)− y∗µ(x)
∥∥ ∥x̄− x∥ ,

where (a) follows from Assumption 2.6. The result follows immediately from the above inequality.

Lemma A.2. [29] The function fµ(·) is differentiable on an open set containing X and∇fµ(x) =
∇xL(x, y∗µ(x)) where y∗µ(x) ≜ argminy∈Y Lµ(x, y). Moreover, fµ has a Lipschitz continuous
gradient with constant Lfµ ≜ Lxx + L2

yx/µ.

Proof. From Danskins’s theorem [5] one can obtain fµ(·) is differentiable and ∇fµ(x) =
∇xL(x, y∗µ(x)). Therefore, we have

∥∇fµ(x)−∇fµ(x′)∥ =
∥∥∇xL(x, y∗µ(x))−∇xL(x′, y∗µ(x

′))
∥∥

≤ Lxx ∥x− x′∥+ Lyx

∥∥y∗µ(x)− y∗µ(x
′)
∥∥

≤ Lxx ∥x− x′∥+
L2
yx

µ
∥x− x′∥ ,

14

where the last inequality holds by Lemma A.1.

B Required Lemmas for Theorems 4.2 and 4.4

Lemma B.1. Let {ak}k≥0 be a sequence of non-negative real numbers such that ak+1 ≤
max{1/2, 1−M1

√
ak}ak +M2 for some M1,M2 > 0 and any k ≥ 0. Then,

ak ≤
9

(k + 2)2
max

{
a0,

2

M2
1

}
+

(
M2

M1

)2/3

+M2, ∀k ≥ 1. (10)

Proof. We use induction to show the result. Indeed, for k = 1 we have that a1 ≤ max{1/2, 1 −
M1
√
a0}a0 + M2 ≤ a0 + M2 which clearly satisfies (10). Now, suppose (10) holds for k ≥ 1,

and we show the inequality for k + 1. We begin by examining the recursive relation ak+1 ≤
max{1/2, 1−M1

√
ak}ak +M2 and analyzing the different cases in which the maximum occurs on

different terms.

(CASE I) max{1/2, 1−M1
√
ak} = 1

2 : In this case, clearly ak+1 ≤ 1
2ak ≤

9
2(k+2)2 max{a0, 2

M2
1
}+

1
2 ((

M2

M1
)2/3+M2) ≤ 9

(k+3)2 max{a0, 2
M2

1
}+(M2

M1
)2/3+M2 where we used the fact that (k+3)2 ≤

2(k + 2)2 for any k ≥ 1.

(CASE II.a) max{1/2, 1−M1
√
ak} = 1−M1

√
ak and ak ≤ 9

2(k+2)2 max{a0, 2
M2

1
}+(M2

M1
)2/3: In

this case, one can observe that from the recursive inequality together with the current assumption we
have that ak+1 ≤ ak +M2 ≤ 9

2(k+2)2 max{a0, 2
M2

1
} + (M2

M1
)2/3 +M2 ≤ 9

(k+3)2 max{a0, 2
M2

1
} +

(M2

M1
)2/3 +M2.

(CASE II.b) max{1/2, 1−M1
√
ak} = 1−M1

√
ak and ak > 9

2(k+2)2 max
{
a0,

2
M2

1

}
+ (M2

M1
)2/3:

Let Γk ≜ 9
2(k+2)2 max

{
a0,

2
M2

1

}
+ (M2

M1
)2/3. From the recursive inequality and (10) we conclude

that

ak+1 ≤ (1−M1

√
Γk)

(
9

(k + 2)2
max

{
a0,

2

M2
1

}
+M2 + (

M2

M1
)2/3

)
+M2

= max

{
a0,

2

M2
1

}
9

(k + 3)2

(
1 +

3

k + 2

)
(1−M1

√
Γk)

+ (1−M1

√
Γk)

(
M2 +

(
M2

M1

)2/3
)

+M2. (11)

Next, we simplify the first two terms on the right-hand side of the above inequality by providing some
upper bounds. In fact, a simple calculation reveals that (1−M1

√
Γk) ≤ 1− 3

k+2 holds if and only

if M2
1Γk ≥ 9

(k+2)2 which is true for any k ≥ 1 since M2
1

2
9

(k+2)2 max{a0, 2
M2

1
} ≥ 9

(k+2)2 . Moreover,

from the fact that Γk ≥ (M2

M1
)2/3 for any k ≥ 1, one can easily verify that M2 ≤ (M2

M1
)2/3M1

√
Γk ≤

(M2 + (M2

M1
)2/3)M1

√
Γk, therefore, (1 − M1

√
Γk)(M2 + (M2

M1
)2/3) ≤ (M2

M1
)2/3 for any k ≥ 1.

Using these two inequalities within (11) and the fact that (1 + 3
k+2)(1−

3
k+2) ≤ 1, we conclude that

ak+1 ≤ max{a0, 2
M2

1
} 9
(k+3)2 + (M2

M1
)2/3 +M2 which completes the induction and henceforth the

result of the lemma.

In the following, we provide the proof of Lemma 4.1 which offers an upper bound on the decrease of
Lµ(x, y

∗
µ(x))− Lµ(x, y) based on the consecutive iterates.

Proof of Lemma 4.1 Let uk ≜ 1
2 (yk + pk) + α

8 ∥yk − pk∥2 vk where vk ∈
argmax∥v∥≤1 ⟨∇yLµ(xk, yk), v⟩. From the definition of the conjugate norm, one can verify that
⟨∇yLµ(xk, yk), vk⟩ = ∥∇yLµ(xk, yk)∥∗. Moreover, we note that since yk, pk ∈ Y and Y is α-
strongly convex we have that uk ∈ Y . Recalling that pk = argmaxy∈Y ⟨∇yLµ(xk, yk), y⟩ we

15

conclude that

⟨yk − pk,∇yLµ(xk, yk)⟩ ≤ ⟨yk − uk,∇yLµ(xk, yk)⟩

=
1

2
⟨yk − pk,∇yLµ(xk, yk)⟩ −

α

8
∥yk − pk∥2 ∥∇yLµ(xk, yk)∥∗ .

(12)

Next, with a similar argument and using concavity of Lµ(x, ·) for any y ∈ Y , we have
that ⟨yk − pk,∇yLµ(xk, yk)⟩ ≤ Lµ(xk, yk) − Lµ(xk, y

∗
µ(xk)). Now, recall that Hk =

Lµ(xk, y
∗
µ(xk))− Lµ(xk, yk), then from (12) we obtain

⟨yk − pk,∇yLµ(xk, yk)⟩ ≤
1

2
⟨yk − pk,∇yLµ(xk, yk)⟩ −

α

8
∥yk − pk∥2 ∥∇yLµ(xk, yk)∥∗

≤ 1

2

〈
yk − y∗µ(xk),∇yLµ(xk, yk)

〉
− α

8
∥yk − pk∥2 ∥∇yLµ(xk, yk)∥∗

≤ −1

2
Hk −

α

8
∥yk − pk∥2 ∥∇yLµ(xk, yk)∥∗ . (13)

Now, we will show one-step progress for the update of yk+1. Indeed, from Lipschitz continuity of
∇yLµ(x, ·) we have that

Lµ(xk, yk) ≤ Lµ(xk, yk+1) + σk ⟨∇yLµ(xk, yk), yk − pk⟩+
(Lyy + µ)

2
σ2
k ∥yk − pk∥2 .

Adding Lµ(xk, y
∗
µ(xk)) to both sides of the above inequality, using (13), and rearranging the terms

lead to

Lµ(xk, y
∗
µ(xk))− Lµ(xk, yk+1) ≤

(
1− σk

2

)
Hk − σk

α

8
∥yk − pk∥2 ∥∇yLµ(xk, yk)∥∗

+
(Lyy + µ)

2
σ2
k ∥yk − pk∥2

≤ max

{
1

2
, 1− α

8(Lyy + µ)
∥∇yLµ(xk, yk)∥∗

}
Hk, (14)

where the last inequality follows from the choice of step-size σk =
min{1, α

4(Lyy+µ) ∥∇yLµ(xk, yk)∥∗}.

Let us define γk ≜ max
{

1
2 , 1−

α
8(Lyy+µ) ∥∇yLµ(xk, yk)∥∗

}
. We will provide an upper bound for

γk, by lower bounding ∥∇yLµ(xk, yk)∥∗ in terms of the function value using strong concavity of
Lµ. In fact, since for any x ∈ X , we have that y∗µ(x) = argminy∈Y Lµ(x, y) then one can conclude

that for any y ∈ Y , Lµ(x, y
∗
µ(x))− Lµ(x, y) ≥ µ

2

∥∥y − y∗µ(x)
∥∥2. Then, using concavity of Lµ(x, ·)

we obtain that

Lµ(x, y
∗
µ(x))− Lµ(x, y) ≤

〈
∇yLµ(x, y), y

∗
µ(x)− y

〉
≤ ∥∇yLµ(x, y)∥∗

∥∥y∗µ(x)− y
∥∥

≤ ∥∇yLµ(x, y)∥∗

√
2

µ
(Lµ(x, y∗µ(x))− Lµ(x, y)).

Therefore, ∥∇yLµ(x, y)∥∗ ≥
√

µ
2 (Lµ(x, y∗µ(x))− Lµ(x, y)). This immediately implies that γk ≤

max{ 12 , 1 −
α
√
µ

8
√
2(Lyy+µ)

√
Hk}. Now using this lower bound within (14) we obtain the following

result.

Lµ(xk, y
∗
µ(xk))− Lµ(xk, yk+1) ≤ max

{
1

2
, 1−

α
√
µ

8
√
2(Lyy + µ)

√
Hk

}
Hk. (15)

The next step is to lower bound the left-hand side of the above inequality in terms of Hk+1.
This is indeed possible by invoking Lipschitz continuity of ∇xL and the fact that y∗µ(xk) =
argmaxy∈Y Lµ(xk, y). In particular, one can easily verify that Lµ(xk, y

∗
µ(xk))− Lµ(xk, yk+1) ≥

16

Lµ(xk, y
∗
µ(xk+1)) − Lµ(xk, yk+1), therefore, using Lipschitz continuity of ∇xLµ(·, y) for any

y ∈ Y , we obtain

Lµ(xk, y
∗
µ(xk))− Lµ(xk, yk+1) ≥ Lµ(xk+1, y

∗
µ(xk+1))− Lµ(xk+1, yk+1)

+
〈
∇xLµ(xk, y

∗
µ(xk+1))−∇xLµ(xk+1, yk+1), xk − xk+1

〉
− Lxx ∥xk+1 − xk∥2

≥ Lµ(xk+1, y
∗
µ(xk))− Lµ(xk+1, yk+1)

− (Lxx ∥xk+1 − xk∥+ Lyx

∥∥yk+1 − y∗µ(xk+1)
∥∥) ∥xk+1 − xk∥

− Lxx ∥xk+1 − xk∥2

≥ Hk+1 − LyxτDY DX − 2Lxxτ
2D2

X , (16)

where the penultimate inequality follows from Cauchy-Schwarz inequality and Lipschitz continuity
of ∇xLµ(x, ·) for any x ∈ X , and the last inequality follows from the update of xk+1 as well as
boundedness of X and Y . Finally, using the above lower bound within (15) leads to the desired
result.

C Convergence Analysis for Algorithm 1

In this section, we prove the convergence result for Algorithm 1 which includes NC-C and NC-SC
scenarios.

C.1 Proof of Theorem 4.2

To show the convergence rate result, we consider implementing the result of Lemma B.1 on (5) by
letting ak = Hk, M1 =

α
√
µ

8
√
2(Lyy+µ)

, and M2 = E(τ). Therefore,

Hk ≤
9

(k + 2)2
max

{
H0,

256(Lyy + µ)2

α2µ

}
+ E(τ) +

(
8
√
2(Lyy + µ)E(τ)

α
√
µ

)2/3

. (17)

Based on this inequality, we can obtain an upper bound on the distance between iterate yk and the
regularized solution y∗µ(xk). Subsequently, we will show the convergence results in terms of dual
and primal gap functions.

In particular, we note that using strong concavity of Lµ(x, ·) for any x ∈ X , we have that Hk ≥
µ
2

∥∥yk − y∗µ(xk)
∥∥2; therefore, from (17) one can deduce that for any k ≥ 1,

µ

2

∥∥yk − y∗µ(xk)
∥∥2 ≤ 9

(k + 2)2
max

{
H0,

256(Lyy + µ)2

α2µ

}
+ E(τ)

+

(
8
√
2(Lyy + µ)E(τ)

α
√
µ

)2/3

. (18)

Now using the fact that GY (xk, yk) = ⟨∇yL(xk, yk), pk − yk⟩ one can easily verify that
⟨∇yLµ(xk, yk), pk − yk⟩ ≥ GY (xk, yk)−µD2

Y . Moreover, from Lipschitz continuity of∇yLµ(x, ·)
we conclude that

GY (xk, yk) ≤ ⟨∇yLµ(xk, yk), pk − yk⟩+ µD2
Y

≤ ⟨∇yLµ(xk, yk), y
∗(xk)− yk⟩+ µD2

Y

≤ Hk +
Lyy + µ

2
∥yk − y∗(xk)∥2 + µD2

Y

≤ (2 +
Lyy

µ
)Hk + µD2

Y .

17

Therefore, using (17) we conclude that for any k ≥ 1,

GY (xk, yk) ≤
9cµ

(k + 2)2
max

{
H0,

256(Lyy + µ)2

α2µ

}
+ cµE(τ)

+

(
8
√
2(Lyy + µ)E(τ)

α
√
µ

)2/3

cµ + µD2
Y , (19)

where cµ ≜ 2 + Lyy/µ. which proves the bound for the dual gap function.

Next, we show the convergence rate result in terms of the primal gap function. Recalling that
fµ(x) = miny∈Y Lµ(x, y), from Lipschitz continuity of ∇fµ we obtain

fµ(xk+1) ≤ fµ(xk) + ⟨∇fµ(xk), xk+1 − xk⟩+
Lfµ

2
∥xk+1 − xk∥2

= fµ(xk) + ⟨∇fµ(xk)−∇xL(xk, yk), xk+1 − xk⟩+ ⟨∇xL(xk, yk), xk+1 − xk⟩

+
Lfµ

2
∥xk+1 − xk∥2

≤ fµ(xk) + Lyx

∥∥yk − y∗µ(xk)
∥∥ ∥xk+1 − xk∥+ ⟨∇xL(xk, yk), xk+1 − xk⟩

+
Lfµ

2
∥xk+1 − xk∥2 ,

where in the last inequality we used Lipschitz continuity of ∇xL(x, ·) for any x ∈ X . Using (18)
within the above inequality, recalling the update of xk+1 = τsk + (1 − τ)xk, boundedness of X ,
and rearranging the terms we obtain

τ ⟨∇xL(xk, yk), xk − sk⟩ ≤ fµ(xk)− fµ(xk+1) +
Lfµ

2
τ2D2

X

+ LyxτDX

√
2
µ

[3

k + 2
max

{√
H0,

16(Lyy + µ)

α
√
µ

}
+
√
E(τ) +

(
8
√
2(Lyy+µ)E(τ)

α
√
µ

)1/3]
.

Summing the above inequality over k ∈ K where K ≜ {⌈K/2⌉, . . . ,K − 1}, dividing both sides by
τK/2, and noting that GX(xk, yk) = ⟨∇xL(xk, yk), xk − sk⟩ imply that

2

K

∑
k∈K

GX(xk, yk) ≤
2(fµ(x0)− fµ(xK))

τK
+

Lfµτ

K
D2

X

+
2
√
2Lyx√
µ

DX

[3 log(K + 1)

K
max

{√
H0,

16(Lyy + µ)

α
√
µ

}
+
√
E(τ) +

(
8
√
2(Lyy+µ)E(τ)

α
√
µ

)1/3]
. (20)

Moreover, we have that fµ(x0)−fµ(xK) ≤ f(x0)−f(xK)+ µ
2D

2
Y ≤ f(x0)−f(x∗)+ µ

2D
2
Y . and

defining t ≜ argmink∈K GX(xk, yk), implies that 2
K

∑
k∈K GX(xk, yk) ≥ GX(xt, yt). Therefore,

(20) together with the dual bound in (19) and noting that t ≥ K/2 leads to the desired result.

C.2 Proof of Corollary 4.3

Note that when τ < 1, then we have that E(τ) = O(Lyxτ), hence,

GX(xt, yt) ≤ O
(
f(x0)− f(x∗)

τK
+

(Lxx + L2
yx/µ)τ

K
+

log(K)LyxLyy

µK
+

√
Lyxτ√
µ

+
(LyxLyyτ)

1/3

µ2/3

)
,

GY (xt, yt) ≤ O

(
L3
yy

µ2K2
+

L
5/3
yy τ2/3

µ4/3
+

τLyy

µ
+ µ

)
.

18

Minimizing the above upper bounds simultaneously in τ by considering µ as a parameter implies
that τ = O(µ5/L3

yx). Then replacing τ , we can minimize the upper bounds in terms of µ which

implies that µ = O(
√

Lyx

K1/6). Therefore, we conclude that τ = O(1

K5/6
√

Lyx

) and GZ(xt, yt) =

GX(xt, yt) + GY (xt, yt) ≤ O(1/K1/6). Therefore, an ϵ-gap solution can be computed within
O(ϵ−6) iterations by setting τ = O(ϵ5) and µ = O(ϵ).
C.3 Proof of Theorem 4.4

Recall that we assume L(x, ·) is µ̃-strongly concave for any x ∈ X and we set µ = 0 in Algorithm 1.
Following similar steps as in Lemma 4.1 one can readily obtain

⟨yk − pk,∇yL(xk, yk)⟩ ≤ ⟨yk − uk,∇yL(xk, yk)⟩

=
1

2
⟨yk − pk,∇yL(xk, yk)⟩ −

α

8
∥yk − pk∥2 ∥∇yL(xk, yk)∥∗

≤ −1

2
Hk −

α

8
∥yk − pk∥2 ∥∇yL(xk, yk)∥∗ . (21)

Note that in this setting y∗(x) ≜ argmaxy∈Y L(x, y) is uniquely defined as satisfies the result of
Lemma A.1. Moreover, from the update of yk+1 and Lipschitz continuity of ∇yL(x, ·), one can
obtain

L(xk, yk) ≤ L(xk, yk+1) + σk ⟨∇yL(xk, yk), yk − pk⟩+
Lyy

2
σ2
k ∥yk − pk∥2 .

Adding L(xk, y
∗(xk)) to both sides of the above inequality and rearranging the terms lead to

L(xk, y
∗(xk))− L(xk, yk+1) ≤

(
1− σk

2

)
Hk − σk

α

8
∥yk − pk∥2 ∥∇yL(xk, yk)∥∗

+
Lyy

2
σ2
k ∥yk − pk∥2

≤ max

{
1

2
, 1− α

8Lyy
∥∇yL(xk, yk)∥∗

}
Hk,

where the last inequality follows from the choice of step-size σk = min{1, α
4(Lyy)

∥∇yL(xk, yk)∥∗}.
Then defining H̃k ≜ L(xk, y

∗(xk)) − L(xk, yk) for any k ≥ 0, and following the same steps for
proving (15), we obtain the following one-step improvement bound

L(xk, y
∗(xk))− L(xk, yk+1) ≤ max

{
1

2
, 1− α

√
µ̃

8
√

2Lyy

√
H̃k

}
H̃k. (22)

Next, we can find a lower-bound for the left-hand side of the above inequality similar to (16) to
conclude that

H̃k+1 ≤ max

{
1

2
, 1− α

√
µ̃

8
√
2Lyy

√
H̃k

}
H̃k + E(τ). (23)

Now, to show the convergence rate result, we consider implementing the result of Lemma B.1 on (23)
by letting ak = H̃k, M1 = α

√
µ̃

8
√
2Lyy

, and M2 = E(τ) which implies that

H̃k ≤
9

(k + 2)2
max

{
H̃0,

256(Lyy)
2

α2µ̃

}
+ E(τ) +

(
8
√
2LyyE(τ)
α
√
µ̃

)2/3

. (24)

Following similar steps as in the proof of inequality (19) and using (24) instead of (17) lead to the
following bound for the dual gap function

GY (xk, yk) ≤
9cµ̃

(k + 2)2
max

{
H̃0,

256L2
yy

α2µ̃

}
+ cµ̃E(τ) +

(
8
√
2LyyE(τ)
α
√
µ̃

)2/3

cµ̃. (25)

19

The upper bound on the primal gap function can be obtained by following the same lines as in the
proof of Theorem 4.2 to obtain (20). In particular, one can show that

GX(xt, yt) ≤
2

K

∑
k∈K

GX(xk, yk) ≤
2(f(x0)− f(xK))

τK
+

Lfτ

K
D2

X

+
2
√
2Lyx√
µ̃

DX

[3 log(K + 1)

K
max

{√
H̃0,

16Lyy

α
√
µ̃

}

+
√
E(τ) +

(
8
√
2LyyE(τ)
α
√
µ̃

)1/3]
. (26)

Letting τ = O(1

K3/4
√

Lyx

) in (25) and (26) imply that GX(xt, yt) ≤ O(1/K1/4) and GY (xt, yt) ≤

O(1/K1/2). Therefore, to achieve GX(xt, yt) ≤ ϵ Algorithm 1 with µ = 0 requires O(ϵ−4)
iterations while achieving GY (xt, yt) ≤ ϵ requires O(ϵ−2) iterations.

D Required Lemmas for Theorems 5.1 and 5.3

Lemma D.1. Suppose Assumptions 2.6 and 2.7 hold and {(xk, yk)}k≥0 be the sequence generated
by Algorithm 2. Let σk = σ ≤ 2

Lyy+2µ . Then for any k ≥ 0,∥∥yk − y∗µ(xk)
∥∥ ≤ ρ

∥∥yk−1 − y∗µ(xk)
∥∥ (27)

where ρ ≜ max{|1− σ(Lyy + µ)|, |1− σµ|}.

Proof. Let Lµ(x, y) ≜ L(x, y)− µ
2 ∥y − y0∥2 and recall that y∗µ(x) = argminy∈Y Lµ(x, y); there-

fore, from the optimality condition we have that y∗µ(x) = PY (y
∗
µ(x) + σ∇yLµ(x, y

∗
µ(x))) for any

x ∈ X . From the update of yk and the non-expansivity of the projection operator, we have that∥∥yk − y∗µ(xk)
∥∥ ≤ ∥∥yk−1 + σ∇yLµ(xk, yk−1)− (y∗µ(xk) + σ∇yLµ(x, y

∗
µ(xk)))

∥∥ .
Now, let us define function gk : Y → R such that gk(y) ≜ 1

2 ∥y∥
2
+ σLµ(xk, y). Note that for any

k ≥ 0, gk(·) is continuously differentiable and has a Lipschitz continuous gradient with parameter
ρ = max{|1−σ(Lyy+µ)|, |1−σµ|}. Therefore, one can immediately conclude the result by noting
that∇gk(yk) = yk + σ∇yLµ(xk, yk).

Lemma D.2. Under the premises of Lemma D.1, assume τk = τ ≥ 0, we have∥∥yk − y∗µ(xk)
∥∥ ≤ ρk

∥∥y0 − y∗µ(x0)
∥∥+ Lyxρ

µ(1− ρ)
τDX .

Proof. From Lemma D.1 we have that
∥∥yk − y∗µ(xk)

∥∥ ≤ ρ
∥∥yk−1 − y∗µ(xk)

∥∥. Using the triangle
inequality we conclude that∥∥yk − y∗µ(xk)

∥∥ ≤ ρ

(∥∥yk−1 − y∗µ(xk−1)
∥∥+ ∥∥y∗µ(xk)− y∗µ(xk−1)

∥∥)
(a)

≤ ρ

(∥∥yk−1 − y∗µ(xk−1)
∥∥+ Lyx

µ
∥xk − xk−1∥

)
(b)

≤ ρ

(∥∥yk−1 − y∗µ(xk−1)
∥∥+ Lyx

µ
τDX

)
(c)

≤ ρk
∥∥y0 − y∗µ(x0)

∥∥+ Lyxρ

µ(1− ρ)
τDX , (28)

where (a) follows from Lemma A.1; (b) follows from the assumption that X is a bounded set with
diameter D ≥ 0, and (c) is derived from Lemma D.1.

20

E Convergence Analysis for Algorithm 2

In this section, we prove the convergence result for Algorithm 2 which includes NC-C and NC-SC
scenarios.

E.1 Proof of Theorem 5.1

From Lipschitz continuity of∇fµ we have that

fµ(xk+1) ≤ fµ(xk) + ⟨∇fµ(xk), xk+1 − xk⟩+
Lfµ

2
∥xk+1 − xk∥2

= fµ(xk) + ⟨∇fµ(xk)−∇xL(xk, yk), xk+1 − xk⟩+ ⟨∇xL(xk, yk), xk+1 − xk⟩

+
Lfµ

2
∥xk+1 − xk∥2

≤ fµ(xk) + Lyx

∥∥yk − y∗µ(xk)
∥∥ ∥xk+1 − xk∥+ ⟨∇xL(xk, yk), xk+1 − xk⟩

+
Lfµ

2
∥xk+1 − xk∥2 ,

where in the last inequality we used Lipschitz continuity of∇xL(x, ·) for any x ∈ X . Next, using
Lemma (D.2) in the above inequality, recalling the update of xk+1 = τsk+(1−τ)xk, and rearranging
the terms we obtain

τ ⟨∇xL(xk, yk), xk − sk⟩ ≤ fµ(xk)− fµ(xk+1) + LyxτDXρk
∥∥y0 − y∗µ(x0)

∥∥
+

(
L2
yxρ

µ(1− ρ)
+

Lxx

2
+

L2
yx

2µ

)
τ2D2

X .

Summing the above inequality over k ∈ K where K ≜ {⌈K/2⌉, . . . ,K − 1}, dividing both sides by
τK/2, and defining GX(xk, yk) ≜ ⟨∇xL(xk, yk), xk − sk⟩ imply that

2

K

∑
k∈K

GX(xk, yk) ≤
2(fµ(x0)− fµ(xK))

τK
+

2Lyx

(1− ρ)K
DX

∥∥y0 − y∗µ(x0)
∥∥

+

(
2L2

yxρ

µ(1− ρ)
+ Lxx +

L2
yx

µ

)
τD2

X . (29)

Note that fµ(x0)− fµ(xK) ≤ f(x0)− f(xK) + µ
2D

2
Y ≤ f(x0)− f(x∗) + µ

2D
2
Y . Finally, we let

t ≜ argmink∈K GX(xk, yk), then 2
K

∑
k∈K GX(xk, yk) ≥ GX(xt, yt). Therefore, (29) leads to the

bound on the primal gap function.

Next, we obtain an upper-bound for the dual gap function GY (xk, yk) =
1
σ ∥yk − PY (yk +∇yL(xk, yk))∥. In particular, using the triangle inequality we have that
for any k ≥ 0,

GY (xk, yk) ≤
1

σ

(
∥yk − PY (yk + σ∇yL(xk, yk))∥

+ ∥PY (yk + σ∇yLµ(xk, yk))− PY (yk + σ∇yL(xk, yk))∥
)

≤ 1

σ
(∥yk − yk+1∥+ σ ∥∇yLµ(xk, yk))−∇yL(xk, yk)∥)

≤ 1

σ
∥yk − yk+1∥+ µDY , (30)

where the second inequality follows from non-expansivity of the projection mapping and the last
inequality follows from the definition of∇yLµ and boundedness of set Y .

On the other hand, using the triangle inequality one can observe that for any k ≥ 0,
∥yk+1 − yk∥ ≤

∥∥yk+1 − y∗µ(xk+1)
∥∥+ ∥∥y∗µ(xk)− yk

∥∥+ ∥∥y∗µ(xk+1)− y∗µ(xk)
∥∥

≤ 2ρk
∥∥y0 − y∗µ(x0)

∥∥+ 2Lyxρ

µ(1− ρ)
τDX +

Lyx

µ
τDX , (31)

where the last inequality follows from Lemma A.1 and D.2. Finally, the desired result follows from
plugging (31) in (30) evaluated at k = t, and noting that ρt ≤ ρK/2.

21

E.2 Proof of Corollary 5.2

Theorem 5.1 implies that

GX(xt, yt) ≤ O
(1

τK
+

Lyx

(1− ρ)K
+
(L2

yxρ

µ(1− ρ)
+ Lxx +

L2
yx

µ

)
τ
)
, (32)

GY (xt, yt) ≤ O
(ρK

σ
+

Lyxρ

σµ(1− ρ)
τ +

Lyx

σµ
τ + µ

)
. (33)

Selecting τ = O(1/K3/4) and µ = O(1/K1/4), together with the fact that ρK ≤ (1 − σµ)K ≤
exp(−σµK) = O(exp(−K3/4)) implies that GZ(xt, yt) = GX(xt, yt)+GY (xt, yt) ≤ O(1/K1/4).
Therefore, to achieve GZ(xt, yt) ≤ ϵ Algorithm 2 requires O(ϵ−4) iterations.

E.3 Proof of Theorem 5.3

The proof follows the same steps as in the proof of Theorem 5.1. First, one needs to note that since
L(x, ·) is µ̃-strongly concave for any x ∈ X , y∗(x) = argmaxy∈Y L(x, y) is uniquely defined for
any x ∈ X . Therefore, the result in Lemma D.2 will be modified as follows

∥yk − y∗(xk)∥ ≤ ρ̃k ∥y0 − y∗(x0)∥+
Lyxρ̃

µ̃(1− ρ̃)
τDX ,

where ρ̃ ≜ max{|1− σLyy|, |1− σµ̃|}.
Next, following the same argument for showing equation (29) and (31) we conclude that

GX(xt, yt) ≤
2

K

∑
k∈K

GX(xk, yk) ≤
2(f(x0)− f(xK))

τK
+

2Lyx

(1− ρ̃)K
DX ∥y0 − y∗(x0)∥

+

(
2L2

yxρ̃

µ̃(1− ρ̃)
+ Lxx +

L2
yx

µ̃

)
τD2

X , (34)

and

GY (xt, yt) =
1

σ
∥yt+1 − yt∥ ≤

2ρ̃t

σ
∥y0 − y∗(x0)∥+

2Lyxρ̃

σµ̃(1− ρ̃)
τDX +

Lyx

σµ̃
τDX

≤ 2ρ̃K/2

σ
∥y0 − y∗(x0)∥+

2Lyxρ̃

σµ̃(1− ρ̃)
τDX +

Lyx

σµ̃
τDX . (35)

Finally, selecting τ = O(1/K1/2) implies that GZ(xt, yt) = GX(xt, yt)+GY (xt, yt) ≤ O(1/K1/2).
Therefore, to achieve GZ(xt, yt) ≤ ϵ Algorithm 2 requires O(ϵ−2) iterations.

F Experiment Details

In this section, we provide the details of the experiment to solve Dictionary Learning problem in
Example 2. In particular, we consider solving the following SP problem

min
(D′,C′)∈X

max
y∈[0,B]

1
2n′ ∥A′ −D′C′∥2F + y

(
1
2n∥A−D′C̃∥2F − δ

)
,

where X = {(D′,C′) | ∥C′∥∗ ≤ r, ∥d′j∥2 ≤ 1,∀j ∈ {1, . . . , q}}.

Dataset Generation. We generate the old dataset matrix A = DC ∈ Rm×n where D ∈ Rm×p is
generated randomly with elements drawn from the standard Gaussian distribution whose columns
are scaled to have a unit ℓ2-norm, and C = 1

∥U∥2∥V ∥2
UV ⊤ where U ∈ Rp×l and V ∈ Rn×l

are generated randomly with elements drawn from the standard Gaussian distribution. The matrix
C̃ ∈ Rq×n is generated by adding q − p columns of zeros to C. The new dataset A′ ∈ Rm×n′

is
generated randomly with elements drawn from the standard Gaussian distribution.

Initialization. All the methods start from the same initial point x0 = (D′
0,C

′
0) and y0 = 0 where D′

is generated randomly with elements drawn from the uniform distribution in [0, 0.1] whose columns

22

are scaled to have a unit ℓ2-norm, and C′
0 = 0q×n′ . For all the algorithms we set the maximum

number of iterations K = 103.

Implementation Details. In this experiment, we let n = 500, m = 100, p = 50, l = 5, q = 60,
n′ = 103, δ = 10−4, r = 5, and B = 1. We compare the performance of our proposed methods
R-PDCG (Algorithm 1) and CG-RPGA (Algorithm 2) with the Alternating Gradient Projection
(AGP) algorithm presented by [49] and the Saddle Point Frank Wolfe (SPFW) algorithm proposed by
[16]. Although the theoretical result for SPFW only holds in the convex-concave setting with certain
assumptions, we have included it in our experiment to enable a comparison with another method that
employs the LMO in both primal and dual updates. Moreover, we compare these methods in terms of
the gap function defined in Definition 2.1 and infeasibility corresponding to the nonlinear constraint
in (4). Since the algorithms use different oracles, to have a fair comparison we plot the performance
metrics versus time (second). In Figure 3, we compared the gap versus iteration and running time of
algorithms for a fixed duration.

Figure 3: Comparing the performance of our proposed methods R-PDCG (blue) and CG-RPGA
(red) with AGP (magenta) and SPFW (green) for a fixed amount of time in the Dictionary Learning
problem.

G Additional Experiments

To highlight the performance of our proposed methods for the example of Robust Multiclass Classifi-
cation problem described in Example 1, we compared different methods in terms of the number of
iterations. Figure 4 shows the performance of the methods in terms of the gap function versus the
number of iterations within a fixed time. Notable, AGP takes only a few iterations due to its need for
full SVD. In Figure 5, we conducted additional iterations of AGP to offer a more precise evaluation
of its performance in comparison to other algorithms, considering a 1000-iteration count.

(a) rcv1 (b) news20

Figure 4: Comparing the performance of our proposed methods R-PDCG (blue) and CG-RPGA (red)
with AGP (magenta) and SPFW (green) in the Robust Multiclass Classification problem.

23

(a) rcv1 (b) news20

Figure 5: Comparing the performance of our proposed methods R-PDCG (blue) and CG-RPGA (red)
with AGP (magenta) and SPFW (green) in the Robust Multiclass Classification problem considering
a fixed iteration count.

24

	Introduction
	Contribution
	Related work
	Motivating Examples

	Preliminaries
	Oracle Description
	Assumptions

	Proposed Methods
	Convergence Analysis of R-PDCG
	Convergence Analysis of CG-RPGA
	Numerical Experiment
	Conclusion
	Technical Lemmas
	Required Lemmas for Theorems 4.2 and 4.4
	Convergence Analysis for Algorithm 1
	Proof of Theorem 4.2
	Proof of Corollary 4.3
	Proof of Theorem 4.4

	Required Lemmas for Theorems 5.1 and 5.3
	Convergence Analysis for Algorithm 2
	Proof of Theorem 5.1
	Proof of Corollary 5.2
	 Proof of Theorem 5.3

	Experiment Details
	Additional Experiments

