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ABSTRACT

The fluency and creativity of large pre-trained language models (LLMs) have led
to their widespread use, sometimes even as a replacement for traditional search
engines. Yet language models are prone to making convincing but factually in-
accurate claims, often referred to as ‘hallucinations.’ These errors can inadver-
tently spread misinformation or harmfully perpetuate misconceptions. Further,
manual fact-checking of model responses is a time-consuming process, making
human factuality labels expensive to acquire. In this work, we fine-tune lan-
guage models to be more factual, without human labeling and targeting more
open-ended generation settings than past work. We leverage two key recent in-
novations in NLP to do so. First, several recent works have proposed meth-
ods for judging the factuality of open-ended text by measuring consistency with
an external knowledge base or simply a large model’s confidence scores. Sec-
ond, the Direct Preference Optimization algorithm enables straightforward fine-
tuning of language models on objectives other than supervised imitation, us-
ing a preference ranking over possible model responses. We show that learn-
ing from automatically generated factuality preference rankings, generated either
through existing retrieval systems or our novel retrieval-free approach, signifi-
cantly improves the factuality (percent of generated claims that are correct) of
Llama-2 on held-out topics compared with RLHF or decoding strategies targeted
at factuality. At 7B scale, compared to Llama-2-Chat, we observe 53% and
50% reduction in factual error rate when generating biographies and answer-
ing medical questions, respectively. A reference implementation can be found at
https://github.com/kttian/llm_factuality_tuning.

1 INTRODUCTION

Recent developments in training large language models (LLMs), particularly methods that learn
from rankings over responses such as reinforcement learning from human feedback (RLHF) (Chris-
tiano et al., 2017; Ziegler et al., 2020; Ouyang et al., 2022), have enabled the development of power-
ful, engaging dialogue agents. State-of-the-art LLMs are pre-trained on a vast amount of knowledge
in large datasets (Touvron et al., 2023a;b) and further fine-tuned to apply this knowledge to fol-
low diverse instructions or complete more specific tasks (Chung et al., 2022; Chen et al., 2021).
However, despite these large language models’ exposure to diverse datasets, they are prone to confi-
dently generating incorrect claims. One recent study shows that GPT-3.5 (ChatGPT) produces false
citations more often than not when asked to provide the authors of a given study (Agrawal et al.,
2023). Nonetheless, other research has demonstrated that in simple question-answering settings,
large language models do exhibit systematic markers of uncertainty that indicate their factually un-
reliable statements (Kadavath et al., 2022; Tian et al., 2023). These results suggest that language
models internally represent the limits of their knowledge, leading us to ask: Can language models be
fine-tuned to leverage this internal awareness, to avoid making untrue statements in the first place?

A key source of difficulty in training factual models comes in specifying an objective that ade-
quately captures factuality. As an example, maximum likelihood, the most common objective for
pre-training language models, does not always encourage factual predictions. Consider the question
“Where was Yo-Yo Ma born?” A model that continues by near-deterministically producing the text
“idk, probably Paris?” is nearly always correct, but receives extremely high loss if the pre-training
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Figure 1: Our approach aims to improve the factuality of language models, specifically focusing on long-
form generation (e.g. writing a biography). We develop two different approaches for estimating factuality of
a passage (center), each of which allows us to generate a preference dataset (right). We then fine-tune the
language model to optimize these factuality preferences (far right).

data contains any other response to the question. On the other hand, a model that hedges probabil-
ity mass over many possible phrasings and many possible locations (including incorrect ones, like
Antarctica) will likely receive much lower loss, as any response observed in the training data will
be assigned at least some non-trivial probability. Because the pre-training objective may reward
‘smearing’ probability mass over many possible responses, language models may generate incor-
rect statements if they underfit the training data or if asked questions that require knowledge not
contained in the pre-training data.

In principle, reinforcement learning-based objectives can avoid the failures of existing pre-training
objectives through the appropriate choice of a reward function that penalizes factually incorrect
statements. However, accurately computing such a reward function can be expensive. Obtaining
human labels of factuality is time-consuming and costly; Min et al. (2023) report that professional
fact-checkers took approximately 9 minutes to fact-check a single model-generated biography of a
well-known individual; it cost about $2,000 to annotate 505 biographies.

In light of these challenges, we leverage recent advances in estimating truthfulness without human
intervention: a) reference-based automated fact-checking methods that evaluate the extent to which
an external knowledge base supports the claims in a piece of text (Min et al., 2023; Chern et al.,
2023) and b) reference-free truthfulness evaluations that use a model’s own confidence as a proxy
for truthfulness, inspired by Kuhn et al. (2023). Using these truthfulness measures and a dataset of
unlabeled prompts (e.g., “Write a biography of Yo-Yo Ma.”), we sample pairs of completions from
a pre-trained model and annotate them with a preference label denoting which has a lower rate of
factual errors. Using the recently proposed Direct Preference Optimization (Rafailov et al., 2023)
algorithm, we can stably and efficiently learn from such data. Ultimately, this pipeline enables us
to fine-tune off-the-shelf language models to produce factual errors less often (with or without a
reference knowledge base). See Figure 1 for an overview of our factuality tuning pipeline.

Our primary contribution is a straightforward approach to optimizing language models for factuality
in long-form text generation without human annotation. We validate this approach on two bench-
mark datasets for evaluating factuality, targeted at generating biographies of popular figures and
answering open-ended questions about medical conditions. We find that fine-tuning for factuality
outperforms conventional RLHF and produces complementary benefits to LLM decoding strategies
that aim to increase factuality. Further, we find qualitative differences in the result of learning from
preference pairs scored with reference-based and reference-free truthfulness estimation. Overall, we
find that learning factuality from automatically constructed preference pairs is a cost-effective way to
increase model factuality without human intervention, reducing the error count for claims generated
by Llama models by around 50% or more for biographies and over 25% for medical questions.

2 PRELIMINARIES

Our approach to fine-tuning directly for improved factuality uses the framework of reinforcement
learning from preferences over candidate actions or responses. In this section, we provide an
overview of reinforcement learning in the context of language models, as well as the specific al-
gorithm we use for preference-based RL, direct preference optimization (Rafailov et al., 2023).

Fine-tuning language models with reinforcement learning. Reinforcement learning (RL) has
proven to be an effective approach to fine-tuning language models to extract complex, useful behav-
iors from their pre-trained weights. In the context of RL, a language model policy πθ (typically an
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autoregressive Transformer) produces a conditional distribution πθ(y | x) over responses y given an
input query x (both x and y are text sequences). The goal of reinforcement learning is to maximize
the average reward of outputs generated by the policy, where a reward function r(x, y) assigns a
scalar score to an input-output pair that determines its desirability. However, past works have ob-
served that fine-tuning language models with an objective of unconstrained reward maximization
can lead to overoptimization (Gao et al., 2022), that is, a policy that achieves high reward through
exploitation of the idiosyncrasies of the reward function that are not aligned with the intended be-
havior. The most commonly-used objective in practice therefore combines reward maximization
with a KL-divergence penalty between the language model and its initialization:

max
πθ

Ex∼Dp,y∼πθ(y|x)
[
r(x, y)− β log

πθ(y | x)
πref(y | x)

]
(1)

where Dp is some dataset of prompts, πref is the reference model, usually the result of performing
some supervised fine-tuning on a pre-trained model using demonstration data, and β is a coefficient
that controls the trade-off between reward and divergence (Ouyang et al., 2022; Bai et al., 2022;
Stiennon et al., 2020). Optimizing this objective aligns the model with the reward function without
deviating too far from the pre-trained reference model, reducing overoptimization. In practice, the
most common algorithm used to optimize this objective for language models is proximal policy
optimization (PPO; Schulman et al. (2017)), although some variants exist (Ramamurthy et al., 2022;
Lu et al., 2022). However, these algorithms are quite complex to implement and tune (Zheng et al.,
2023) and require online sampling during training, substantially increasing training time.

RL from preferences with direct preference optimization (DPO). Most large language models
fine-tuned with Eq. 1 optimize a reward function that is learned from a dataset of preference rankings
over possible model outputs. The DPO algorithm simplifies RL on language models for this special
case (Rafailov et al., 2023), using a dataset of preference pairs D = {x(i), y

(i)
w , y

(i)
l }Ni=1 of prompts

x and candidate responses yw and yl (typically sampled from πref), where yw is preferred over yl
(denoted yw ≻ yl). The probability of observing a particular preference pair is assumed to follow a
Bradley-Terry model (Bradley & Terry, 1952):

p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)) (2)
where σ is the sigmoid function and r(x, y) is an unobserved reward or scoring function. Rafailov
et al. (2023) show that the optimal policy π∗ for the problem in Eq. 1 can be found by optimizing a
simple classification loss computed directly on the preference data:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
(3)

DPO enables learning πθ from a fixed dataset of preferences, without fitting an explicit reward func-
tion or sampling from the policy in the loop of training. These advantages make DPO an attractive
choice for fine-tuning language models for objectives other than imitation. However, a challenge
remains in constructing preference pairs that encourage greater factuality.

3 CONSTRUCTING PREFERENCES ENCOURAGING FACTUALITY IN
LONG-FORM TEXT

While existing preference learning algorithms like DPO enable efficient, stable learning from ob-
jectives other than maximum likelihood, they require data in the form of preferences over possible
responses to a prompt. In this section, we propose two classes of approaches to generating such
preferences without human labeling effort. One class leverages existing methods to determine con-
sistency with external reference texts as a measure of truthfulness; we propose another, which lever-
ages calibrated model probabilities themselves as a proxy for truthfulness. For both approaches,
we are computing an estimated truthfulness score over the claims in each generated response; the
response with higher average truthfulness is taken as the preferred response. See Figure 2 for an
overview of both procedures for truthfulness scoring. Note that truthfulness scoring is needed only
at training time; at test time, we can sample from the model in the normal manner.

3.1 REFERENCE-BASED TRUTHFULNESS ESTIMATION

An intuitive approach to estimating truthfulness is by estimating the consistency of a given piece
of text with a reliable reference text or knowledge base. Several recent works have introduced
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Figure 2: We estimate the factuality of a generation by first extracting claims (left) and then evaluating each
claims’ truthfulness (right). For the latter, we consider: a reference-based (top right) method that uses a fine-
tuned Llama model to check if the fact is supported by Wikipedia (Min et al., 2023) and a reference-free (bottom
right) method that uses the model’s confidence in its most likely answer to estimate its truthfulness.

such evaluation criteria; for example, FactScore (Min et al., 2023) uses Wikipedia as reference
knowledge, and FacTool (Chern et al., 2023) uses Google Search Results. These measures show
high agreement with human judgments of factuality, making them attractive sources of truth for
preference data construction. Due to the relatively consistent and high quality of Wikipedia articles,
we elect to use FactScore as a representative method of reference-based truthfulness scoring.

To evaluate a piece of text, FactScore first extracts a list of the atomic claims present in the text
using GPT-3.5.1 For each atomic claim, a smaller, more efficient model such as a Llama-1-7b model
(Touvron et al., 2023a) that has been fine-tuned for fact-checking is then used to perform natural
language inference (MacCartney & Manning, 2008) to determine if a claim is supported by the
reference text. The passage’s truthfulness score is the fraction of the extracted atomic claims that
are estimated to be supported by the reference text.

We note that reference-based truthfulness has the key limitation that it requires access to relevant,
high-quality reference texts against which to measure consistency. Such a requirement may limit
applicability to domains where ground truth documents are not known and accurate retrieval is
difficult, such as in niche domains or less-structured tasks. Further, reference-based truthfulness
estimation requires a reliable model to determine if an atomic claim is supported by the article.
In light of these limitations, we propose a reference-free approach to estimating truthfulness of
open-ended text, which avoids the need for retrieving external knowledge and checking consistency.

3.2 REFERENCE-FREE CONFIDENCE-BASED TRUTHFULNESS ESTIMATION

To eliminate the need for external knowledge, we leverage the fact that large language models are
well-calibrated (Kadavath et al., 2022; Tian et al., 2023). That is, if a large language model assigns
a fixed confidence p to each claim in a set of claims, the fraction of these claims that is correct is
p. In other words, in expectation over many claims, a perfectly-calibrated model’s confidence in a
claim corresponds to the probability it is correct. To use this notion of calibration, we interpret a
model generation (e.g., a biography of Yo-Yo Ma) as a collection of claims, each resulting from a
query to the model’s knowledge (e.g., “When was Yo-Yo Ma born?” or “How many siblings does
Yo-Yo Ma have?”). Our goal is to encourage the model to produce responses containing queries to
its knowledge likely to lead to correct claims. Therefore, we parse a complete model generation into
its constituent queries to the model’s knowledge. For each query to the model’s knowledge present
in the generation, we can estimate the likelihood it will lead to a correct claim by simply estimating
the average confidence of the model’s answer to this query. If a model assigns probability 0.7 to
‘1955’ and probability 0.3 to ‘1953’ for the query “When was Yo-Yo Ma born?”, then the probability
this query will lead to a correct claim (again, in expectation over queries) is 0.72 + 0.32 = 0.58.
The model used for computing confidence scores essentially takes the place of the reference text

1https://platform.openai.com/docs/models/gpt-3-5
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Figure 3: Factuality tuning using FactScore truthfulness scoring (FactTune-FS) produces by far the greatest
improvement in factuality for the biography generation and medical question-answering problems. Factual-
ity tuning with expected model confidence truthfulness scoring provides the next strongest performance, on
average. For MedicalQA, only factuality tuning provides a strict improvement in factuality (more correct
statements and fewer incorrect statements) compared to the SFT model.

datastore. We evaluate this Expected Confidence approach as well as a Max Confidence approach,
which simply takes the max over the answer confidences for a given query (i.e., we assume the
model produces answers greedily rather than sampling).

More concretely, we first extract atomic claims from the text using GPT-3.5. We then use GPT-3.5 to
convert each claim to a query (question) testing knowledge of the particular fact. Careful rephrasing
is necessary to ensure that the rephrased question is unambiguous; for example, the claim “Yo-Yo
Ma plays the cello” should be converted to the question “What instrument does Yo-Yo Ma play?”
rather than just “What does Yo-Yo Ma play?” as the latter question admits answers of the wrong
type. If we were to use the second prompt, a model might assign 50% of its probability on “cello”
and 50% of its probability on “basketball.” However, the model’s low confidence is caused by the
ambiguity of the question, not low confidence in the instrument that Yo-Yo Ma plays. We detail the
prompts used for question generation in Appendix A.2.

After each claim is converted to a minimally ambiguous question, we resample an answer 20 times
from the base model (e.g. Llama-1-7b) that is fine-tuned to estimate the model’s uncertainty over
the answer. We use a few-shot prompt to encourage well-formed answers. We bin these answers
by equivalence, using either heuristic string matching of the responses or using GPT-3.5 to assess if
the answers are semantically equivalent, inspired by Kuhn et al. (2023). Our heuristic string match
checks whether the words in the answer, excluding stop words, are the same. We compare these
choices in Section 4.4. The score for each claim is either the expected or maximum confidence of
the model’s response; we finally average this score over all claims in a given model generation.

3.3 FACTUALITY TUNING: PUTTING IT ALL TOGETHER

Given a choice of truthfulness estimator, we can now construct a preference dataset for factuality
tuning a given language model from a set of unlabeled prompts. First, we sample n multiple candi-
date responses for each prompt from the model with simple temperature sampling with temperature
1.0 (using few-shot prompting for models that have not been fine-tuned). For each response, we
then compute the truthfulness score with the chosen estimator (reference-based or reference-free).
Finally, for all

(
n
2

)
pairs of responses to each prompt, we simply choose the response with the higher

truthfulness score as the preferred response. For a set of m prompts, we ultimately generate m
(
n
2

)
−k

preference pairs, where k is the number of pairs with equal scores. Finally, we fine-tune the model
using the DPO pipeline, using all model responses as targets for the SFT stage.

4 EXPERIMENTS

Our experiments evaluate the extent to which factuality can be learned through preference-based re-
inforcement learning, using the fully automated preference-generation pipeline described in Section
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Prompts
per Entity

Responses
per Prompt

Example prompt
Dataset Entities [train, val, test]

Biographies 463 [288, 50, 125] 1 10 Write me a paragraph biography of Mary Wollstonecraft.
Medical QA 295 [150, 45, 100] 6 6 What are the common symptoms of a stroke?

Table 1: Dataset statistics and examples. In biographies, entities are individuals; in MedicalQA, entities are
medical conditions. We include 6 questions for each entity in MedicalQA and adjust the number of responses
per prompt to keep the total number of pairs in the two datasets roughly similar.

3. We call the model fine-tuned with our reference-based metric FactTune-FS and the model fine-
tuned with our model confidence-based score, which is completely reference-free, FactTune-MC.
For all of our experiments, samples for model confidence are taken from Llama-1-7b.

Datasets. We conduct our experiments on two tasks: generating biographies and medical question-
answering. For biographies, we generated a dataset consisting of 463 diverse well-known individ-
uals (288 train, 50 val, 125 test) with 10 short-paragraph biographies each. For medical question
answering, we used a dataset of 295 diverse common medical conditions (150 train, 45 val, 100 test)
with 6 questions about each condition and 6 short-paragraph answers per question. The test set just
uses 1 question per condition. The prompts were generated with GPT-3.5, and the answers were
sampled from Llama-1-7b using a few-shot prompt for each dataset. We found that our procedure
consistently resulted in well-formed and informative responses, albeit with possible factual errors.
Because FactScore uses retrieval against a given Wikipedia article, we generate data based on indi-
viduals and medical conditions that have Wikipedia pages. See Table 1 for the summary stats and
examples from our datasets.

Baselines. We compare factuality tuning with inference-time intervention (Li et al., 2023, ITI)
and decoding by contrasting layers (Chuang et al., 2023, DOLA), applied to the SFT model for each
task. For ITI, we supervise the training of the linear probes with FactScore labels: we take batches of
atomic facts extracted from the training samples and bias the models’ activations from the incorrect
to correct atomic facts to determine the direction of the intervention. In the case of Llama-2, we also
compare against ‘standard’ RLHF with human preference labels (Touvron et al., 2023b).

Evaluation. To evaluate each generated response, we follow the FactScore procedure to extract the
number of correct and incorrect facts. Then, to check that the model responses are still relevant and
helpful after actuality fine-tuning, we also use GPT-3.5 to determine whether each fact is relevant
to the question or not (using the prompt in Appendix A.2). For biographies, we observed that
essentially 100% of facts were relevant to the individual, so we skip the relevance computation
to save costs. For each dataset, we report the number of correct and relevant facts (# Correct),
the number of inaccuracies (# Incorrect), and the proportion of correct relevant facts out of the
total number of extracted facts (% Correct). Note that the total number of facts may vary between
generations. We validate our evaluation metrics in Sec. A.1.

4.1 FINE-TUNING FOR FACTUALITY ACROSS DOMAINS

In this section, we apply our methodology for learning factuality to Llama-1-7b and Llama-2-7b
in multiple domains. We show the results in Table 2. Learning from reference-based factuality-
scored pairs (FactTune-FS) consistently improves factual accuracy compared to RLHF models and
decoding-based factuality baselines by at least 11% on biographies and 13% on medical question-
answering. FactTune-FS reduces the number of factual errors and maintains no more than a slight
decrease, if not increase, in the amount of correct information generated. Factuality tuning from
model-confidence scores (FactTune-MC, FactTune-EC) also reduces error rate and improves the
factuality of RLHF models on both datasets, without any external reference information.

4.2 FINE-TUNING CHAT MODELS FOR FACTUALITY

Most widely used practical chatbots today are LMs trained with RLHF to follow diverse instructions
in a way that is helpful to users. In this section, we investigate the ability of our human-free factuality
tuning method to improve the factuality of RLHF chat models. Using Llama-2-7b-Chat, we find
that fine-tuning an RLHF LM with both factuality and semantic entropy-based rewards can further
improve its factuality without significantly decreasing the total number of facts, as shown in Table 3.
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Biographies Medical QA

Base Model Method # Correct # Incorrect % Correct # Correct # Incorrect % Correct

Llama-1

ITI 13.68 5.24 0.730 10.25 7.96 0.538
DOLA 12.44 4.74 0.737 9.22 5.58 0.640
SFT 13.54 6.54 0.696 9.96 6.86 0.600
FactTune-FS (Ours) 14.51 3.74 0.812 12.60 4.18 0.746
FactTune-MC (Ours) 9.74 2.42 0.819 11.51 5.56 0.668
FactTune-EC (Ours) 10.84 3.28 0.790 11.52 6.56 0.641

Llama-2

ITI 13.30 5.56 0.712 9.40 4.25 0.690
DOLA 13.25 6.50 0.684 9.87 6.06 0.627
Chat 21.41 6.30 0.774 9.61 6.69 0.619
SFT 13.47 6.49 0.687 10.68 6.22 0.627
FactTune-FS (Ours) 19.32 2.76 0.880 13.29 2.97 0.809
FactTune-MC (Ours) 11.74 3.51 0.783 12.94 5.26 0.706
FactTune-EC (Ours) 12.68 3.69 0.797 12.80 5.19 0.710

Table 2: Factuality tuning from reference-based factuality-scored pairs (FactTune-FS) improves factual accu-
racy compared to RLHF models and decoding-based factuality baselines, consistently reducing the number of
errors and often increasing the number of correct facts generated. Factuality tuning from model confidence
scored pairs (FactTune-MC, FactTune-EC) also outperforms RLHF models, providing a strong reference-free
alternative for improving factuality and reducing error.

Biographies Medical QA

Base Model Method # Correct # Incorrect % Correct # Correct # Incorrect % Correct

Llama-2-Chat

- 21.41 6.30 0.774 9.61 6.69 0.619
DOLA 22.25 5.81 0.793 11.45 6.74 0.624
FactTune-FS (Ours) 20.02 4.38 0.821 11.94 6.21 0.667
FactTune-MC (Ours) 19.12 4.97 0.795 12.61 7.21 0.627
FactTune-EC (Ours) 18.77 5.13 0.784 11.51 6.40 0.639
OOD FactTune-FS (ours) 21.06 5.45 0.796 11.56 6.66 0.635

Table 3: Factuality tuning a dialogue model (Llama-2-Chat) with FactScore, model confidence-based truthful-
ness estimation, and FactScore-based preferences from a different dataset (FactTune-FS, FactTune-MC, OOD
FactTune-FS) further improves its factual accuracy more than a baseline method for factuality, DOLA.

In other words, factuality tuning can be composed with RLHF to further improve the factuality
of chat models.

While our quantitative metrics demonstrate a clear increase in factual accuracy, we also investigate
how factuality fine-tuning impacts other aspects of model performance and generalizes. Using GPT-
4 as a judge, we find that FactTune-MC and FactTune-EC can improve both factuality and
fluency compared to the SFT model (examples in Appendix Table 8). GPT-4 chooses FactTune-
EC as more fluent than SFT on 80% of samples, FactTune-MC on 75% of samples, ITI on 57% of
samples, FactTune-FS on 33% of samples, and DOLA on 16% of samples (n=100).

Lastly, we find that fine-tuning for factuality generalizes across datasets. Fine-tuning Llama-2-
7b-Chat on biographies to evaluate on MedicalQA and vice versa (OOD FactTune-FS) improves the
factuality more than RLHF (Table 3).

4.3 COMPLEMENTARY BENEFITS OF FACTUALITY TUNING AND DECODING-TIME
FACTUALITY INTERVENTIONS

Besides fine-tuning for factuality, multiple existing works aim to improve LLM factuality through
inference time interventions to either the decoding process or the model parameters themselves. We
explore the possibility of applying both of these types of methods together, i.e., using factuality-
boosting decoding methods on a model fine-tuned with our factuality tuning procedure. In Table
4 we present the results of stacking both approaches. We find that in most cases, DOLA can even
further increase the accuracy of factuality fine-tuned models, with one exception for Llama-2 on
the biography task. While not a comprehensive evaluation of combining methods for improving
factuality, this result suggests that different approaches to enhancing factuality may operate through
complementary mechanisms.
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Biographies Medical QA

Base Model Method #Correct #Incorrect %Correct #Correct #Incorrect %Correct

Llama-1 FactTune-FS 14.51 3.74 0.812 12.60 4.18 0.746
FactTune-FS + DOLA 14.82 3.27 0.831 11.58 3.23 0.785

Llama-2 FactTune-FS 19.32 2.76 0.880 13.29 2.97 0.809
FactTune-FS + DOLA 18.82 2.81 0.873 13.13 2.67 0.830

Table 4: DOLA factuality decoding frequently composes with factuality fine-tuning, providing an increase in
average correctness for the majority of combinations of model and dataset.

Biographies Medical QA

Fact Ext. Equiv Metric #Correct #Incorrect %Correct #Correct #Incorrect %Correct

Atomic Heuristic Max Conf 9.74 2.42 0.819 11.51 5.56 0.668
Expected Conf 10.84 3.28 0.790 11.52 6.56 0.641

Entity Heuristic Max Conf 12.22 4.74 0.742 10.32 6.94 0.605
Expected Conf 11.73 5.12 0.718 10.50 6.42 0.623

Table 5: On Llama-1, model confidence-based preference construction with atomic question extraction outper-
forms the version with entity extraction.

4.4 IMPACT OF DESIGN DECISIONS OF OPEN-ENDED MODEL CONFIDENCE SCORING

This section discusses the impacts of different design choices for the steps of our reference-free
truthfulness score construction for factuality tuning: how to perform fact extraction and what confi-
dence metric to use.

The first step is to extract the individual facts from the long-form response and re-sample each fact
from the base model to assess the model’s confidence in the fact. For the fact-extraction and resam-
pling procedure, one approach (Atomic) is to convert each extracted atomic fact into a corresponding
‘atomic question’ with a few-shot prompt query to GPT-3.5, then sample answers to each question
from the base LLM. Another approach (Entity) extracts entities from the response via nltk and
re-samples the extracted entity in-line. Atomic question extraction has the potential to be more
comprehensive and precise, while named entity extraction is a less expensive proxy that doesn’t use
closed models. In Table 5, we observe that atomic question extraction outperforms named entity
extraction, although the difference in accuracy is smaller on Medical QA than on Biographies.

After re-sampling the fact, we study the choice of confidence metric between taking the model’s
confidence based on the most common sample (Max Conf) or the confidence of the fact from the
original response (Expected Conf). To compute Max Conf for both atomic and entity extraction, we
bin the samples into equivalence classes of distinct responses using a string matching heuristic de-
scribed in Section 3.2 and take the proportion of samples in the largest bin. For computing Expected
Confidence, we first perform the same answer binning procedure as for Max Confidence, resulting
in k bins and confidences p1, . . . , pk, and take EC =

∑k
i=1 p

2
i . The results in Table 5 show that the

performance of Max Conf versus Expected Conf varies but are quite similar.

5 RELATED WORK

Many works have identified reducing factual errors (sometimes called ‘hallucinations’) as a key
challenge for building more reliable language models (Lewis et al., 2020; Kadavath et al., 2022;
Zhang et al., 2023), even for the most powerful language models (Bubeck et al., 2023). Other use
of the term ‘hallucination’ refers to summarization or translation system outputs not supported by
the reference text (Maynez et al., 2020; Zhang et al., 2020) even if they are factual (Cao et al.,
2022). Other work uses ‘hallucination’ to describe vision-language models producing outputs not
grounded in a visual input, e.g., a captioning system describing an object that doesn’t exist in the
image (Rohrbach et al., 2018). In our case, we focus on statements that are factually incorrect (or,
inconsistent with a set of ‘authoritative’ texts, such as Wikipedia).

Several works describe methods for detecting likely factual errors through sensitivity to perturba-
tions in the prompt (Xu et al., 2023), high diversity of responses under resampling (Kadavath et al.,
2022; Mündler et al., 2023; Kuhn et al., 2023; Manakul et al., 2023), or inconsistency with exter-
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nal knowledge sources (Min et al., 2023; Chern et al., 2023), or properties of internal activations
(Azaria & Mitchell, 2023). Others go beyond detecting errors, correcting them after they have been
generated (Peng et al., 2023; Gao et al., 2023; Dhuliawala et al., 2023). These approaches typi-
cally rely on retrieving relevant data from a trusted knowledge base and use another LLM to verify
consistency; however, retrieval-based methods face key challenges, namely reliable resolution of
conflicts between parametric and retrieved knowledge (Longpre et al., 2022; Chen et al., 2022) as
well as maintaining improvements in factuality as model size increases (Mallen et al., 2023). Fur-
ther, retrieval-based methods add significant system complexity; the most common open-source con-
sumer language models thus use purely parametric models (Touvron et al., 2023a). The FactScore
variant of our approach uses retrieval only during training, avoiding inference time complexity. In
principle, any existing criterion could be used to generate preferences (see ;̧ we aim to show that
even choosing relatively simple criteria leads to substantial improvements in factuality.

Most similar to ours, some approaches attempt to prevent the generation of factual errors in the first
place, using prompting strategies (Si et al., 2023) or perturbing the internal representations of the
model (Chuang et al., 2023; Li et al., 2023). Unlike using a fixed heuristic for identifying an inter-
nal ‘factuality’ dimension, we optimize directly for the end goal of generating factual statements,
which we find shows a greater improvement in factuality. Finally, while most past work has focused
on short-form NLG tasks like short-form question-answering (Kadavath et al., 2022), we explore
ways to measure model confidence over factual information in long-form, unstructured text and es-
timate truthfulness in a reference-free manner (i.e., don’t require any external knowledge base or
annotations).

6 CONCLUSION

In this paper, we show a practical, effective strategy to improve a language model’s ability to gen-
erate factual content, specifically focusing on long-form generations. We develop and study two
different approaches to estimating the truthfulness of long-form text and optimize for these criteria
using preference-based learning. In addition to existing reference-based truthfulness estimators that
leverage external knowledge to establish the truth of a particular statement, we introduce a novel
reference-free procedure for estimating truthfulness that uses the language model’s own uncertainty
as an indication of factuality. Our experiments show that fine-tuning a language model with either
criterion reliably reduces the number of incorrect facts (i.e. hallucinations) that the model generates.
Reference-free approaches like the one we introduced provide a scalable self-supervision strategy to
improve factuality, eliminating the need for a reference corpus of ‘gold’ texts.

The experimental results suggest a number of avenues for future work. First, because of the limited
research and thus the limited benchmarks on the factuality of long-form language model generations,
we proposed two new tasks to benchmark our approach. These tasks are representative of but do
not fully cover the range of scenarios where we would hope to improve factuality. Furthermore, our
experiments provide evidence for improving the factuality of dialogue models that are already fine-
tuned with RLHF, but still leave open the question of how best to combine typical RLHF rewards
and approaches with factuality rankings. Similarly, exploring additional ways to combine factuality
tuning with existing methods for improving factuality, such as in our factuality tuning + DOLA
experiment, may be a fruitful direction for future research. Further, future work might explore
alternative approaches to constructing factuality preferences, such as using self-correction (Pan et al.,
2023). Finally, we explore only 7B models in this work. Scaling up our factuality tuning recipe to
larger models (and larger preference datasets) may reduce hallucinations even further.
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Dataset Evaluation SFT FactTune-FS

Biographies Human 0.582 0.846
Biographies FactScore 0.669 0.921
MedQA Human 0.662 0.838
MedQA FactScore 0.534 0.806

Table 6: To validate that our models do not suffer
from extreme reward overoptimization, we con-
duct a human evaluation of the Llama-1-7b SFT
and FactTune-FS models and find that an increase
in FactScore also corresponds to a large increase
in human-annotated accuracy. This study is com-
puted on a subset of 25 generations per model.
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Figure 4: Average FactScore error counts and GPT-4
error counts are highly correlated, suggesting that the
resulting models do not suffer from extreme reward
overoptimization (Gao et al., 2022). We plot average
FactScore error count v.s. average GPT-4 error count,
scaling each dataset by the max GPT-4 error count in
that dataset.

A APPENDIX

A.1 VALIDATING METRICS FOR FACTUALITY

Our experiments primarily use counts of correct and incorrect facts computed by FactScore as the
main evaluation metrics, as FactScore is automated and has been shown to exhibit good agreement
with human fact-checkers (Min et al., 2023). Nonetheless, we aim to verify that our results are not
specific or overfit to the FactScore criterion. In this section, we provide an evaluation with (1) human
evaluators hired through Prolific.co2 and (2) GPT-4.

To acquire human fact-checking results, we provide each human evaluator with a prompt, a gener-
ated response, and the title of the Wikipedia article they should use for fact-checking the response.
We ask the human study participants to count the total number of facts and the number of incorrect
facts in the response, and we divide these to obtain the human-rated accuracy. We provide the results
in Table 6, where on average humans rated our FactTune-FS model for both datasets significantly
higher than the SFT model.

Further, we ask GPT-4 to evaluate the factuality of a given response by counting the number of
factual errors. We observe that the GPT-4 model ratings and FactScore model ratings are highly
correlated, and GPT-4 provides another evaluation metric that demonstrates that FactTune-FS sig-
nificantly reduces average error compared to the SFT models on both datasets (see Figure 4). Taken
together, these results suggest that the improvements in factuality are not the result of exploitation
of our evaluation protocol.

A.2 PROMPTS

Table 7 contains the prompts used with GPT-3.5 to convert statements into questions for model
confidence-based truthfulness estimation.

A.3 SAMPLE MODEL GENERATIONS

See Table 8 for samples generated by several different models. After factuality tuning, the model
does produce somewhat terser responses.

2Human evaluators were compensated at an estimated hourly rate of $16-18.
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Biography
Atomic Fact
to Question

I will provide a statement containing one atomic fact related to Hillary Clinton or people around
her. Please rephrase the following statement into a specific question testing knowledge of the
key fact in the statement. For example:
Statement: Hillary Clinton was born in 1947.
Question: In what year was Hillary Clinton born?
Statement: Hillary attended the Wellesley College.
Question: What college did Hillary Clinton attend?
Statement: She married Bill Clinton.
Question: Who did Hillary Clinton marry?
I will provide a statement containing one atomic fact related to LeBron James or people around
him. Please rephrase the following statement into a specific question that testing knowledge of
the key fact in the statement. For example:
Statement: LeBron James is a professional basketball player.
Question: What is LeBron James’ profession?
Statement: He is one of the best in the NBA.
Question: Where does LeBron James rank among NBA players?
Statement: James was born in Akron.
Question: In what city was LeBron James born?
I will provide a statement containing one atomic fact related to [NAME] or people around
[HIM/HER]. Please rephrase the following statement into a specific question testing knowledge
of the key fact in the statement. For example:
Statement: [STATEMENT]
Question:

MedicalQA
Atomic Fact
to Question

I will provide a statement containing one atomic fact about the medical condition menopause.
Please rephrase the following statement into a specific question testing knowledge of the key
fact in the statement. For example:
Statement: Menopause is a time in a woman’s life.
Question: Menopause is a time in whose life?
Statement: Menopause is the time when a woman no longer has menstrual periods.
Question: Menopause is the time when a woman no longer has what?
Statement: There is a decline in the ovarian hormone estrogen.
Question: During menopause there is a decline in what?
I will provide a statement containing one atomic fact about the medical condition breast cancer.
Please rephrase the following statement into a specific question testing knowledge of the key
fact in the statement. For example:
Statement: The signs and symptoms include a lump or thickening in or near the breast or un-
derarm.
Question: Do the signs and symptoms of breast cancer include a lump or thickening in or near
the breast or underarm?
Statement: The signs and symptoms include a change in the size or shape of the breast.
Question: Do the signs and symptoms of breast cancer include a change in the size or shape of
the breast?
I will provide a statement containing one atomic fact about the medical condition varicose veins.
Please rephrase the following statement into a specific question testing knowledge of the key
fact in the statement. For example:
Statement: Varicose veins occur when the veins under the skin become enlarged.
Question: Varicose veins occur when what happens to the veins under the skin?
Statement: Veins in the legs lose their ability to efficiently circulate blood back to the heart.
Question: Varicose veins in the legs lose their ability to efficiently do what?
I will provide a statement containing one atomic fact about the medical condition [CONDI-
TION]. Please rephrase the following statement into a specific question testing knowledge of
the key fact in the statement. For example:
Statement: [STATEMENT]
Question:

Table 7: GPT-3.5 prompts used to convert atomic facts into questions.
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SFT Greta Gerwig is an American actress and filmmaker. She was born in and raised in Sacramento,
California. Gerwig became interested in the film industry in 2002, when she attended the San
Francisco Art Institute. She got her start in 2006, when she starred in the film ‘The Off Hours’.
Her other films include Frances Ha, Mistress America, and 20th Century Women. In 2018,
Gerwig directed Lady Bird, and received wide acclaim, a Golden Globe and Tony nomination
for directing, and Oscar and BAFTA nominations for the film.

FactTune-FS Greta Gerwig is an American actress and filmmaker. Born in Sacramento, California in 1983,
Gerwig started acting at a young age. She is best known for starring in films such as ‘Frances
Ha’ and ‘Mistress America.’ Gerwig was nominated for an Oscar for Best Actress for her per-
formance in ‘Lady Bird.’ Gerwig has written and directed a number of acclaimed independent
films, such as ‘Frances Ha’ and ‘Mistress America.’

FactTune-MC Greta Gerwig is an American actress and filmmaker. She was born in 1983 in Sacramento,
California, and raised in Stanford, California and New York City. Gerwig has appeared in such
movies as Greenberg, Frances Ha, and Jackie. She also portrayed the title role in the 2013 film
of Jackie Kennedy. Her directorial debut is the 2012 movie, Lady Bird, which was nominated
for the Academy Award for Best Picture.

Table 8: Samples for writing a biography of Greta Gerwig under the SFT, FactTune-FS, FactTune-MC Llama-
1-7b models.
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