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Abstract

Multi-class cell segmentation in high-resolution gigapixel whole slide images (WSIs) is cru-
cial for various clinical applications. However, training such models typically requires
labor-intensive, pixel-wise annotations by domain experts. Recent efforts have democra-
tized this process by involving lay annotators without medical expertise. However, conven-
tional non-corrective approaches struggle to handle annotation noise adaptively because
they lack mechanisms to mitigate false positives (FP) and false negatives (FN) at both the
image-feature and pixel levels. In this paper, we propose a consensus-aware self-corrective
learning that leverages the Consensus Matrix to guide its learning process. The Consensus
Matrix defines regions where both the AI and annotators agree on cell and non-cell annota-
tions, which are prioritized with stronger supervision. Conversely, areas of disagreement are
adaptively weighted based on their feature similarity to high-confidence consensus regions,
with more similar regions receiving greater attention. Additionally, contrastive learning is
employed to separate features of noisy regions from those of reliable consensus regions by
maximizing their dissimilarity. This paradigm enables the model to iteratively refine noisy
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Figure 1: Consensus-aware self-corrective learning. We propose a Consensus-Aware
Self-Corrective Learning for robust cell segmentation with noisy training data.
The model leverages the CM to guide learning, prioritizing CP and CN regions
with stronger supervision, while adaptively weighting DM and DH regions based
on their similarity to reliable CP regions by contrastive learning.

labels, enhancing its robustness. Validated on one real-world lay-annotated cell dataset
and two reasoning-guided simulated noisy datasets, our method demonstrates improved
segmentation performance, effectively correcting FP and FN errors and showcasing its po-
tential for training robust models on noisy datasets. The official implementation and cell
annotations are publicly available at https://github.com/ddrrnn123/CASC-AI.

Keywords: Consensus matrix, Corrective Learning, Noisy label learning, Cell Segmenta-
tion

1. Introduction

Multi-class cell segmentation is essential for analyzing tissue samples in digital pathology,
often serving as the initial step in extracting biological signals crucial for accurate disease
diagnosis and treatment planning (Caicedo et al., 2017; Deng et al., 2020; Keren et al.,
2018; Pratapa et al., 2021; Litjens et al., 2017; Border et al., 2024; Ke et al., 2023; Zhu
et al., 2023, 2024). Accurate cell quantification aids pathologists in diagnosing diseases (Co-
maniciu and Meer, 2002; Xing and Yang, 2016), determining disease progression (Olindo
et al., 2005), assessing severity (Wijeratne et al., 2018), and evaluating treatment effi-
cacy (Jiménez-Heffernan et al., 2006). For instance, the distribution and density of cells
in the glomerulus (e.g., podocytes, mesangial cells, endothelial cells, and epithelial cells)
can serve as indicators of functional injury in renal pathology (Imig et al., 2022). However,
cell-level characterization is challenging even for experienced pathologists due to the long
annotation time, extensive labor required, significant variability in cell morphology (Zheng
et al., 2021), and the potential for human error. Needless to mention the rigorous medical
training required for a pathologist.

Previous efforts have democratized the annotation process by involving lay annotators
without medical expertise and integrating pair-wise molecular images with pathological

2

https://github.com/ddrrnn123/CASC-AI


Self-corrective Cell Segmentation

images, resulting in a substantial number of accurate cell annotations for training AI mod-
els (Deng et al., 2023). However, this approach inevitably introduces noise and errors, ne-
cessitating correction by experienced pathologists. Directly training models on such noisy
labels often leads to suboptimal performance. This highlights the urgent need for a correc-
tive learning paradigm that effectively addresses label noise during cell segmentation model
training (Vădineanu et al., 2022; Karimi et al., 2020). Previous research on noisy-label
learning has focused on defining efficient loss functions (Zhang and Sabuncu, 2018; Wang
et al., 2020; Ma et al., 2020) and leveraging multi-network strategies (Zhang et al., 2020b;
Han et al., 2018; Lu et al., 2023; Guo et al., 2023). However, these approaches largely over-
look the integration of feature-level analysis with pixel-level analysis to effectively identify
annotation errors at the pixel level.

In this work, we propose Consensus-Aware Self-Corrective Learning (CASC-AI), which
incorporates insights from the Consensus Matrix (CM) to guide its learning process (as
shown in Fig. 1). Unlike conventional heuristic-based correction methods, CASC-AI actively
learns from noisy annotations by leveraging both pixel-wise and feature-wise information
to iteratively refine its predictions. The self-corrective learning mechanism autonomously
detects patterns in annotation errors and adapts its training by distinguishing noisy labels
from high-confidence regions through maximizing feature dissimilarity, thereby enhancing
its robustness against annotation errors. The contributions of this paper is threefold:

(1) A Consensus-Aware Self-Corrective Learning is designed to provide robust cell segmen-
tation when training data contains noise.

(2) A reasoning-guided noise-generation process is introduced for pathological cell images
to simulate realistic noise for label analysis.

(3) By integrating Consensus Matrix insights at both the pixel and feature levels, the
proposed method demonstrates improved segmentation performance, effectively addressing
FP and FN errors, showcasing its potential for training robust models on noisy datasets.

2. Method

Introducing lay annotators into the labeling process significantly increases the volume of
annotations available for training deep learning models. However, it also introduces noise
and errors due to human visual limitations and variability among annotators. There are
several types of annotation errors introduced by humans, including contour-wise boundary
errors (Zhang et al., 2020a; Dang et al., 2024) and instance-wise location errors (Vădineanu
et al., 2022; Goldsborough et al., 2024). In this study, we mainly focus on instance-wise loca-
tion errors, where false positive and false negative cells are introduced during the molecular-
empowered lay annotation process (shown in Fig. 1).

With the rapid development of deep learning, AI has demonstrated its capability in
representing images (Oquab et al., 2023; Huang et al., 2021), providing reliable and stable
latent features for image understanding. Therefore, the proposed CASC-AI aims to combine
the strengths of human expertise and AI capability during the training phase, guiding the
model to capture accurate information from lay annotations while distinguishing potential
noise at the pixel level. The overall learning paradigm consists of three components: (1)
Consensus Matrix, (2) Consensus-aware Supervision, and (3) Contrastive Noise Separation.
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Figure 2: Overview of the Consensus-Aware Supervision Framework. The archi-
tecture integrates AI-derived confidence maps (c) and lay annotations (yl) to iden-
tify consensus-positive (CP), consensus-negative (CN), and disagreement regions
(DM, DH). This framework emphasizes robust training by focusing on regions
of consensus and leveraging disagreement as informative cues for improved cell
segmentation accuracy.

2.1. Consensus Matrix

To capture the agreement between lay annotators and the AI model, we define a Consensus
Matrix (in Fig. 1), inspired by the confusion matrix, to guide pixel-level image understand-
ing. The matrix is composed of the following components:

Consensus Positives (CP): Regions where both the AI and annotators agree on a “cell”
annotation. These regions represent strong consensus for action, where both parties confi-
dently identify cells.

Consensus Negatives (CN): Regions where both the AI and annotators agree on a “non-
cell” annotation. These regions reflect mutual consensus to abstain from action, ensuring
non-cell regions are left unannotated.

Disagreement Model-positives (DM): Regions where the AI identifies a “cell,” but
annotators label it as “non-cell.” These regions highlight potential false negatives in the lay
annotations, where cells may have been missed.

Disagreement Human-positives (DH): Regions where the AI labels a region as “non-
cell,” but annotators identify it as a “cell.” These regions represent potential false positives
in the lay annotations, where cells may have been overannotated.
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2.2. Consensus-aware Supervision

Building on our previous works (Deng et al., 2023, 2024a), we select a token-based residual
U-Net from (Deng et al., 2024b) as the backbone for cell segmentation tasks. This backbone
demonstrates superior performance in multi-class cell segmentation using partially labeled
datasets, compared to two other cell segmentation backbones (Hörst et al., 2024; Israel et al.,
2024) as shown in Table 5. As illustrated in Fig. 2, the model outputs the final prediction
logits p ∈ R2×W×H , the pixel-level feature map of the decoder’s last layer fD ∈ RCh×W×H ,
and a confidence map c ∈ R1×W×H , which represents the foreground channel of p after
applying the channel-wise softmax function. W and H are the width and height of the
input image, while Ch represents the number of channels in the decoder’s last layer. The
confidence map c ∈ (0, 1) indicates the confidence level of predictions: values closer to 1
suggest stronger confidence in identifying a region as a cell, while values closer to 0 suggest
a higher likelihood of non-cell regions.

Consensus Cell Feature Distillation: Using the confidence map c from the AI model,
we combine it with lay annotations yl to identify pixel locations with the highest agreement
scores aCP in CP regions. These regions are used to distill features fcell that best represent
cell types. The computation for aCP and fcell is defined in Eq. 1 (annotated as ϕ1 in Fig. 2).

aCP = c · yl
IndCP = argsort(−aCP)[: k]

fcell =
1

k

k∑
i=1

fD(IndCP[i])

(1)

Disagreement Noise Feature Distillation: In DH and DM regions, where the AI model
and lay annotators disagree, we identify top pixel locations with the highest disagreement
scores aDH and aDM. Features from these regions fmnoise potentially contain both real cells
and noise, as represented in Eq. 2 (annotated as ϕ2 in Fig. 2).

aDM = c · (1− yl)

IndDM = argsort(−aDM)[: k/2]

aDH = (1− c) · yl
IndDH = argsort(−aDH)[: k/2]

(2)

When aggregating potential noise features fmnoise into the distilled noise feature fnoise,
we calculate the similarity scell between the potential noise features fmnoise and the cell
feature fcell. Using a weighted sum, we derive the final noise feature fnoise, based on the
assumption that noise features in these regions are dissimilar to cell features. The process
is defined in Eq. 3 (highlighted as ϕ3 in Fig. 2).

fmnoise = fD([IndDM, IndDH])

scell =
fmnoise · fcell
∥fmnoise∥∥fcell∥

w = softmax(1− norm(scell))

fnoise = w · fmnoise

(3)
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We compute the similarity between the feature map fD and the top cell and noise
feature fcell and fnoise, obtaining similarity maps simcell and simnoise. The computation are
provided in Eq. 4 (labeled as ϕ4 and ϕ5 in Fig. 2).

simcell =
fD · fcell
∥fD∥∥fcell∥

simnoise =
fD · fnoise
∥fD∥∥fnoise∥

(4)

Consensus-aware Loss Function: During training, the model is guided to focus on
regions where both the AI model and lay annotators agree (CP and CN) while ignoring
regions likely to contain noise. By combining the confidence map c and lay annotations
yl, CP and CN regions are highlighted, and simcell and simnoise further refine the focus on
cell-like regions within DM and DH areas. The final supervised loss is defined in Eq. 5:

ωc = exp(c · yl + (1− c) · (1− yl)) ωsim = exp(simcell − simnoise)

Lsupervise(yl, f(x; θ)) = (LDice + LBCE)(yl, f(x; θ)) · ωc · ωsim
(5)

Where f is the segmentation model, θ are the trainable parameters, and LDice and LBCE

are the Dice efficiency loss and Binary Cross-Entropy loss, respectively.

2.3. Contrastive Noise Separation

Using the final cell feature fcell and noise feature fnoise, we aim to maximize their separation
using a contrastive learning loss function in Eq. 6:

Lcontrastive(fcell, fnoise) = (LKL + LMSE)(norm(fcell),norm(fnoise)) (6)

where LKL is the KL Divergence loss, and LMSE is the Mean Squared Error loss.

The final consensus-aware self-corrective learning loss combines Lsupervise and Lcontrastive
to achieve robust training shown in Eq. 7:

Lconsensus-aware(yl, f(x; θ)) = Lsupervise(yl, f(x; θ)) + Lcontrastive(fcell, fnoise) (7)

3. Data and Experiment

3.1. Data

To evaluate the performance of the consensus-aware self-corrective learning framework,
we collected a glomerular cell segmentation dataset. We utilized 21 whole slide images
(WSIs) from normal adult cases in the nephrectomy dataset and HuBMAP. These slides
were stained with Periodic Acid-Schiff (PAS), and were scanned at 20× magnification. The
WSIs were cropped into 512× 512-pixel segments to facilitate cell labeling. The cell labels
are confined within glomeruli. The labeled cells included mesangial cells (Mes.), endothelial
cells (Endo.), podocytes (Pod.), and parietal epithelial cells (Pecs.). Labeling was performed
in a partial-label manner, where each image contained a single class label with binary masks.
The details of data collection are shown in Table 3 (In Appendix A).
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Figure 3: Illustration of the Noisy Dataset. The figure depicts a real lay annotation
dataset and two reasonable noise generation pipelines used to create FP and
FN datasets with plausible noise. These processes are applied to evaluate the
proposed method under challenging scenarios.

Real Lay Annotation Dataset: Following the annotation process described in (Deng
et al., 2023), two sets of annotations were obtained (1) directly from lay annotators and (2)
underwent a quality assurance process conducted by experienced pathologists.

Reasoning-Generated Noise Datasets: To further explore the capabilities of the pro-
posed method, we designed two reasoning-based noise generation pipelines to create FP and
FN datasets: (1) The FP data generation pipeline adds plausible noise labels by follow-
ing these principles: a. annotating nuclei regions indicated by PAS staining; b. providing
annotations for glomeruli that are near to the correct cells; and c. creating annotations
with sizes that do not exceed the acceptable range for cells, where such annotations are
more likely to contain human errors; (2) The FN data generation pipeline randomly
removes parts of the ground truth labels annotated by pathologists.

The visualizations of the three datasets are shown in Fig. 3, and the labeling accuracy for
each dataset, the detailed pipelines are presented in Table 4, Algorithm 1, and Algorithm 2
in the Appendix A.

3.2. Experimental details

The dataset was split into training, validation, and testing sets at the WSI level in a 6:1:3
ratio, ensuring balanced distributions of injured and normal glomeruli across splits. All
experiments used the same hyperparameter settings, which were determined from an abla-
tion study (see Table 5) on a non-error dataset using supervised learning. Model selection
was based on the mean Dice score across the four cell classes in the validation set. All
experiments were conducted on an NVIDIA RTX A6000 GPU for uniformity.
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3.3. Evaluation Metrics

We evaluate performance using Dice similarity coefficient scores, with the binary mask for
each image serving as the ground truth. We also provide F1-score results by converting the
binary segmentation labels into instance segmentation labels following the method in (Deng
et al., 2025). Standard deviations are provided for the results in the tables, and a Wilcoxon
t-test is performed to assess the significance of differences between methods.

4. Results

4.1. Testing Set Segmentation Performance

We evaluate the proposed CASC-AI framework alongside other loss correction noisy label
learning methods on three datasets. All methods were implemented with the same back-
bone and hyperparameters to ensure fair comparisons. We conducted an ablation study
to identify the optimal backbone and hyperparameter settings for cell segmentation, us-
ing error-free ground-truth labels that were corrected and verified by pathologists under
supervised learning, shown in the Appendix B.

Table 1 and Fig. 4 demonstrate that the proposed method achieves improvements com-
pared to direct supervised learning and other baseline methods. This indicates that CASC-
AI effectively leverages lay annotations while mitigating noise for enhanced segmentation
performance.

Table 1: Performance of various noisy label learning methods. Dice similarity coefficient
scores (%) and F1-scores (%) are reported. The top two performing methods are
highlighted in red and blue. The Wilcoxon signed-rank test was performed using
CASI-AI as the reference method to compare with other methods. All results are
statistically significant (p < 0.001) compared to the proposed method.

Real Dataset

Method Dice (%) F1-score (%)

Pod. Mes. Endo. Pecs. Mean Pod. Mes. Endo. Pecs. Mean

Supervised 71.18 ± 10.08 68.33 ± 06.87 51.99 ± 02.99 76.09 ± 10.60 66.90 43.79 ± 22.19 42.42 ± 16.78 04.66 ± 06.61 53.34 ± 24.87 36.06
GCE (Zhang and Sabuncu, 2018) 66.94 ± 07.97 51.25 ± 02.47 49.71 ± 00.27 55.56 ± 06.83 55.86 30.96 ± 18.98 02.53 ± 06.86 00.00 ± 00.00 09.67 ± 17.67 10.79
NCE+NMAE (Ma et al., 2020) 49.92 ± 00.05 49.86 ± 00.12 49.71 ± 00.27 49.91 ± 00.07 49.85 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00
NRDice (Wang et al., 2020) 71.00 ± 08.20 52.75 ± 04.42 49.72 ± 00.27 65.62 ± 11.74 59.77 44.35 ± 18.48 06.29 ± 11.69 00.00 ± 00.00 33.97 ± 27.68 21.15
CL (Deng et al., 2023) 74.00 ± 09.18 67.26 ± 06.37 69.53 ± 07.91 73.89 ± 11.07 71.17 50.62 ± 21.58 38.66 ± 16.50 42.01 ± 18.48 49.65 ± 25.49 45.23
CASC-AI (Ours) 74.93 ± 07.38 68.88 ± 05.32 72.24 ± 07.29 75.94 ± 10.71 73.00 52.25 ± 19.90 43.00 ± 13.93 46.22 ± 18.83 55.60 ± 26.32 49.27

FP Dataset

Method Dice (%) F1-score (%)

Pod. Mes. Endo. Pecs. Mean Pod. Mes. Endo. Pecs. Mean

Supervised 71.12 ± 05.45 64.24 ± 05.35 64.56 ± 07.12 70.87 ± 10.62 67.70 21.16 ± 10.67 35.09 ± 12.60 33.97 ± 15.68 37.12 ± 21.30 31.84
GCE (Zhang and Sabuncu, 2018) 62.71 ± 08.27 62.27 ± 04.99 66.16 ± 07.27 66.96 ± 10.97 64.52 24.01 ± 17.75 22.68 ± 11.48 31.69 ± 15.98 31.68 ± 25.01 27.52
NCE+NMAE (Ma et al., 2020) 49.92 ± 00.05 49.86 ± 00.12 49.71 ± 00.27 49.91 ± 00.07 49.85 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00
RDice (Wang et al., 2020) 67.66 ± 07.48 60.10 ± 06.23 67.97 ± 07.82 73.16 ± 11.60 67.22 30.98 ± 15.61 22.33 ± 13.90 39.24 ± 18.17 44.78 ± 25.33 34.34
CL (Deng et al., 2023) 65.24 ± 07.38 65.89 ± 05.32 69.04 ± 07.29 73.78 ± 10.71 68.49 30.16 ± 15.89 35.23 ± 12.34 42.90 ± 16.87 46.59 ± 24.08 38.72
CASC-AI (Ours) 68.49 ± 06.98 66.24 ± 05.55 70.64 ± 07.38 74.75 ± 10.41 70.03 33.23 ± 14.57 35.35 ± 12.47 43.00 ± 16.87 48.34 ± 25.35 39.98

FN Dataset

Method Dice (%) F1-score (%)

Pod. Mes. Endo. Pecs. Mean Pod. Mes. Endo. Pecs. Mean

Supervised 61.51 ± 08.26 66.60 ± 07.52 66.02 ± 08.85 71.13 ± 11.12 66.32 45.49 ± 19.26 34.93 ± 19.05 32.69 ± 19.64 46.33 ± 27.06 39.86
GCE (Zhang and Sabuncu, 2018) 56.17 ± 05.43 49.86 ± 00.12 49.71 ± 00.26 49.91 ± 00.07 51.41 12.47 ± 15.13 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 03.12
NCE+NMAE (Ma et al., 2020) 49.92 ± 00.05 49.86 ± 00.12 49.71 ± 00.27 49.91 ± 00.07 49.85 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00 ± 00.00 00.00
NRDice (Wang et al., 2020) 52.48 ± 04.48 49.86 ± 00.12 52.85 ± 03.81 49.91 ± 00.07 51.28 06.62 ± 13.02 00.00 ± 00.00 07.32 ± 10.78 00.00 ± 00.00 03.48
CL (Deng et al., 2023) 71.92 ± 09.18 67.40 ± 06.37 70.94 ± 07.91 73.05 ± 11.07 70.83 46.07 ± 21.83 39.19 ± 15.21 45.98 ± 17.61 50.54 ± 26.40 45.44
CASC-AI (Ours) 72.85 ± 08.47 70.04 ± 04.98 72.63 ± 07.78 74.90 ± 11.07 72.60 53.01 ± 21.36 43.17 ± 14.98 47.31 ± 18.60 53.00 ± 26.16 49.12
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Figure 4: Qualitative Results. The figure presents qualitative results on real dataset
obtained using the supervised method and the proposed CASC-AI method. The
results demonstrate that the proposed approach enhances segmentation perfor-
mance on noisy labels by reducing false positives and false negatives.

4.2. Training Set Segmentation Performance

To evaluate the hypothesis that CASC-AI recognizes FP and FN during training, Table 2
presents Dice scores and F1-score for TP predictions and Intersection over Union (IoU)
scores for FP and FN predictions. These results highlight that CASC-AI reduces predictions
in FP regions while increasing predictions in FN regions, leading to corrections of the
imperfect labels for accurate segmentation during the training phase.

Table 2: Performance on training dataset on TP, FP, and FN regions of the label. Dice
similarity coefficient scores (%) and F1-score results (%) are reported on TP, while
IoU (%) are reported on FP and FN.

Method TP(Dice) ↑ TP(F1) ↑ FP(IoU) ↓ FN(IoU) ↑ TP(Dice) ↑ TP(F1) ↑ FP(IoU) ↓ TP(Dice) ↑ TP(F1) ↑ FN(IoU) ↑
Supervised 67.99 39.25 2.86 8.20 67.35 52.63 20.67 66.52 35.58 17.01
CASC-AI (Ours) 73.25 48.17 3.48 9.89 69.83 56.28 18.22 68.20 38.66 18.73

5. Conclusion

In this work, we present the CASC-AI framework, a consensus-aware self-corrective learning
designed to address the challenges of cell segmentation in noisy datasets. By leveraging the
Consensus Matrix to identify and prioritize consensus regions between human annotators
and the AI model, while adaptively weighting disagreement areas, the framework enhances
segmentation reliability even in the presence of noisy annotations. This approach highlights
the potential of incorporating an AI model to correct human errors in the labels, paving
the way for scalable and robust solutions in medical imaging and digital pathology. The
limitations and future work of this study can be found in Appendix C.
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Appendix A. Data Collection and Experiments

A.1. Data Information

The details of the patch-level data collection are provided in Table 3.

Table 3: Summary of data collection for different cell classes.
Class Name Abbreviation Patch # Size Scale Stain

Podocytes Pod. 1147 5122 20× PAS
Mesangial cells Mes. 789 5122 20× PAS
Glomerular endothelial cells Endo. 715 5122 20× PAS
Parietal epithelial cells Pecs 2014 5122 20× PAS

A.2. Reasoning-Generated Noise Pipeline

The detailed processes of Reasoning-Guided Noise Injection for FP data and Generating
Masks with Missing Contours for FN data are illustrated in Algorithm 1 and Algorithm 2.

A.3. Label Accuracy

To illustrate the accuracy of the training data, we provide Dice scores and F1-scores for label
accuracy in Table 4, compared with noise-free ground truth confirmed by two pathologists.

Table 4: Label accuracy of each dataset. Dice similarity coefficient scores (%) and F1-score
results (%) are reported.

Dataset Dice (%) F1-score (%)

Pod. Mes. Endo. Pecs. Mean Pod. Mes. Endo. Pecs. Mean

Real data 83.13 76.03 57.38 57.95 66.93 84.18 81.34 58.96 59.53 68.89
FP data 57.18 57.62 66.85 78.94 68.34 66.43 66.72 66.93 76.26 70.85
FN data 69.02 69.54 71.59 73.59 71.52 69.44 69.29 71.85 74.32 71.95

Appendix B. Ablation Study

We conducted an ablation study to identify the optimal backbone and hyperparameter
settings for cell segmentation, using non-error ground-truth labels that were corrected and
verified by pathologists under supervised learning. Results shown in Table 5 indicate that
reducing the learning rate to 10−4 provides the best performance. Increasing the loss weights
for the cell class during loss calculations and extending the training epochs did not lead to
further performance gains. Our proposed backbone outperformed alternative approaches
on our dataset.
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Appendix C. Limitations & Future Work

This study has several limitations. We restricted the design to a loss-correction ap-
proach. Exploring additional paradigms of corrective learning, such as multi-network ar-
chitectures or co-training, could further enhance performance. Exploring additional
backbones including instance segmentation models represents a promising direction
for better capturing subtle patterns between cells and noise at the latent level, which could
improve overall cell segmentation performance and feature embedding quality. Furthermore,
analyzing noise distributions and patterns, learning the variances among differ-
ent raters, and incorporating annotator confidence within datasets as condi-
tional information during model training could provide valuable insights and improve
overall noise-label learning, addressing issues such as boundary errors and label ambiguity.
Eventually, molecular-empowered cell quantification could be fully automated, from data
annotation to AI model training, without any human intervention.

Table 5: Performance on different hyperparameter settings. Dice similarity coefficient
scores (%) are reported.

Backbone Freeze Max Epoch Learning Rate Loss Weights Pod. Mes. Endo. Pecs. Mean

PrPSeg (Deng et al., 2024b) 100 10−3 1:1 73.65 68.99 70.06 73.73 71.61
PrPSeg (Deng et al., 2024b) 100 10−3 10:1 73.06 71.24 70.05 72.39 71.69
PrPSeg (Deng et al., 2024b) 200 10−3 1:1 74.22 70.33 69.88 74.93 72.34
PrPSeg (Deng et al., 2024b) (Ours) 100 10−4 1:1 73.92 69.19 74.52 77.30 73.73
PrPSeg (Deng et al., 2024b) 200 10−4 1:1 75.01 67.79 74.33 76.70 73.46
PrPSeg (Deng et al., 2024b) 100 10−5 1:1 68.52 64.09 69.44 75.17 69.31

CellViT (Hörst et al., 2024) 100 10−4 1:1 57.52 51.61 49.70 58.39 54.31
CellViT (Hörst et al., 2024) Encoder 100 10−4 1:1 50.93 59.14 52.37 54.47 54.23
CellSAM (Israel et al., 2024) 100 10−4 1:1 49.91 49.86 49.71 49.91 49.85
CellSAM (Israel et al., 2024) Encoder 100 10−4 1:1 49.91 49.86 49.71 49.91 49.85
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Algorithm 1: Reasoning-Guided Noise Injection (FP data)

Input: Pathological image X, Manual label Y , Intensity threshold T , Noise limit
limit

Output: Processed image and noise mask
Load the pathological image X and corresponding manual label Y ;
Perform color deconvolution on X to compute stain-specific masks;
Select the PAS channel image and generate a binary mask M using intensity threshold
T ;

Extract contours from M and sort them by proximity to existing annotations in Y ;
Determine the noise addition limit based on the number of cells in Y ;
foreach new contour in sorted contours do

if new contour overlaps with existing annotations or violates spatial constraints
then

continue;
else

if new contour size is outside the acceptable range for cells then
continue;

else
Add new contour to the final noise mask;

end

end
if number of added contours reaches limit then

break;
end

end
Save the processed image and the generated noise mask;
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Algorithm 2: Generating Masks with Missing Contours (FN data)

Input: Image X, Binary mask M , Missing ratio missing ratio

Output: Processed image and modified mask
Load the image X and the binary mask M ;
Extract contours from M ;
Shuffle the contours randomly;
Set limit← (1− missing ratio)× len(contours);
Initialize new mask← 0;
Initialize cnt← 0;
foreach contour in contours do

Draw contour on new mask;
Increment cnt;
if cnt reaches limit then

break;
end

end
Save the processed image and the generated noise mask;
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