
Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please see Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Our work
does not have theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] Our work does not
have theoretical results.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] All
used datasets are publicly available, and we follows the standard instructions in
the cited papers, as shown in Section 4 and A2. All of our codes are included in
https://github.com/VITA-Group/Ultra-Data-Efficient-GAN-Training.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All training details are provides in Section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] There independent evaluations are conducted. Meanwhile,
the average performance with their standard deviations are reported in our paper.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] The description of adopted
computing resources are collected in Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We use the public
datasets and also cite their creators, as shown in Section 4 and A2.

(b) Did you mention the license of the assets? [No] The licenses of the datasets are
provided in the cited papers.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] All used datasets are public available. All of our codes are included in https:
//github.com/VITA-Group/Ultra-Data-Efficient-GAN-Training.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We did not use/curate new data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We only use public and widely adopted datasets
in this paper. We do not think there are any issues of personally identifiable information
or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A16

https://github.com/VITA-Group/Ultra-Data-Efficient-GAN-Training
https://github.com/VITA-Group/Ultra-Data-Efficient-GAN-Training
https://github.com/VITA-Group/Ultra-Data-Efficient-GAN-Training


A1 More Methodology Details

A1.1 More about Feature-level Augmentation in GANs via Adversarial Training

Adversarial feature-level augmentation on generator G. Denote the generator as G = G2 ◦ G1.
Adversarial perturbations δ̂ generated by PGD, are applied to the intermediate feature space G1(z),
which can be depicted as follows:

Ladv
G := max

‖δ̂‖∞≤ε
Ez∼p(z)[fG(−D(G2(G1(z) + δ̂)))], (3)

min
θ
LG + λ1 · Ladv

G , (4)

where λ1 controls the influence of adversarial information. We choose λ1 = 1 tuned by a grid search.

Adversarial feature-level augmentation on discriminator D. Denote the discriminator as D =
D2 ◦ D1. We augment features of both real and generated samples. Specifically,

Ladv
D := min

‖δ‖∞≤ε
Ex∼pdata(x)[fD(−D2(D1(x) + δ))]+

min
‖δ̂‖∞≤ε

Ez∼p(z)[fD(D2(D1(G(z)) + δ̂))], (5)

max
φ
LD + λ2 · Ladv

D , (6)

where adversarial perturbations δ and δ̂ are applied to intermediate features D1(x) and D1(G(z)),
respectively. λ2 balances the effects of clean features and adversarial augmented features. In our
case, λ2 = 1 tuned by a grid search.

The overall pipeline of AdvAug. As presented in Figure 3, we augment the intermediate features
of both the discriminator and generator. First, for augmenting D, it minimizes Ladv

D to craft the
adversarial perturbations for features from both real data and generated samples, and then maximizes
LD together with Ladv

D to update the discriminator according to Eqn. 6. Augmenting G works
similarly, but only on generated samples’ features G1(z). The full algorithm of training GAN with
both data- and feature-level augmentations is summarized in Algorithm 2.

A2 More Implementation Details

A2.1 More Details of Adopted Datasets

Complete descriptions. The CIFAR-10 and CIFAR-100 datasets each consist of 60, 000 32× 32
color images in 10/100 classes, with 6, 000/600 images per class, respectively. The ratio between
the number of training and testing images is 5 : 1. Tiny-ImageNet contains 200 image classes, a
training/validation/test dataset of 100, 000/10, 000/10, 000 64 × 64 images. ImageNet has 1, 000
image classes, 1, 281, 167 training samples, and 50, 000 validation samples. In all experiments, we
use 128× 128 resolution for ImageNet samples.

Download links. We list the download links for adopted datasets as follows:

(i) CIFAR-10/100: https://www.cs.toronto.edu/~kriz/cifar.html

(ii) Tiny-ImageNet: https://www.kaggle.com/c/tiny-imagenet

(iii) ImageNet: http://www.image-net.org

(iv) Few-shot datasets [1]: https://hanlab.mit.edu/projects/data-efficient-gans/
datasets/

Train-val-test splitting and subset constructions. We follow the official splitting in the datasets.
To construct subsets for the limited-data GAN training, we randomly sample a certain portion (e.g.,
10%) from full training sets.

A17

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/c/tiny-imagenet
http://www.image-net.org
https://hanlab.mit.edu/projects/data-efficient-gans/datasets/
https://hanlab.mit.edu/projects/data-efficient-gans/datasets/


Table A7: FreezeD [94] results with/without our proposed training framework.

Methods 100-shot by [1] AnimalFace

Obama Grumpy Cat Panda Cat Dog

FreezeD (0.00%) 41.87 31.22 17.95 47.70 70.46
FreezeD (0.00%) + DiffAug + AdvAug 36.52 30.04 16.23 46.39 64.21
FreezeD (48.80%) 40.10 30.16 16.52 46.58 66.74
FreezeD (48.80%) + DiffAug + AdvAug 35.25 29.62 15.19 45.94 61.30

Table A8: Transfer performance of winning tickets found with FreezeD [94] and StyleGAN-V2 on FFHQ.

Methods 100-shot by [1] AnimalFace

Obama Grumpy Cat Panda Cat Dog

StyleGAN-V2 finetune (0.00%) 41.87 31.22 17.95 47.70 70.46
StyleGAN-V2 finetune (0.00%) + DiffAug + AdvAug 36.52 30.04 16.23 46.39 64.21
StyleGAN-V2 finetune (48.80%) 41.33 30.68 16.47 46.75 68.50
StyleGAN-V2 finetune (48.80%) + DiffAug + AdvAug 35.90 29.73 14.86 46.01 63.15

A2.2 More Details of Reported Sparsity

How is the sparsity level selected? We perform iterative magnitude pruning which each time
removes a fixed portion (e.g., 20%) of the remaining weights with the smallest magnitudes, leading
to the series of sparsity levels like {20% (1− 1× 0.8), 36% (1− 1× 0.82), 49% (1− 1× 0.83), 59%
(1− 1× 0.84), 67% (1− 1× 0.85)}. It is a widely adopted fashion in the literature [18, 16] of the
lottery tickets hypothesis, and we strictly follow the standard convention.

A3 More Experimental Results

Comparisons with a smaller network baseline. To show our achieved improvements not only
come from the reduced network capacity but also from the sparse topology, we implement the “small-
dense” baseline by shrinking the number of channels and constraining its number of parameters to be
equivalent to that of the sparse subnetwork. We take 67.24% sparse BigGAN on 10% training data of
CIFAR-100 as the experimental setup. Then we train them together with DiffAug and AdvAug, and
report the (FID↓). LTH : Random Pruning : small-dense : Dense = 22.37 : 25.73 : 23.58 : 23.94. The
results indicate the small-dense baseline with reduced sample complexity is helpful (23.58 v.s. 23.94),
while most of the benefits come from the identified sparse structure of winning tickets (22.37 v.s.
23.94). The sparse structure of subnetworks matters. Meanwhile, we notice that recent literature also
share consistent findings: (i) big models are better few-shot learners [98]; (ii) big models produce
better winning lottery tickets [59].

Generalization study of our proposal. Our framework is generalizable across diverse GAN
architectures, which is also carefully evidenced in our main text (i.e., SNGAN, BigGAN, StyleGAN-
v2). To further demonstrate it, we conduct extra experiments to combine our training framework
with the proposed GAN architecture (i.e., + skip + decode) from [99]. We observe that sparse GAN
tickets at 36% sparsity with augmentations further obtain (2.03,0.75,0.26) FID reductions on (Obama,
Grumpy cat, Panda), which again validates the effectiveness of our proposal.

Pruning and augmentations on baseline pre-trained methods. We apply our proposed training
framework (LTH pruning + augmentations) to the baseline pre-trained method in Table 5. The
performance of FreezeD with a pre-trained StypleGAN-V2 is collected in Table A7. We find
consistent observations that our training framework (LTH pruning + augmentations) benefits FreezeD
on few-shot generation tasks.

Mask transferring. As demonstrated in [62, 59], the winning tickets found on the pre-training
task, show impressive transferability to diverse downstream tasks. We conduct similar pre-training
and transfer studies in our context. Precisely, we first identify a “pre-training” GAN winning ticket
with the FreezeD method [1] and the StyleGAN-V2 backbone on the FFHQ dataset. Then, we
fine-tune it on diverse few-shot domains and report their performance in Table A8. We find that

A18



Table A9: FID (↓) and IS (↑) results of SNGAN with 10% training data of CIFAR-10 at diverse sparsity levels.
The setting “Sparse Tickets + Aug" is reported here.

Sparsity Dense (0%) 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

FID (↓) 41.25 39.31 (↓1.94) 36.85 (↓4.40) 34.09 (↓7.16) 32.47 (↓8.78) 33.62 (↓7.63) 36.38 (↓4.87) 35.16 (↓6.09) 35.94 (↓5.31) 36.40 (↓4.85) 37.22 (↓4.03)
IS (↑) 5.64 5.72 (↑0.08) 5.87 (↑0.23) 6.03 (↑0.39) 6.20 (↑0.56) 6.14 (↑0.50) 5.97 (↑0.33) 5.93 (↑0.29) 5.96 (↑0.32) 5.91 (↑0.27) 6.01 (↑0.37)

in this practical and meaningful pre-training + fine-tuning scheme, our proposed LTH pruning +
augmentations method is still effective.

Fine-grained sparsity levels. To demonstrate our proposal’s effectiveness across diverse sparsity
levels, we adjust the pruning ratios so that each time we remove 5% of the total weights with the
smallest magnitudes, and conduct extra experiments on these sparsity levels {5%, 10%, 15%, 20%,
25%, 30%, 35%, 40%, 45%, 50%}. Results in Table A9, evidence the consistent benefits from our
proposed training pipeline. All experimental configurations are the same as the ones in Figure 4.

A19


	More Methodology Details
	More about Feature-level Augmentation in GANs via Adversarial Training

	More Implementation Details
	More Details of Adopted Datasets
	More Details of Reported Sparsity

	More Experimental Results

