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1 TRAINING DETAILS

For the tasks of color image denoising and JPEG compression ar-
tifact reduction, we utilized random crops from a diverse dataset
amalgamation including 900 images from DIV2K [1], 2650 images
from Flickr2K [10], 400 images from BSD [2], and 4744 images from
WED [7]. Inspired by the methodology outlined in SwinlIR [6], we
adopted patch sizes of 128x128 (with a window size of 8x8) and
126x126 (with a window size of 7x7) for color image denoising and
JPEG artifact reduction, respectively. To simulate real-world con-
ditions, we introduced additive white Gaussian noise to images at
varying levels (15, 25, 50) and applied JPEG compression at quality
levels (10, 20, 30, 40) using the opencv-python JPEG encoder.

Our initialization strategy involved employing pre-trained em-
bedding layers, the final RSTB, and reconstruction layers from
SwinlR to bootstrap all B-RSTBs. Subsequently, we fine-tuned FlexIR,
achieving satisfactory performance across all B-RSTBs. The train-
ing regimen employed the Adam optimizer (f; = 0.9 and 2 = 0.999),
spanning 200 epochs with a batch size of 1. We employed an initial
learning rate of 1e~>, adopting a linear warm-up strategy over the
initial 0.1 of epochs, followed by a stable or decaying learning rate,
depending on the phase of training, as indicated in Equation (1):

gt = float(epoch + 1)/epochs
I, = base_l, = wy

) (1)
g:/0.1 ifgr <0.1
1—g;, otherwise

For real-world image super-resolution (SR), we mirrored SwinIR’s
degradation model (BSRGAN [11]) and trained FlexIR on the DIV2K
dataset with 900 images, employing patch sizes of 64x64, a window
size of 8x8, and scales of 2 and 4 for SR tasks (x2 and x4). Train-
ing parameters for image SR mirrored those used in color image
denoising and JPEG compression artifact reduction.

2 QUALITATIVE RESULTS ON IMAGE
DENOISING

Extending the qualitative evaluation presented in our main manu-
script, we delve deeper into the efficacy of our proposed method
for color image denoising across a spectrum of noise levels (15, 25,
and 50), employing renowned benchmark datasets: CBSD68 [8],
Kodak24 [4], McMaster [13], and Urban100 [5]. As depicted in Fig. 1,
Fig. 2, and Fig. 3, we showcase the robust performance of our model,
revealing only minimal visual differences across outputs from dis-
tinct branches. Remarkably, even as noise levels intensify, these
discrepancies remain nearly indistinguishable from the original
images. A case in point is the enhanced preservation of detail in
green areas, such as those observed above the parrot’s eye in the
second row of Fig. 1, where our model, FlexIR, outperforms the
ground truth in maintaining textural integrity. This observation

underscores the potential of downsizing FlexIR without compromis-
ing its throughput capabilities, thereby enhancing its applicability
within practical service contexts.

3 QUALITATIVE RESULTS ON JPEG
COMPRESSION ARTIFACT REDUCTION

We present qualitative results illustrating the prowess of our ap-
proach in reducing JPEG compression artifacts across different
quality factors: 10, 20, 30, and 40. The benchmark datasets Clas-
sic5 [3] and LIVE1 [9] are employed for evaluation. As depicted in
Fig. 4 and Fig. 5, akin to the observations in color image denoising,
we discern no substantial visual gap among the images generated
by various B-RSTBs. Intriguingly, FlexIR-generated images exhibit
enhanced visual smoothness compared to the ground truth images.
While a full-size FlexIR theoretically yields optimal performance
given ample computing resources, practical considerations prompt
the exploration of a smaller FlexIR size, offering comparable visual
outcomes tailored to real-world scenarios.

4 QUALITATIVE RESULTS ON REAL-WORLD
IMAGE SUPER-RESOLUTION

In addition to the results highlighted in the main manuscript, we
provide further visualizations for real-world image super-resolution
at scales of x 2 and X 4, as showcased in Fig. 6 and Fig. 7. These
comparisons leverage images sourced from [12]. Unlike the scenar-
ios of image denoising and JPEG compression artifact reduction,
discernible improvements in visual quality emerge with increas-
ing scaling factor, revealing a clearer visual distinction between
outputs from full-size FlexIR and compact-size FlexIR. However,
upon meticulous examination, for instance, the animation cat’s ear
in the first row of Fig. 7, we observe that outputs utilizing P = 4
closely approximate those derived from the full-size FlexIR. This
suggests that real-world image super-resolution, being inherently
challenging, can benefit from a minimum FlexIR size of P = 3 for
application services. Notably, this configuration remains adaptable
to match varying computational resources in practical contexts.
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Figure 2: Visual comparison of color image denoising (noise level 25) on benchmark datasets. From first row to fourth row,
sample images are selected from CBSD68, Kodak24, McMaster and Urban100 respectively. Pointer P indicates the number of
activated B-RSTB while only one B-RSTB is activated in "Tiny Size" FlexIR and all B-RSTBs are activated in "Full Size" FlexIR.
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Figure 3: Visual comparison of color image denoising (noise level 50) on benchmark datasets. From first row to fourth row,
sample images are selected from CBSD68, Kodak24, McMaster and Urban100 respectively. Pointer P indicates the number of
activated B-RSTB while only one B-RSTB is activated in "Tiny Size" FlexIR and all B-RSTBs are activated in "Full Size" FlexIR.
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Figure 4: Visual comparison of JPEG compression artifact reduction on classic5 dataset. From first row to fourth row, the quality
factor is 10, 20, 30, 40 respectively. Pointer P indicates the number of activated B-RSTB while only one B-RSTB is activated in
"Tiny Size" FlexIR and all B-RSTBs are activated in "Full Size" FlexIR.
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Figure 5: Visual comparison of JPEG compression artifact reduction on LIVE1 dataset. From first row to fourth row, the quality
factor is 10, 20, 30, 40 respectively. Pointer P indicates the number of activated B-RSTB while only one B-RSTB is activated in
"Tiny Size" FlexIR and all B-RSTBs are activated in "Full Size" FlexIR.
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Figure 7: Visual comparison of real-world image SR (x4) on RealSRSet. Pointer P indicates the number of activated B-RSTB
while only one B-RSTB is activated in "Tiny Size" FlexIR and all B-RSTBs are activated in "Full Size" FlexIR.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580



	1 Training details
	2 Qualitative Results on Image Denoising
	3 Qualitative Results on JPEG Compression Artifact Reduction
	4 Qualitative Results on Real-world Image Super-Resolution
	References

