
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A MANIFOLD PERSPECTIVE ON THE STATISTICAL GENERALIZA-
TION OF GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) extend convolutional neural networks to operate on graphs. Despite
their impressive performances in various graph learning tasks, the theoretical understanding of
their generalization capability is still lacking. Previous GNN generalization bounds ignore the
underlying graph structures, often leading to bounds that increase with the number of nodes – a
behavior contrary to the one experienced in practice. In this paper, we take a manifold perspective
to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the
spectral domain. As demonstrated empirically, we prove that the generalization bounds of GNNs
decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the
spectral continuity constants of the filter functions. Notably, our theory explains both node-level and
graph-level tasks. Our result has two implications: i) guaranteeing the generalization of GNNs to
unseen data over manifolds; ii) providing insights into the practical design of GNNs, i.e., restrictions
on the discriminability of GNNs are necessary to obtain a better generalization performance. We
demonstrate our generalization bounds of GNNs using synthetic and multiple real-world datasets.

1 INTRODUCTION

Graph convolutional neural networks (GNNs) (Scarselli et al., 2008; Defferrard et al., 2016; Bruna et al., 2013) have
emerged as one of the leading tools for processing graph-structured data. There is abundant evidence of their empirical
success across various fields, including but not limited to weather prediction (Lam et al., 2023), protein structure
prediction in biochemistry (Jumper et al., 2021; Strokach et al., 2020), resource allocation in wireless communications
(Wang et al., 2022a), social network analysis in sociology (Fan et al., 2020), point cloud in 3D model reconstruction
(Shi & Rajkumar, 2020) and learning simulators (Fortunato et al., 2022).

The effectiveness of GNNs relies on their empirical ability to predict over unseen data. This capability is evaluated
theoretically with statistical generalization in deep learning theory (Kawaguchi et al., 2017), which quantifies the
difference between the empirical risk (i.e. training error) and the statistical risk (i.e. testing error). Despite the abundant
evidence of GNNs’ generalization capabilities in practice, developing concrete theories to explain their generalization is
an active area of research. Many recent works have studied the generalization bounds of GNNs without any dependence
on the underlying model responsible for generating the graph data (Scarselli et al., 2018; Garg et al., 2020; Verma &
Zhang, 2019). Generalization analysis on graph classification, when graphs are drawn from random limit models, is
also studied in a series of works (Ruiz et al., 2023; Maskey et al., 2022; 2024; Levie, 2024). In this work, we take the
manifold perspective to formulate graph data on continuous topological spaces, i.e., manifolds. We emphasize that
manifolds are realistic models to generate graph data that enable rigorous theoretical analysis and a deep understanding
of the behaviors of GNNs.

We explore the generalization bound of GNNs through the lens of manifold theory on both node-level and graph-level
tasks in the spectral domain. The graphs are constructed based on points randomly sampled from underlying manifolds,
indicating that the manifold can be viewed as a statistical model for these discretely sampled points. As convolutional
neural network architectures have been established over manifolds (Wang et al., 2022b), the convergence of GNNs
to manifold neural networks (MNNs) and the algebraical equivalence of these two frameworks facilitate a detailed
generalization understanding of GNNs through spectral analysis. We demonstrate that, with an appropriate graph
construction based on the sampled points from the manifold, the generalization gap between empirical and statistical
risks decreases with the number of sampled points in the graphs (Figure 1c) on both node-level and graph-level tasks.
More importantly, the generalization gap increases linearly with the continuity constants of frequency response functions
of graph filters composing the GNN (Figure 1d). We observe that with low-pass and spectral continuous filters, the
GNNs are generalizable across different nodes or graphs generated from the same underlying manifold. This provides
insight into the practical graph filter design from a spectral perspective. Moreover, the theoretical results indicate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a trade-off between the discriminability and generalization capability of GNNs, suggesting that restrictions on the
discriminability of GNNs are necessary to maintain generalization performance.

115
120

125
130X 100

105
110

115
120

Y

0
5
10
15
20
25
30
35

Z

(a) Chair Manifold

115
120

125
130X 100

105
110

115
120

Y

0

10

20

30

Z

(b) Sampled Chair

102 103

Number of Nodes
10 1

100

101

102

103

Ge
ne

ra
liz

at
io

n
Ga

p
(m

ea
n

±
st

d
de

v)

Spectral Continuity Constant = 13.36
Spectral Continuity Constant = 26.73
Spectral Continuity Constant = 40.09

(c) Gen. Gap vs. Num. of Nodes

6 8 10 12 14 16 18 20
Spectral Continuity Constant

0

100

200

300

400

500

600

Ge
ne

ra
liz

at
io

n
Ga

p
(m

ea
n

±
st

d
de

v) Nodes = 20
Nodes = 40
Nodes = 60
Nodes = 80

(d) Gen. Gap vs. Continuity Constants

Figure 1: Synthetic experimental results are shown on the uniformly sampled chair manifold. We construct graph with
different numbers of nodes, fix the weights of a GNN, and compute the generalization gap. We construct the graph by
computing the edges for nodes that are ϵ close (cf. equation 3). In Figure 1c we fix the spectral continuity constant (see
Definition 4) and vary the number of nodes. As our theory predicts, we see that a smaller spectral continuity constant
translates into a smaller generalization gap – as the blue line is below the green line which is below the orange line. In
Figure 1d we fix the number of nodes in the graph and vary the spectral continuity constant in the GNN. For the same
number of nodes, a larger spectral continuity constant translates into a larger generalization gap.

We introduce a novel unified analysis of the generalization of GNNs to unseen nodes and graphs, by relating the
GNNs with MNNs in the spectral domain. We further propose restrictions on the discriminability of GNNs from the
spectral perspective which results from assumptions on the continuity of the filter frequency response functions. We
provide extensive experiments both on synthetic and real-world datasets to verify our generalization conclusions. Our
contribution is four-fold:

1. We prove the generalization bound of GNNs on graphs generated from an underlying manifold on both
node-level (Theorem 1) and graph-level (Theorem 2) by relating the algebraically equivalent GNNs and MNN
in the spectral domain.

2. We provide novel generalization gap bounds that decrease linearly with the nodes of the graph in the logarithmic
scale, and increase linearly with the spectral continuity constants (Definition 4) of the filter functions.

3. We uncover an important trade-off between the discriminability and the generalization gap of GNNs, which
guides practical GNN designs.

4. We verify the dependence of our generalization gaps on parameters, especially the continuity parameter, with a
synthetic dataset – chair manifold – and eight real-world datasets – ArXiv, Citeseer, etc.

2 RELATED WORKS

2.1 GENERALIZATION BOUNDS OF GNNS

Node level tasks We first give a brief recap of the generalization bounds of GNNs on node level tasks. In (Scarselli
et al., 2018), the authors give a generalization bound of GNNs with a Vapnik–Chervonenkis dimension of GNNs. The
authors in (Verma & Zhang, 2019) analyze the generalization of a single-layer GNN based on stability analysis, which
is further extended to a multi-layer GNN in (Zhou & Wang, 2021). In (Ma et al., 2021), the authors give a novel
PAC-Bayesian analysis on the generalization bound of GNNs across arbitrary subgroups of training and testing datasets.
The authors derive generalization bounds for GNNs via transductive uniform stability and transductive Rademacher
complexity in (Esser et al., 2021; Cong et al., 2021; Tang & Liu, 2023). The authors in (Yehudai et al., 2021) propose a
size generalization analysis of GNNs correlated to the discrepancy between local distributions of graphs. Different
from these works, we consider a continuous manifold model when generating the graph data, which is theoretically
powerful and realistic when characterizing real-world data. Furthermore, the generalization bounds proved in these
works either grow with the size of the graph (Esser et al., 2021; Tang & Liu, 2023; Scarselli et al., 2018), with the node
degree of the graphs (Cong et al., 2021) or the maximum eigenvalues of the graph (Verma & Zhang, 2019). Notably,
our generalization bound decreases with the size of the graph given that it depends on the spectral properties of the filter
functions over the manifold.

Graph level tasks There are also related works on the generalization analysis of GNNs on graph-level tasks. In
(Garg et al., 2020), the authors form the generalization bound via Rademacher complexity. The authors in (Liao et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2020) build a PAC-Bayes framework to analyze the generalization capabilities of graph convolutional networks (Kipf
& Welling, 2016) and message-passing GNNs (Gilmer et al., 2017), based on which the authors in (Ju et al., 2023)
improve the results and prove a lower bound. The bounds either grow with the number of nodes (Liao et al., 2020) or
the degree of the graphs (Garg et al., 2020) while our bound decreases with the number of nodes in the graph given that
it better approximates the underlying model – the manifold. The works in (Maskey et al., 2022; 2024; Levie, 2024) are
most related to ours, which also consider the generalization of GNNs on a graph limit model, in their case a graphon.
Different from our setting, the authors see the graph limit as a random continuous model. They study the generalization
of graph classification problems with message-passing GNNs with graphs belonging to the same category sampled
from a continuous limit model. The generalization bound grows with the model complexity and decreases with the
number of nodes in the graph. We show that a GNN trained on a single graph sampled from each manifold is enough,
and can generalize and classify unseen graphs sampled from the manifold set.

2.2 NEURAL NETWORKS ON MANIFOLDS

Geometric deep learning has been proposed in (Bronstein et al., 2017) with neural network architectures raised in
manifold space. The authors in (Monti et al., 2017) and (Chakraborty et al., 2020) provide neural network architectures
for manifold-valued data. In (Wang et al., 2024b) and (Wang et al., 2022b), the authors define convolutional operation
over manifolds and see the manifold convolution as a generalization of graph convolution, which establishes the limit
of neural networks on large-scale graphs as manifold neural networks (MNNs). The authors in (Wang et al., 2024a)
further establish the relationship between GNNs and MNNs with non-asymptotic convergence results for different
graph constructions. Some studies have used graph samples to infer properties of the underlying manifold itself. These
properties include the validity of the manifold assumption (Fefferman et al., 2016), the manifold dimension (Farahmand
et al., 2007) and the complexity of these inferences (Narayanan & Niyogi, 2009; Aamari & Knop, 2021). Other research
has focused on prediction and classification using manifolds and manifold data, proposing various algorithms and
methods. Impressive examples include the Isomap algorithm (Choi & Choi, 2004; Wu & Chan, 2004; Yang et al., 2016a)
and other manifold learning techniques (Talwalkar et al., 2008). These techniques aim to infer manifold properties
without analyzing the generalization capabilities of GNNs operated on the sampled manifold.

3 PRELIMINARIES

3.1 GRAPH NEURAL NETWORKS

Setup An undirected graph G = (V, E ,W) contains a node set V with N nodes and an edge set E ⊆ V × V . The
weight function W : E → R assigns weight values to the edges. We define the Graph Laplacian L = diag(A1)−A
where A ∈ RN×N is the adjacency matrix. Graph signals are defined as functions mapping nodes to a feature value
x ∈ RN .

Graph convolutions and frequency response A graph convolutional filter hG is composed of consecutive graph
shifts by graph Laplacian, defined as hG(L)x =

∑K−1
k=0 hkL

kx with {hk}K−1
k=0 as filter parameters. We replace L with

eigendecomposition L = VΛVH , where V is the eigenvector matrix and Λ is a diagonal matrix with eigenvalues
{λi,N}Ni=1 as the entries. The spectral representation of a graph filter is

VHhG(L)x =

K−1∑
k=1

hkΛ
kVHx = ĥ(Λ)VHx. (1)

This leads to a point-wise frequency response of the graph convolution as ĥ(λ) =
∑K−1

k=0 hkλ
k.

Graph neural networks A graph neural network (GNN) is a layered architecture, where each layer consists of a
bank of graph convolutional filters followed by a point-wise nonlinearity σ : R → R. Specifically, the l-th layer of a
GNN that produces Fl output features {xp

l }
Fl
p=1 with Fl−1 input features {xq

l−1}
Fl−1

q=1 is written as

xp
l = σ

Fl−1∑
q=1

hlpq
G (L)xq

l−1

 , (2)

for each layer l = 1, 2 · · · , L. The graph filter hlpq
G (L) maps the q-th feature of layer l − 1 to the p-th feature of layer l.

We denote the GNN as a mapping ΦG(H,L,x), where H ∈ H ⊂ RP denotes a set of the graph filter coefficients at
all layers and H denotes the set of all possible parameter sets.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 MANIFOLD NEURAL NETWORKS

Setup We consider a d-dimensional compact, smooth and differentiable Riemannian submanifold M embedded
in RM with finite volume. This induces a Hausdorff probability measure µ over the manifold with density function
ρ : M → (0,∞), assumed to be bounded as 0 < ρmin ≤ ρ(x) ≤ ρmax < ∞ for all x ∈ M. The manifold data
supported on each point x ∈ M is defined by scalar functions f : M → R (Wang et al., 2024b). We use L2(M) to
denote L2 functions over M with respect to measure µ. The manifold with probability density function ρ is equipped
with a weighted Laplace operator (Grigor’yan, 2006), generalizing the Laplace-Beltrami operator as

Lρf = − 1

2ρ
div(ρ2∇f), (3)

with div denoting the divergence operator of M and ∇ denoting the gradient operator of M (Bronstein et al., 2017;
Gross & Meinrenken, 2023).

Manifold convolutions and frequency responses The manifold convolution operation is defined relying on the
Laplace operator Lρ and on the heat diffusion process over the manifold (Wang et al., 2024b). For a function f ∈ L2(M)
as the initial heat condition over M, the heat condition diffused by a unit time step can be explicitly written as e−Lρf .
A manifold convolutional filter (Wang et al., 2024b) can be defined in a diffuse-and-sum manner as

g(x) = h(Lρ)f(x) =

K−1∑
k=0

hke
−kLρf(x), (4)

with the k-th diffusion scaled with a filter parameter hk ∈ R. We consider the case in which the Laplace operator is
self-adjoint with respect to the inner product defined in equation 23 and positive-semidefinite and the manifold M
is compact, in this case, Lρ has real, positive and discrete eigenvalues {λi}∞i=1, written as Lρϕi = λiϕi where ϕi is
the eigenfunction associated with eigenvalue λi. The eigenvalues are ordered in increasing order as 0 = λ1 ≤ λ2 ≤
λ3 ≤ . . ., and the eigenfunctions are orthonormal and form an eigenbasis of L2(M). When mapping a manifold signal
onto the eigenbasis [f̂]i = ⟨f,ϕi⟩M =

∫
M f(x)ϕi(x)dµ(x), the manifold convolution can be written in the spectral

domain as

[ĝ]i =

K−1∑
k=0

hke
−kλi [f̂]i. (5)

Hence, the frequency response of manifold filter is given by ĥ(λ) =
∑K−1

k=0 hke
−kλ.

Manifold neural networks A manifold neural network (MNN) is constructed by cascading L layers, each of which
contains a bank of manifold convolutional filters and a pointwise nonlinearity σ : R → R. The output manifold function
of each layer l = 1, 2 · · · , L can be explicitly denoted as

fp
l (x) = σ

Fl−1∑
q=1

hpq
l (Lρ)f

q
l−1(x)

 , (6)

where fq
l−1, 1 ≤ q ≤ Fl−1 is the q-th input feature from layer l − 1 and fp

l , 1 ≤ p ≤ Fl is the p-th output feature of
layer l. We denote MNN as a mapping Φ(H,Lρ, f), where H ∈ H ⊂ RP is a collective set of filter parameters in all
the manifold convolutional filters.

4 GENERALIZATION ANALYSIS OF GNNS BASED ON MANIFOLDS

We consider a manifold M as defined in Section 3.2, with a weighted Laplace operator Lρ as defined in equation 3.
Since functions f ∈ L2(M) characterize information over manifold M, we restrict our analysis to a finite-dimensional
subset of L2(M) up to some eigenvalue of Lρ, defined as a bandlimited signal.

Definition 1. A manifold signal f ∈ L2(M) is bandlimited if there exists some λ > 0 such that for all eigenpairs
{λi,ϕi}∞i=1 of the weighted Laplacian Lρ when λi > λ, we have ⟨f,ϕi⟩M = 0.

Suppose we are given a set of N i.i.d. randomly sampled points XN = {xi}Ni=1 over M, with xi ∈ M sampled
according to measure µ. We construct a graph G(V, E ,W) on these N sampled points XN , where each point xi is a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Gaussian kernel based graphs

(b) ϵ-graphs

Figure 2: Illustration of the constructed graphs on points sampled over a chair and a table model.

vertex of graph G, i.e. V = XN . Each pair of vertices (xi, xj) is connected with an edge while the weight attached to
the edge W(xi, xj) is determined by a kernel function Kϵ. The kernel function is decided by the Euclidean distance
∥xi−xj∥ between these two points. The graph Laplacian denoted as LN can be calculated based on the weight function
(Merris, 1995). The constructed graph Laplacian with an appropriate kernel function has been proved to approximate
the Laplace operator Lρ of M (Calder & Trillos, 2022; Belkin & Niyogi, 2008; Dunson et al., 2021). We present the
following two definitions of Kϵ.

Definition 2 (Gaussian kernel based graph (Belkin & Niyogi, 2008)). The graph G(XN , E ,W) can be constructed as
a dense graph degree when the kernel function is defined as

W(xi, xj) = Kϵ

(
∥xi − xj∥2

ϵ

)
=

1

N

1

ϵd/2+1(4π)d/2
e−

∥xi−xj∥
2

4ϵ , (xi, xj) ∈ E . (7)

The weight function of a Gaussian kernel based graph is defined on unbounded support (i.e. [0,∞)), which connects
xi and xj regardless of the distance between them. This results in a dense graph with N2 edges. In particular, this
Gaussian kernel based graph has been widely used to define the weight value function due to the good approximation
properties of the corresponding graph Laplacians to the manifold Laplace operator (Dunson et al., 2021; Belkin &
Niyogi, 2008; Xie et al., 2013).

Definition 3 (ϵ-graph (Calder & Trillos, 2022)). The graph G(XN , E ,W) can be constructed as an ϵ-graph with the
kernel function defined as

W(xi, xj) = Kϵ

(
∥xi − xj∥2

ϵ

)
=

1

N

d+ 2

ϵd/2+1αd
1[0,1]

(
∥xi − xj∥2

ϵ

)
, (xi, xj) ∈ E , (8)

where αd is the volume of a unit ball of dimension d and 1 is the characteristic function.

The weight function of an ϵ-graph is defined on a bounded support, i.e., only nodes that are within a certain distance of
one another can be connected by an edge. It has also been shown to provide a good approximation of the manifold
Laplace operator (Calder & Trillos, 2022). Figure 2 gives an illustration of both Gaussian kernel based graphs and
ϵ-graphs sampled from point cloud models Wu et al. (2015).

4.1 MANIFOLD LABEL PREDICTION VIA NODE LABEL PREDICTION

Suppose we have an input manifold signal f ∈ L2(M) and a label (i.e. target) manifold signal g ∈ L2(M) over M.
With an MNN Φ(H,Lρ, ·), we predict the target value g(x) based on input f(x) at each point x ∈ M. By sampling
N points XN over this manifold, we can approximate this problem in a discrete graph domain. Consider a graph
G(XN , E ,W) constructed with XN as either a Gaussian kernel based graph (Definition 2) or an ϵ-graph (Definition 3)
equipped with the graph Laplacian LN . Suppose we are given graph signal {x,y} sampled from {f, g} to train a GNN
ΦG(H,LN , ·), explicitly written as

[x]i = f(xi), [y]i = g(xi) for all xi ∈ XN . (9)

We assume that the filters in MNN Φ(H,Lρ, ·) and GNN ΦG(H,LN , ·) are low-pass filters, which are defined
explicitly as follows.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 4. A filter is a low-pass filter if its frequency response function satisfies∣∣∣ĥ(λ)∣∣∣ = O
(
λ−d

)
,
∣∣∣ĥ′(λ)

∣∣∣ ≤ CLλ
−d−1, λ ∈ (0,∞), (10)

with CL a spectral continuity constant that regularizes the smoothness of the filter function.
To introduce the first of our two main results, we require introducing two assumptions.
AS 1. (Normalized Lipschitz nonlinearity) The nonlinearity σ is normalized Lipschitz continuous, i.e., |σ(a)− σ(b)| ≤
|a− b|, with σ(0) = 0.
AS 2. (Normalized Lipschitz loss function) The loss function ℓ is normalized Lipschitz continuous, i.e., |ℓ(yi, y) −
ℓ(yj , y)| ≤ |yi − yj |, with ℓ(y, y) = 0.

Assumption 1 is satisfied by most activations used in practice such as ReLU, modulus and sigmoid.

The generalization gap is evaluated between the empirical risk over the discrete graph model and the statistical risk over
manifold model, with the manifold model viewed as a statistical model since the expectation of the sampled point is
with respect to the measure µ over the manifold. The empirical risk over the sampled graph that we trained to minimize
is therefore defined as

RG(H) =
1

N

N∑
i=1

ℓ ([ΦG(H,LN ,x)]i, [y]i) . (11)

The statistical risk over the manifold is defined as

RM(H) =

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x). (12)

The generalization gap is defined to be

GA = sup
H∈H

|RM(H)−RG(H)| . (13)

Theorem 1. Suppose the GNN and MNN with low-pass filters (Definition 4) have L layers with F features in each layer
and the input signal is bandlimited (Definition 1). Under Assumptions 1 and 2 it holds in probability at least 1− δ that

GA ≤ LFL−1

(
(C1CL + C2)

ϵ√
N

+
π2
√

log(1/δ)

6N

)
+ FLC3

(
logN

N

) 1
d

, (14)

with C1, C2, and C3 depending on the geometry of M, CL is the spectral continuity constant in Definition 4.

1. When the graph is constructed with a Gaussian kernel equation 7, then ϵ ∼
(

log(C/δ)
N

) 1
d+4

.

2. When the graph is constructed as an ϵ-graph as equation 8, then ϵ ∼
(

log(CN/δ)
N

) 1
d+4

.

Proof. See Appendix D for proof and the definitions of C1, C2 and C3.

Theorem 1 shows that the generalization gap decreases approximately linearly with the number of nodes N in the
logarithmic scale and that it also increases with the dimension of the underlying manifold d. Another observation is that
the generalization gap scales with the size of the GNN architecture. Most importantly, we note the bound increases
linearly with the spectral continuity constant CL (Definition 4) – a smaller CL leads to a smaller generalization gap
bound, and thus a better generalization capability. While a smaller CL leads to a smoother GNN, it discriminates fewer
spectral components and, therefore, possesses worse discriminability. Consequently, we may observe a larger training
loss with these smooth filters, presenting a trade-off between generalization and discriminative capabilities. Since
the testing loss can be upper bounded by the sum of training loss and the bound of generalization gap, on a smoother
GNN (a smaller CL), the performance on the training data will be closer to the performance on unseen testing data.
Therefore, having a GNN with a smaller spectral continuity constant CL can guarantee more generalizable performance
over unseen data from the same manifold. This also indicates that similar testing performance can be achieved by either
a GNN with smaller training loss and worse generalization or a GNN with larger training loss and better generalization.
In all, this indicates that there exists an optimal point to take the best advantage of the trade-off between a smaller
generalization gap and better discriminability, resulting in a smaller testing loss decided by the spectral continuity
constant of the GNN.

4.2 MANIFOLD CLASSIFICATION VIA GRAPH CLASSIFICATION

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 λ1 λi λ

ĥ(λ)

O(λ−2)

Figure 3: The x-axis stands for the spectrum, with each sample repre-
senting an eigenvalue. The black line illustrates a low-pass filter with red
lines initiating the frequency responses of a filter on a given manifold.
The blue dotted line shows the upper bound of the frequency response
in Definition 4.

Suppose we have a set of manifolds
{Mk}Kk=1, each of which is dk-dimensional,
smooth, compact, differentiable and embed-
ded in RM with measure µk. Each manifold
Mk equipped with a weighted Laplace op-
erator Lρ,k is labeled with yk ∈ R. We as-
sume to have access to Nk randomly sam-
pled points according to measure µk over
each manifold Mk and construct K graphs
{Gk}Kk=1 with graph Laplacians LN,k. The
GNN ΦG(H,LN,·,x·) is trained on this set
of graphs with xk as the input graph sig-
nal sampled from the manifold signal fk ∈
L2(Mk) and yk ∈ R as the scalar target label.
The final output of the GNN is set to be the
average of the output signal values on each
node while the output of MNN Φ(H,Lρ,·, f·)
is the statistical average value of the output signal over the manifold. A loss function ℓ evaluates the difference between
the output of GNN and MNN with the target label. The empirical risk of the GNN is

RG(H) =

K∑
k=1

ℓ

(
1

Nk

Nk∑
i=1

[Φ(H,LN,k,xk)]i, yk

)
. (15)

While the output of MNN is the average value over the manifold, the statistical risk is defined based on the loss evaluated
between the MNN output and the label as

RM(H) =

K∑
k=1

ℓ

(∫
Mk

Φ(H,Lρ,k, fk)(x)dµk(x), yk

)
. (16)

The generalization gap is therefore

GA = sup
H∈H

|RM(H)−RG(H)| . (17)

Theorem 2. Suppose the GNN and MNN with low-pass filters (Definition 4) have L layers with F features in each layer
and the input signal is bandlimited (Definition 1). Under Assumptions 1 and 2 it holds in probability at least 1− δ that

GA ≤ LFL−1
K∑

k=1

(C1CL + C2)

(
ϵ√
Nk

+
π2
√
log(1/δ)

6Nk

)
+ FLC3

K∑
k=1

(
logNk

Nk

) 1
dk

, (18)

with C1, C2, and C3 depending on the geometry of M, CL is the spectal continuity constant in Definition 4.

1. When the graph is constructed with a Gaussian kernel equation 7, then ϵ ∼
(

log(C/δ)
Nk

) 1
dk+4

.

2. When the graph is constructed as an ϵ-graph as equation 8, then ϵ ∼
(

log(CNk/δ)
Nk

) 1
dk+4

.

Proof. See Appendix E for proof and the definitions of C1, C2 and C3.

Theorem 2 shows that a single graph sampled from the underlying manifold with large enough sampled points Nk

from each manifold Mk can provide an effective approximation to classify the manifold itself. The generalization
gap also attests that the trained GNN can generalize to classify other unseen graphs sampled from the same manifold.
Similar to the generalization result in node-level tasks, the generalization gap decreases with the number of points
sampled over each manifold while increasing with the manifold dimension. A higher dimensional manifold, i.e. higher
complexity, needs more samples to guarantee the generalization. The generalization gap also shows a trade-off between
the generalization and discriminability as the bound increases linearly with the spectral continuity constant CL. That
is, to guarantee that a GNN for graph classification can generalize effectively, we must impose restrictions on the
continuity of its filter functions, which in turn limits the filters’ ability to discriminate between different graph features.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

102 103 104 105

Number of nodes in training set
40

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

102 103 104 105

Number of nodes in training set
40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

102 103 104 105

Number of nodes in training set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

102 103 104 105

Number of nodes in training set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Train 64 hidden units
Test 64 hidden units

Train 128 hidden units
Test 128 hidden units

Train 256 hidden units
Test 256 hidden units

Train 512 hidden units
Test 512 hidden units

102 103 104 105

Number of nodes in training set

101

102

Ac
cu

ra
cy

 D
iff

er
en

ce
 (%

)

102 103 104 105

Number of nodes in training set

101

102

Ac
cu

ra
cy

 D
iff

er
en

ce
 (%

)

102 103 104 105

Number of nodes in training set

10 1

100

101

Lo
ss

 D
iff

er
en

ce

102 103 104 105

Number of nodes in training set

10 1

100

101

Lo
ss

 D
iff

er
en

ce

(a) Two Layers (b) Three Layers (c) Two Layers (d) Three Layers

Figure 4: In the top row, we plot the difference in the accuracy and loss for columns 4a, 4b and 4c, 4d, respectively. On
the bottom row, we plot the actual train and test values of the accuracy (4a, 4b), and the loss (4c, 4d). The plots are
for the Arxiv dataset and {64, 128, 256, 512} hidden units. For the bottom row, we also calculate the linear fit for the
values whose training accuracy is below 95%, showing that our linear bound on the logarithm of the generalization gap
for the logarithm of the number of nodes shares the same rate shown in Theorem 1.

100 101 102

Number of nodes in training set

102

3 × 101

4 × 101

6 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

100 101 102

Number of nodes in training set

4 × 101

6 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

100 101

Number of nodes in training set

3 × 101

4 × 101

6 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Difference 2 layers 32 hidden units
Linear Fit 2 layers 32 hidden units

Difference 2 layers 64 hidden units
Linear Fit 2 layers 64 hidden units

Difference 3 layers 32 hidden units
Linear Fit 3 layers 32 hidden units

Difference 3 layers 64 hidden units
Linear Fit 3 layers 64 hidden units

100 101 102

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

100 101 102

Number of nodes in training set

101

Lo
ss

 d
iff

er
en

ce

100 101

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

(a) Cora (b) CiteSeer (c) PubMed

Figure 5: Generalization gap as a function of the number of nodes in the training set for accuracy (top) and loss (bottom)
for the Cora, CiteSeer, and PubMed datasets.

5 EXPERIMENTS

In this Section, we evaluate the claims that we put forward empirically. We study the generalization gap (Theorems
1 and 2) bound on several node classification and graph classification problems on both synthetic and real-world
datasets. We present three types of experiments: (i) synthetic graph experiment (see Figure 1), (ii) node classification
on real-world graphs, and (iii) graph classification on point cloud models.

Node classification In this section, we empirically study the generalization gap in 8 real-world datasets. The task
is to predict the label of a node given a set of features. The datasets vary in the number of nodes from 169, 343 to
3, 327, and in the number of edges from 1, 166, 243 to 9, 104. The feature dimension also varies from 8, 415 to 300
features, and the number of classes of the node label from 40 to 3. We consider the following datasets: OGBN-Arxiv
(Wang et al., 2020; Mikolov et al., 2013), Cora (Yang et al., 2016b), CiteSeer (Yang et al., 2016b), PubMed (Yang et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

101 102 103 104

Number of nodes in training set
101

102

2 × 101

3 × 101

4 × 101

6 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

101 102 103 104

Number of nodes in training set
101

102

2 × 101

3 × 101

4 × 101

6 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

102 103 104

Number of nodes in training set

101

4 × 100

6 × 100

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

102 103 104

Number of nodes in training set

101

6 × 100

2 × 101

3 × 101

4 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

Difference 2 layers 32 hidden units
Linear Fit 2 layers 32 hidden units

Difference 2 layers 64 hidden units
Linear Fit 2 layers 64 hidden units

Difference 3 layers 32 hidden units
Linear Fit 3 layers 32 hidden units

Difference 3 layers 64 hidden units
Linear Fit 3 layers 64 hidden units

(a) Amazon-Ratings (b) Roman-Empire (c) CoAuthors CS (d) CoAuthors Physics

Figure 6: Accuracy generalization gap as a function of the number of nodes in the training set for the Amazon-Ratings,
Roman-Empire, CoAuthors CS, and CoAuthors Physics datasets.

5 6 7 8 9 10 11
Number of nodes in training set

0

10

20

30

40

50

60

Ac
cu

ra
cy

 D
iff

er
en

ce
 (\

%
)

5 6 7 8 9 10 11
Number of nodes in training set

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(\%

)

10 7 10 6 10 5 10 4 10 3 10 2

Spectral regularizer multiplier
0

5

10

15

20

25

Ac
cu

ra
cy

 D
iff

er
en

ce
 (\

%
)

10 7 10 6 10 5 10 4 10 3 10 2

Spectral regularizer multiplier
60

62

64

66

68

70

72

Te
st

 A
cc

ur
ac

y
(\%

)

Multiplier = 0 Multiplier = 0.001 Multiplier = 0.01 90941 nodes 45470 nodes 22735 nodes 11367 nodes

(a) Accuracy gap vs nodes (b) Test accuracy vs nodes (c) Accuracy gap vs regularizer (d) Test accuracy vs regularizer

Figure 7: Spectral continuity constant effect on generalization gap and test accuracy.

(a) Differences of the outputs of GNNs with 2 layers. (b) Differences of the outputs of GNNs with 3 layers.

Figure 8: Generalization gap as a function of number of nodes for average GNN output differences for graph
classification over ModelNet10.

2016b), Coauthors CS (Shchur et al., 2018), Coauthors Physics (Shchur et al., 2018), Amazon-rating (Platonov et al.,
2023), and Roman-Empire (Platonov et al., 2023), details of the datasets can be found in Table 2. In all cases, we vary
the number of nodes in the training set by partitioning it in {1, 2, 4, 8, 16, 32, 64, 32, 64, 128, 256, 512, 1024} partitions
when possible. For both the training and testing sets, we computed the loss in cross-entropy loss, and the accuracy in
percentage (%).

Our main goal is to show that the rate presented in Theorem 1 holds in practice. That is to say, if we plot the logarithm
of the generalization gap as a function of the logarithm of the number of nodes we see a linear rate. To be consistent
with the theory, we also want to show that if the number of layers or the size of the features increases, so does the
generalization gap.

In Figure 4, we plot the generalization gap of the accuracy in the logarithmic scale for a two-layered GNN (Figure
4a), and for a three-layered GNN (Figure 4b). On the upper side, we can see that the generalization bound decreases
with the number of nodes and that outside of the strictly overfitting regime (when the training loss is below 95%), the
generalization gap shows a linear decay, as depicted in the dashed line. The same behavior can be seen in Figures 4c,
and 4d which correspond to the loss for 2 and 3 layered GNNs. As predicted by our theory, the generalization gap

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

increases with the number of features and layers in the GNN. The behavior of the training and testing accuracy as a
function of the number of nodes is intuitive. For the training loss, when the number of nodes in the training set is small,
the GNN can overfit the training data. As the number of features increases, the GNN’s capacity to overfit also increases.

Dataset
Pearson

Correlation
Coefficient

OGBN-Arxiv −0.9980
Cora −0.9686

CiteSeer −0.9534
PubMed −0.9761

CS −0.8969
Physics −0.9145
Amazon −0.9972
Roman −1.0000

Table 1: Pearson correlation for 2 layer,
64 hidden units GNNs measured on the
accuracy generalization gap.

In Figures 5, and 6, we present the accuracy generalization gaps for 2 and
3 layers with 32 and 64 features. In the overfitting regime, the rate of our
generalization bound seems to hold – decreases linearly with the number of
nodes in the logarithmic scale. In the non-overfitting regime, our rate holds
for the points whose training accuracy is below 95%. Also, we validate that
the bound increases both with the number of features and the number of
layers.

In Table 1, we present the Pearson correlation coefficient to measure the
linear relationships in the generalization gaps of a 2 layers GNN with 64
hidden units in all datasets considered. In almost every case, the coefficient
is above 0.95 which translates into a strong linear correlation. In Appendix
F we explain how we computed these values. As seen in the experiment,
the GNN generalization gap experiences a linear decay with respect to the
number of nodes in the logarithmic scale. Theorem 1 presents an upper
bound on the generalization gap, whose rate can be seen to match the one
seen in practice both for the loss, as well as the accuracy gaps.

Spectral Continuity Constant Effect. To measure the impact of the
spectral continuity constant CL, we add a regularizer to the cross-entropy loss (see Appendix F.3). We vary the value of
the regularizer, noting that a larger regularizer translates into a smaller CL and therefore a smoother function. In Figures
7a and 7c we see the empirical manifestation of the bound that we showed (cf. Theorem 1) – a GNN with a smaller CL

(a larger regularizer) will attain a smaller generalization gap. We can see that a larger regularizer (smaller continuity
constant CL, green line, regularizer 0.01) attains a smaller generalization gap, and as the regularization decreases (CL

increases), the generalization gap increases. The effect of having smaller spectral continuity constants CL is the lack of
discriminability of the GNN. As can be seen in Figures 7b and 7d, the test error decreases when the multiplier is too
large (CL too small). Therefore, a spectral regularize not too large can be shown to guarantee good test accuracy, but if
the regularizer is too large, the test accuracy will be hurt by the lack of discriminability of the GNN as shown in Figure
7d. In all, we verify the fact that a GNN with a smoother spectral response will have a smaller generalization gap as
shown in Theorem 1.

Graph classification We evaluate the generalization gap on graph prediction using the ModelNet10 dataset (Wu
et al., 2015). We set the coordinates of each point as input graph signals, and the weights of the edges are calculated
based on the Euclidean distance between the nodes. The generalization gap is calculated by training GNNs on graphs
with N = 20, 40 . . . , 100 sampled points, and plotting the differences between the average output of the trained GNNs
on the trained graph and a testing graph with size N = 100. Figure 8a shows the generalization gaps for GNNs with
2 layers and Figure 8b shows the results of GNNs with 3 layers. We can see that the output differences between the
GNNs decrease with the number of nodes and decrease with the multiplier (increase with CL). This verifies the claims
of Theorem 2. In Appendix F.1, we present experiment results on more model datasets.

6 CONCLUSION

We study the statistical generalization of GNNs from a manifold perspective. We consider graphs sampled from
manifolds and prove that GNNs could effectively generalize to unseen data from the manifolds when the number of
sampled points is large enough and the filter functions are continuous in the spectral domain. We verify our theoretical
results on both synthetic and real-world datasets. The impact of this paper is to show a better understanding of
GNN generalization capabilities from a spectral perspective relying on a continuous model. Our work also motivates
the practical design of large-scale GNNs. Specifically, in order to achieve a better generalization, it is essential to
restrict the discriminability of GNNs by putting assumptions on the spectral continuity of the filter functions in the
GNNs. For future work, we will study the generalization of GNNs in more settings include transductive learning
and out-of-distribution generalization. We are also willing to look into more application scenarios to fully utilize our
theory on more complex and general manifold models. We will consider a better explanation and exploration deep
into the overfitting regime of node classification, which is of great interest where the figures show that our proposed
generalization upper bounds fit the rate.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Eddie Aamari and Alexander Knop. Statistical query complexity of manifold estimation. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pp. 116–122, 2021.

Wolfgang Arendt, Robin Nittka, Wolfgang Peter, and Frank Steiner. Weyl’s law: Spectral properties of the laplacian in
mathematics and physics. Mathematical analysis of evolution, information, and complexity, pp. 1–71, 2009.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based manifold methods. Journal of
Computer and System Sciences, 74(8):1289–1308, 2008.

Monica Billio, Mila Getmansky, Andrew W Lo, and Loriana Pelizzon. Econometric measures of connectedness and
systemic risk in the finance and insurance sectors. Journal of financial economics, 104(3):535–559, 2012.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203, 2013.

Jeff Calder and Nicolas Garcia Trillos. Improved spectral convergence rates for graph laplacians on ε-graphs and k-nn
graphs. Applied and Computational Harmonic Analysis, 60:123–175, 2022.

Juan Cervino, Luana Ruiz, and Alejandro Ribeiro. Learning by transference: Training graph neural networks on
growing graphs. IEEE Transactions on Signal Processing, 71:233–247, 2023.

Rudrasis Chakraborty, Jose Bouza, Jonathan H Manton, and Baba C Vemuri. Manifoldnet: A deep neural network for
manifold-valued data with applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(2):
799–810, 2020.

Heeyoul Choi and Seungjin Choi. Kernel isomap. Electronics letters, 40(25):1612–1613, 2004.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training graph convolutional
networks. Advances in Neural Information Processing Systems, 34:9936–9949, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast
localized spectral filtering. Advances in neural information processing systems, 29, 2016.

Morris H. Degroot. Reaching a consensus. Journal of the American Statistical Association, 69(345):118–121, 1974.
doi: 10.1080/01621459.1974.10480137. URL https://www.tandfonline.com/doi/abs/10.1080/
01621459.1974.10480137.

David B Dunson, Hau-Tieng Wu, and Nan Wu. Spectral convergence of graph laplacian and heat kernel reconstruction
in l∞ from random samples. Applied and Computational Harmonic Analysis, 55:282–336, 2021.

Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can (sometimes) explain
generalisation in graph neural networks. Advances in Neural Information Processing Systems, 34:27043–27056,
2021.

LawrenceCraig Evans. Measure theory and fine properties of functions. Routledge, 2018.

Wenqi Fan, Yao Ma, Qing Li, Jianping Wang, Guoyong Cai, Jiliang Tang, and Dawei Yin. A graph neural network
framework for social recommendations. IEEE Transactions on Knowledge and Data Engineering, 34(5):2033–2047,
2020.

Amir Massoud Farahmand, Csaba Szepesvári, and Jean-Yves Audibert. Manifold-adaptive dimension estimation. In
Proceedings of the 24th international conference on Machine learning, pp. 265–272, 2007.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. Journal of the American
Mathematical Society, 29(4):983–1049, 2016.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale meshgraphnets. In
ICML 2022 2nd AI for Science Workshop, 2022.

11

https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10480137
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10480137

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nicolás García Trillos, Moritz Gerlach, Matthias Hein, and Dejan Slepčev. Error estimates for spectral convergence of
the graph laplacian on random geometric graphs toward the laplace–beltrami operator. Foundations of Computational
Mathematics, 20(4):827–887, 2020.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of graph neural networks.
In International Conference on Machine Learning, pp. 3419–3430. PMLR, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR, 2017.

Alexander Grigor’yan. Heat kernels on weighted manifolds and applications. Cont. Math, 398(2006):93–191, 2006.

Gal Gross and Eckhard Meinrenken. Manifolds, vector fields, and differential forms: an introduction to differential
geometry. Springer Nature, 2023.

Jiashu He, Charilaos I Kanatsoulis, and Alejandro Ribeiro. Network alignment with transferable graph autoencoders.
arXiv preprint arXiv:2310.03272, 2023.

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural networks: Improved
pac-bayesian bounds on graph diffusion. In International Conference on Artificial Intelligence and Statistics, pp.
6314–6341. PMLR, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasu-
vunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589, 2021.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning. arXiv preprint
arXiv:1710.05468, 1(8), 2017.

Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. Convergence and stability of graph convolutional networks on large
random graphs. Advances in Neural Information Processing Systems, 33:21512–21523, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In International
Conference on Learning Representations, 2016.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran Alet, Suman
Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful medium-range global weather
forecasting. Science, 382(6677):1416–1421, 2023.

Thien Le and Stefanie Jegelka. Limits, approximation and size transferability for gnns on sparse graphs via graphops.
Advances in Neural Information Processing Systems, 36, 2024.

Jaekoo Lee, Hyunjae Kim, Jongsun Lee, and Sungroh Yoon. Transfer learning for deep learning on graph-structured
data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Ron Levie. A graphon-signal analysis of graph neural networks. Advances in Neural Information Processing Systems,
36, 2024.

Ron Levie, Wei Huang, Lorenzo Bucci, Michael Bronstein, and Gitta Kutyniok. Transferability of spectral graph
convolutional neural networks. Journal of Machine Learning Research, 22(272):1–59, 2021.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds for graph neural
networks. In International Conference on Learning Representations, 2020.

László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc., 2012.

Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural networks. Advances in
Neural Information Processing Systems, 34:1048–1061, 2021.

Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message passing neural
networks on large random graphs. Advances in neural information processing systems, 35:4805–4817, 2022.

Sohir Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: an extended graphon approach.
Applied and Computational Harmonic Analysis, 63:48–83, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sohir Maskey, Gitta Kutyniok, and Ron Levie. Generalization bounds for message passing networks on mixture of
graphons. arXiv preprint arXiv:2404.03473, 2024.

Russell Merris. A survey of graph laplacians. Linear and Multilinear Algebra, 39(1-2):19–31, 1995.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and
phrases and their compositionality. Advances in neural information processing systems, 26, 2013.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 5115–5124, 2017.

Hariharan Narayanan and Partha Niyogi. On the sample complexity of learning smooth cuts on a manifold. In COLT,
2009.

Alejandro Parada-Mayorga, Zhiyang Wang, and Alejandro Ribeiro. Graphon pooling for reducing dimensionality of
signals and convolutional operators on graphs. IEEE Transactions on Signal Processing, 2023.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A critical look at the
evaluation of gnns under heterophily: Are we really making progress? arXiv preprint arXiv:2302.11640, 2023.

Raksha Ramakrishna, Hoi-To Wai, and Anna Scaglione. A user guide to low-pass graph signal processing and its
applications: Tools and applications. IEEE Signal Processing Magazine, 37(6):74–85, 2020.

Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the transferability of graph neural
networks. Advances in Neural Information Processing Systems, 33:1702–1712, 2020.

Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. Transferability properties of graph neural networks. IEEE
Transactions on Signal Processing, 2023.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension of graph and
recursive neural networks. Neural Networks, 108:248–259, 2018.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph neural
network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point cloud. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1711–1719, 2020.

Yiqian Shi and Bin Xu. Gradient estimate of an eigenfunction on a compact riemannian manifold without boundary.
Annals of Global Analysis and Geometry, 38:21–26, 2010.

Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M Kim. Fast and flexible protein
design using deep graph neural networks. Cell systems, 11(4):402–411, 2020.

Ameet Talwalkar, Sanjiv Kumar, and Henry Rowley. Large-scale manifold learning. In 2008 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8. IEEE, 2008.

Huayi Tang and Yong Liu. Towards understanding generalization of graph neural networks. In International Conference
on Machine Learning, pp. 33674–33719. PMLR, 2023.

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1539–1548, 2019.

Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering. The Annals of Statistics,
pp. 555–586, 2008.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia. Microsoft
academic graph: When experts are not enough. Quantitative Science Studies, 1(1):396–413, 2020.

Zhiyang Wang, Mark Eisen, and Alejandro Ribeiro. Learning decentralized wireless resource allocations with graph
neural networks. IEEE Transactions on Signal Processing, 70:1850–1863, 2022a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhiyang Wang, Luana Ruiz, and Alejandro Ribeiro. Convolutional neural networks on manifolds: From graphs and
back. In 2022 56th Asilomar Conference on Signals, Systems, and Computers, pp. 356–360. IEEE, 2022b.

Zhiyang Wang, Luana Ruiz, and Alejandro Ribeiro. Geometric graph filters and neural networks: Limit properties and
discriminability trade-offs. IEEE Transactions on Signal Processing, 2024a.

Zhiyang Wang, Luana Ruiz, and Alejandro Ribeiro. Stability to deformations of manifold filters and manifold neural
networks. IEEE Transactions on Signal Processing, pp. 1–15, 2024b. doi: 10.1109/TSP.2024.3378379.

Yiming Wu and Kap Luk Chan. An extended isomap algorithm for learning multi-class manifold. In Proceedings
of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), volume 6, pp.
3429–3433. IEEE, 2004.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets:
A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1912–1920, 2015.

Yuchen Xie, Jeffrey Ho, and Baba C Vemuri. Multiple atlas construction from a heterogeneous brain mr image
collection. IEEE transactions on medical imaging, 32(3):628–635, 2013.

Bo Yang, Ming Xiang, and Yupei Zhang. Multi-manifold discriminant isomap for visualization and classification.
Pattern Recognition, 55:215–230, 2016a.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph embeddings.
In International conference on machine learning, pp. 40–48. PMLR, 2016b.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to size generalization
in graph neural networks. In International Conference on Machine Learning, pp. 11975–11986. PMLR, 2021.

Xianchen Zhou and Hongxia Wang. The generalization error of graph convolutional networks may enlarge with more
layers. Neurocomputing, 424:97–106, 2021.

Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of graph neural networks
with ego-graph information maximization. Advances in Neural Information Processing Systems, 34:1766–1779,
2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Related works 2

2.1 Generalization bounds of GNNs . 2

2.2 Neural networks on manifolds . 3

3 Preliminaries 3

3.1 Graph neural networks . 3

3.2 Manifold neural networks . 4

4 Generalization analysis of GNNs based on manifolds 4

4.1 Manifold label prediction via node label prediction . 5

4.2 Manifold classification via graph classification . 6

5 Experiments 8

6 Conclusion 10

A Induced manifold signals 17

B Convergence of GNN to MNN 17

C Local Lipschitz continuity of MNNs 21

D Proof of Theorem 1 23

E Proof of Theorem 2 25

F Experiment details and further experiments 26

F.1 ModelNet10 and ModelNet40 graph classification tasks . 26

F.2 Node classification training details and datasets . 26

F.3 Spectral Continuity Constant Regularizer . 27

F.3.1 Arxiv dataset . 28

F.3.2 Cora dataset . 28

F.3.3 CiteSeer dataset . 28

F.3.4 PubMed dataset . 28

F.3.5 Coauthors CS dataset . 28

F.3.6 Coauthors Physics dataset . 28

F.3.7 Heterophilous Amazon ratings dataset . 31

F.3.8 Heterophilous Roman Empire dataset . 32

G Further references 33

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

H Low Pass Filter Assumption 35

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A INDUCED MANIFOLD SIGNALS

The graph signal attached to this constructed graph G can be seen as the discretization of the continuous function
over the manifold. Suppose f ∈ L2(M), the graph signal xN is composed of discrete data values of the function f
evaluated at XN , i.e. [xN]i = f(xi) for i = 1, 2 · · · , N . With a sampling operator PN : L2(M) → L2(XN), the
discretization can be written as

xN = PNf. (19)
Let µN be the empirical measure of the random sample as

µN =
1

N

N∑
i=1

δxi
. (20)

Let {Vi}Ni=1 be the decomposition (García Trillos et al., 2020) of M with respect to XN with Vi ⊂ Br(xi), where
Br(xi) denoted the closed metric ball of radius r centered at xi ∈ M. The decomposition can be achieved by the
optimal transportation map T : M → XN , which is defined by the ∞-Optimal Transport distance between µ and µN .

d∞(µ, µN) := min
T :T#µ=µN

esssupx∈Md(x, T (x)), (21)

where T#µ = µN indicates that µ(T−1(V)) = µN (V) for every Vi of M. This transportation map T induces the
partition V1, V2, · · ·VN of M, where Vi := T−1({xi}) with µ(Vi) =

1
N for all i = 1, · · ·N . The radius of Vi can be

bounded as r ≤ A(logN/N)1/d with A related to the geometry of M (García Trillos et al., 2020, Theorem 2).

The manifold function induced by the graph signal xN over the sampled graph G is defined by

(INxN)(x) =

N∑
i=1

[x]i1x∈Vi
, for all x ∈ M (22)

where we denote IN : L2(XN) → L2(M) as the inducing operator.

B CONVERGENCE OF GNN TO MNN

The convergence of GNN on sampled graphs to MNN provides the support for the generalization analysis. We first
introduce the inner product over the manifold. The inner product of signals f, g ∈ L2(M) is defined as

⟨f, g⟩M =

∫
M

f(x)g(x)dµ(x), (23)

where dµ(x) is the volume element with respect to the measure µ over M. Similarly, the norm of the manifold signal f
is

∥f∥2M = ⟨f, f⟩M. (24)
Proposition 1. Let M ⊂ RM be an embedded manifold with weighted Laplace operator Lρ and a bandlimited manifold
signal f . Graph GN is constructed based on a set of N i.i.d. randomly sampled points XN = {x1, x2, · · · , xN}
according to measure µ over M. A graph signal x is the sampled manifold function values at XN . The graph Laplacian
LN is calculated based on equation 7 or equation 8 with ϵ as the graph parameter. Let Φ(H,Lρ, ·) be a MNN on
M equation 6 with L layers and F features in each layer. Let ΦG(H,LN , ·) be the GNN with the same architecture
applied to the graph GN . Then, with the filters as low-pass and nonlinearities as normalized Lipschitz continuous, it
holds in probability at least 1− δ that

1

N

N∑
i=1

∥ΦG(H,LN ,x)−PNΦ(H,Lρ, INx)∥2 ≤ LFL−1

(
C1ϵ+ C2

√
log(1/δ)

N

)
(25)

where C1, C2 are constants defined in the following proof.
Proposition 2. (Wang et al., 2024a, Proposition 2, Proposition 4) Let M ⊂ RM be equipped with Laplace operator
Lρ, whose eigendecomposition is given by {λi,ϕi}∞i=1. Let LN be the discrete graph Laplacian of graph weights
defined as equation 7 (or equation 8), with spectrum {λi,N ,ϕi,N}Ni=1. Fix K ∈ N+ and assume that ϵ = ϵ(N) ≥
(log(C/δ)/N)

1/(d+4) (or ϵ = ϵ(N) ≥ (log(CN/δ)/N)
1/(d+4)). Then, with probability at least 1− δ, we have

|λi − λi,N | ≤ CM,1λiϵ, ∥aiϕi,N − ϕi∥ ≤ CM,2
λi

θi
ϵ, (26)

with ai ∈ {−1, 1} for all i < K and θ the eigengap of L, i.e., θi = min{λi − λi−1, λi+1 − λi}. The constants CM,1,
CM,2 depend on d and the volume, the injectivity radius and sectional curvature of M.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. Because {x1, x2, · · · , xN} is a set of randomly sampled points from M, based on Theorem 19 in Von Luxburg
et al. (2008) we can claim that

|⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| = O

(√
log(1/δ)

N

)
. (27)

This also indicates that

∣∣∥PNf∥2 − ∥f∥2M
∣∣ = O

(√
log(1/δ)

N

)
, (28)

which indicates ∥PNf∥ = ∥f∥M+O((log(1/δ)/N)1/4). We suppose that the input manifold signal is λM -bandlimited
with M spectral components. We first write out the filter representation as

∥h(LN)PNf −PNh(Lρ)f∥ =

∥∥∥∥∥
N∑
i=1

ĥ(λi,N)⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥ (29)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λi,N)⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi +

N∑
i=M+1

ĥ(λi,N)⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ (30)

≤

∥∥∥∥∥
M∑
i=1

ĥ(λi,N)⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥+
∥∥∥∥∥

N∑
i=M+1

ĥ(λi,N)⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ (31)

The first part of equation 31 can be decomposed with the triangle inequality as∥∥∥∥∥
M∑
i=1

ĥ(λi,N)⟨PNf,ϕi,N ⟩ϕi,N −
M∑
i=1

ĥ(λi)⟨f,ϕi⟩MPNϕi

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

(
ĥ(λi,N)− ĥ(λi)

)
⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥+
∥∥∥∥∥

M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥ . (32)

In equation equation 32, the first part relies on the difference of eigenvalues and the second part depends on the
eigenvector difference. The first term in equation 32 is bounded with Cauchy-Schwartz inequality as∥∥∥∥∥

M∑
i=1

(ĥ(λi,n)− ĥ(λi))⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ ≤
M∑
i=1

∣∣∣ĥ(λi,N)− ĥ(λi)
∣∣∣ |⟨PNf,ϕi,N ⟩| (33)

≤ ∥PNf∥
M∑
i=1

|ĥ′(λi)||λi,N − λi| (34)

≤ ∥PNf∥
M∑
i=1

CM,1CLϵλ
−d
i (35)

≤ ∥PNf∥CLCM,1ϵ

M∑
i=1

i−2 (36)

≤

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,1ϵ

π2

6
:= A1(N) (37)

In equation 35, it depends on the low-pass filter assumption in Definition 4. In equation 36, we implement Weyl’s law
(Arendt et al., 2009) which indicates that eigenvalues of Laplace operator scales with the order λi ∼ i2/d. The last
inequality comes from the fact that

∑∞
i=1 i

−2 = π2

6 . The second term in equation 32 can be bounded with the triangle

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

inequality as

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨PNf,ϕi,N ⟩PNϕi)

∥∥∥∥∥
+

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥ (38)

The first term in equation 38 can be bounded with inserting the eigenfunction convergence result in Proposition 2 as

∥∥∥∥∥
M∑
i=1

ĥ(λi) (⟨PNf,ϕi,N ⟩ϕi,N − ⟨PNf,ϕi,N ⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi)
∣∣∣ ∥PNf∥∥ϕi,N −PNϕi∥ (39)

≤
M∑
i=1

(λ−d
i)

CM,2ϵ

θi

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(40)

≤ CM,2ϵ
π2

6
max

i=1,··· ,M
θ−1
i

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(41)

:= A2(M,N). (42)

Considering the low-pass filter assumption, the second term in equation 38 can be written as

∥∥∥∥∥
M∑
i=1

ĥ(λi,N)(⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

∣∣∣ĥ(λi,N)
∣∣∣ |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| ∥PNϕi∥ (43)

≤
M∑
i=1

(λ−d
i,N) |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
(44)

≤
M∑
i=1

(1 + CM,1ϵ)
−d(λ−d

i) |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
(45)

≤ π2

6
|⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M|

(
1 +

(
log(1/δ)

N

) 1
4

)
:= A3(N) (46)

The term |⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| can be decomposed by inserting a term ⟨PNf,PNϕi⟩ as

|⟨PNf,ϕi,N ⟩ − ⟨f,ϕi⟩M| ≤ |⟨PNf,ϕi,N ⟩ − ⟨PNf,PNϕi⟩+ ⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (47)
≤ |⟨PNf,ϕi,N ⟩ − ⟨PNf,PNϕi⟩|+ |⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (48)
≤ ∥PNf∥∥ϕi,N −PNϕi∥+ |⟨PNf,PNϕi⟩ − ⟨f,ϕi⟩M| (49)

≤

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,2λiϵ

θi
+

√
log(1/δ)

N
(50)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then equation equation 45 can be bounded as∥∥∥∥∥
M∑
i=1

ĥ(λi,N)(⟨PNf,ϕi,N ⟩PNϕi − ⟨f,ϕi⟩MPNϕi)

∥∥∥∥∥
≤

M∑
i=1

(1 + CM,1ϵ)
−d(λ−d

i)

((
∥f∥M +

(
log(1/δ)

N

) 1
4

)
CM,2λiϵ

θi
+

√
log(1/δ)

N

)(
1 +

(
log(1/δ)

N

) 1
4

)
(51)

≤ π2

6
max

i=1,··· ,M

CM,2ϵ

θi

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
+

π2

6

√
log(1/δ)

N
(52)

The second term in equation 31 can be bounded with the eigenvalue difference bound in Proposition 2 as∥∥∥∥∥
N∑

i=M+1

ĥ(λi,N)⟨PNf,ϕi,N ⟩ϕi,N

∥∥∥∥∥ ≤
N∑

i=M+1

(λ−d
i,N)

(
∥f∥M +

(
log(1/δ)

N

) 1
4

)
(53)

≤
∞∑

i=M+1

(λ−d
i,N)∥f∥M (54)

≤ (1 + CM,1ϵ)
−d

∞∑
i=M+1

(λ−d
i)∥f∥M (55)

≤ M−1∥f∥M := A4(M). (56)

We note that the bound is made up by terms A1(N) + A2(M,N) + A3(N) + A4(M), related to the bandwidth of
manifold signal M and the number of sampled points N . This makes the bound scale with the order

∥h(LN)PNf −PNh(Lρ)f∥ ≤ C ′
1ϵ+ C ′

2ϵθ
−1
M + C ′

3

√
log(1/δ)

N
+ C ′

4M
−1, (57)

with C ′
1 = CLCM,1

π2

6 ∥f∥M, C ′
2 = CM,2

π2

6 , C ′
3 = π2

6 and C ′
4 = ∥f∥M. As N goes to infinity, for every δ > 0,

there exists some M0, such that for all M > M0 it holds that A4(M) ≤ δ/2. There also exists n0, such that for all
N > n0, it holds that A1(N) + A2(M0, N) + A3(N) ≤ δ/2. We can conclude that the summations converge as N
goes to infinity. We see M large enough to have M−1 ≤ δ′, which makes the eigengap θM also bounded by some
constant. We combine the first two terms as

∥h(LN)PNf −PNh(Lρ)f∥ ≤ (C1CL + C2)ϵ+
π2

6

√
log(1/δ)

N
, (58)

with C1 = CM,1
π2

6 ∥f∥M and C2 = CM,2
π2

6 θ−1
δ′−1 . To bound the output difference of MNNs, we need to write in the

form of features of the final layer

∥ΦG(H,LN ,PNf)−PNΦ(H,Lρ, f))∥ =

∥∥∥∥∥
F∑

q=1

xq
n,L −

F∑
q=1

PNfq
L

∥∥∥∥∥ ≤
F∑

q=1

∥∥∥xq
n,L −PNfq

L

∥∥∥ . (59)

By inserting the definitions, we have∥∥∥xp
n,l −PNfp

l

∥∥∥ =

∥∥∥∥∥σ
(

F∑
q=1

hpq
l (LN)xq

n,l−1

)
−PNσ

(
F∑

q=1

hpq
l (Lρ)f

q
l−1

)∥∥∥∥∥ (60)

with xn,0 = PNf as the input of the first layer. With a normalized point-wise Lipschitz nonlinearity, we have

∥xp
n,l −PNfp

l ∥ ≤

∥∥∥∥∥
F∑

q=1

hpq
l (LN)xq

n,l−1 −PN

F∑
q=1

hpq
l (Lρ)f

q
l−1

∥∥∥∥∥ (61)

≤
F∑

q=1

∥∥∥hpq
l (LN)xq

n,l−1 −PNhpq
l (Lρ)f

q
l−1

∥∥∥ (62)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The difference can be further decomposed as

∥hpq
l (LN)xq

n,l−1 −PNhpq
l (Lρ)f

q
l−1∥

≤ ∥hpq
l (LN)xq

n,l−1 − hpq
l (LN)PNfq

l−1 + hpq
l (LN)PNfq

l−1 −PNhpq
l (Lρ)f

q
l−1∥ (63)

≤
∥∥∥hpq

l (LN)xq
n,l−1 − hpq

l (LN)PNfq
l−1

∥∥∥+ ∥∥hpq
l (LN)PNfq

l−1 −PNhpq
l (Lρ)f

q
l−1

∥∥ (64)

The second term can be bounded with equation 57 and we denote the bound as ∆N for simplicity. The first term can be
decomposed by Cauchy-Schwartz inequality and non-amplifying of the filter functions as∥∥∥xp

n,l −PNfp
l

∥∥∥ ≤
F∑

q=1

∆N∥xq
n,l−1∥+

F∑
q=1

∥xq
l−1 −PNfq

l−1∥. (65)

To solve this recursion, we need to compute the bound for ∥xp
l ∥. By normalized Lipschitz continuity of σ and the fact

that σ(0) = 0, we can get

∥xp
l ∥ ≤

∥∥∥∥∥
F∑

q=1

hpq
l (LN)xq

l−1

∥∥∥∥∥ ≤
F∑

q=1

∥hpq
l (LN)∥ ∥xq

l−1∥ ≤
F∑

q=1

∥xq
l−1∥ ≤ F l−1∥x∥. (66)

Insert this conclusion back to solve the recursion, we can get∥∥∥xp
n,l −PNfp

l

∥∥∥ ≤ lF l−1∆N∥x∥. (67)

Replace l with L we can obtain

∥ΦG(H,LN ,PNf)−PNΦ(H,Lρ, f))∥ ≤ LFL−1∆N , (68)

when the input graph signal is normalized. By replacing f = INx, we can conclude the proof.

C LOCAL LIPSCHITZ CONTINUITY OF MNNS

We propose that the outputs of MNN defined in equation 6 are locally Lipschitz continuous within a certain area, which
is stated explicitly as follows.
Proposition 3. (Local Lipschitz continuity of MNNs) Let MNN be L layers with F features in each layer, suppose the
manifold filters are nonamplifying with |ĥ(λ)| ≤ 1 and the nonlinearities normalized Lipschitz continuous, then there
exists a constant C such that

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FLC ′dist(x− y), for all x, y ∈ Br(M), (69)

where Br(M) is a ball with radius r over M.

Proof. The output of MNN can be written explicitly as

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| =

∣∣∣∣∣σ
(

F∑
q=1

hq
L(Lρ)f

q
L−1(x)

)
− σ

(
F∑

q=1

hq
L(Lρ)f

q
L−1(y)

)∣∣∣∣∣ (70)

≤

∣∣∣∣∣
F∑

q=1

hq
L(Lρ)f

q
L−1(x)−

F∑
q=1

hq
L(Lρ)f

q
L−1(y)

∣∣∣∣∣ ≤ F max
q=1,··· ,F

∣∣hq
L(Lρ)f

q
L−1(x)− hq

L(Lρ)f
q
L−1(y)

∣∣ . (71)

We have fq
L−1(x) = σ

(∑F
p=1 h

p
L−1f

p
L−2(x)

)
. The process can be repeated recursively, and finally, we can have

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FL|hL(Lρ) · · ·h1(Lρ)f(x)− hL(Lρ) · · ·h1(Lρ)f(y)|. (72)

With f as a λ-bandlimited manifold signal, we suppose g = hL(Lρ) · · ·h1(Lρ)f . As ⟨f,ϕi⟩ = 0 for all i > M , g is
also bandlimited and possesses M spectral components. The gradient can be bounded according to (Shi & Xu, 2010)
combined with the non-amplifying property of the filter function as

∥∇g∥∞ ≤ C
∑
λi≤λ

∣∣∣ĥ(λi)
∣∣∣L λ

d+1
2

i ∥f∥M ≤ C
∑
λi≤λ

λ
d+1
2

i ∥f∥M (73)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

From Theorem 4.5 in (Evans, 2018), g is locally Lipschitz continuous as

|g(x)− g(y)| ≤ C ′dist(x− y), with x, y ∈ Br(M), (74)

where Br(M) is a closed ball with radius r with C ′ depending on the geometry of M.

Combining the above, we have the continuity of the output of MNN as

|Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(y)| ≤ FLC ′dist(x− y), with x, y ∈ Br(M), (75)

which concludes the proof.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D PROOF OF THEOREM 1

Proof. To analyze the difference between the empirical risk and statistical risk, we introduce an intermediate term
which is the induced version of the sampled MNN output. We define IN as the inducing operator based on the Voronoi
decomposition {Vi}Ni=1 defined in Section A. This intermediate term is written explicitly as

Φ(H,Lρ, f)(x) = INPNΦ(H,Lρ, f)(x) =

N∑
i=1

Φ(H,Lρ, f)(xi)1x∈Vi
, for all x ∈ M, (76)

where xi ∈ XN are sampled points from the manifold.

Suppose H ∈ argminH∈H RM(H), we have

GA = sup
H∈H

|RG(H)−RM(H)| (77)

The difference between RG(H) and RM(H) can be decomposed as

|RG(H)−RM(H)|

=

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (78)

=

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

+

∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (79)

≤

∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

∣∣∣∣∣
+

∣∣∣∣∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)
∣∣∣∣ (80)

We analyze the two terms in equation 80 separately, with the first term bounded based on the convergence of GNN to
MNN and the second term bounded with the smoothness of manifold functions.

The first term in equation 80 can be written as∣∣∣∣∣ 1N
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)

∣∣∣∣∣ (81)

=
1

N

∣∣∣∣∣
N∑
i=1

ℓ([ΦG(H,LN ,x)]i, [y]i)−
N∑
i=1

ℓ(Φ(H,Lρ, f)(xi), g(xi))

∣∣∣∣∣ (82)

≤ 1

N

N∑
i=1

|ℓ([ΦG(H,LN ,x)]i, [y]i)− ℓ(Φ(H,Lρ, f)(xi), g(xi))| (83)

≤ 1

N

N∑
i=1

∣∣∣[ΦG(H,LN ,x)]i −Φ(H,Lρ, f)(xi)
∣∣∣ (84)

≤ 1

N
∥ΦG(H,LN ,x)−PNΦ(H,Lρ, INx)∥1 (85)

≤ 1√
N

LFL−1

(
(C1CL + C2)ϵ+

π2

6

√
log(1/δ)

N

)
(86)

From equation 81 to equation 82, we use the definition of induced manifold signal defined in equation 76. We utilize
the Lipschitz continuity assumption on loss function from equation 83 to equation 84. From equation 84 to equation 85,
it depends on the fact that x is a single-entry vector and that [y]i is the value sampled from target manifold function g

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

evaluated on xi. Finally the bound depends on the convergence of GNN on the sampled graph to the MNN as stated in
Proposition 1.

The second term is decomposed as∣∣∣∣∫
M

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

∫
M

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)
∣∣∣∣ (87)

≤

∣∣∣∣∣
N∑
i=1

∫
Vi

ℓ
(
Φ(H,Lρ, f)(x), g(x)

)
dµ(x)−

N∑
i=1

∫
Vi

ℓ (Φ(H,Lρ, f)(x), g(x)) dµ(x)

∣∣∣∣∣ (88)

≤
N∑
i=1

∫
Vi

∣∣ℓ (Φ(H,Lρ, f)(x), g(x)
)
− ℓ (Φ(H,Lρ, f)(x), g(x))

∣∣ dµ(x) (89)

≤
N∑
i=1

∫
Vi

∣∣Φ(H,Lρ, f)(x)−Φ(H,Lρ, f)(x)
∣∣ dµ(x) (90)

≤
N∑
i=1

∫
Vi

|Φ(H,Lρ, f)(xi)−Φ(H,Lρ, f)(x)| dµ(x) (91)

From equation 87 to equation 88, it relies on the decomposition of the MNN output over {Vi}Ni=1. From equation 89 to
equation 90, we use the Lipschitz continuity of loss function. From equation 90 to equation 91, we use the definition of
Φ(H,Lρ, f). Proposition 3 indicates that the MNN outputs are Lipschitz continuous within a certain range, which
leads to

N∑
i=1

∫
Vi

|Φ(H,Lρ, f)(xi)−Φ(H,Lρ, f)(x)| dµ(x)

≤
N∑
i=1

∫
Vi

FLC3

(
logN

N

) 1
d

dµ(x) (92)

= FLC3

(
logN

N

) 1
d

N∑
i=1

∫
Vi

dµ(x) (93)

≤ FLC3

(
logN

N

) 1
d

. (94)

Combining equation 86 and equation 92, we can conclude the proof.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E PROOF OF THEOREM 2

Proof. We can write the difference as

|RG(H)−RM(H)|

≤
K∑

k=1

∣∣∣∣∣ℓ
(

1

N

N∑
i=1

[ΦG(H,LN,k,xk)]i, yk

)
− ℓ

(∫
Mk

Φ(H,Lρ,k, fk)dµk(x), yk

)∣∣∣∣∣ (95)

Based on the property of absolute value inequality and the Lipschitz continuity assumption of loss function (Assumption
2), we have ∣∣∣∣∣ℓ

(
1

N

N∑
i=1

[ΦG(H,LN,k,xk)]i, yk

)
− ℓ

(∫
Mk

Φ(H,Lρ,k, fk)dµk(x), yk

)∣∣∣∣∣
≤

∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (96)

We insert an intermediate term Φ(H,Lρ,k, fk)(xi) as the value evaluated on the sampled point xi, which leads to∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (97)

≤

∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
1

N

N∑
i=1

Φ(H,Lρ,k, fk)(xi)

∣∣∣∣∣+∣∣∣∣∣ 1N
N∑
i=1

Φ(H,Lρ,k, fk)(xi)−
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (98)

The first term in equation 98 can be bounded similarly as equation 85, which is explicitly written as∣∣∣∣∣ 1N
N∑
i=1

[ΦG(H,LN,k,xk)]i −
1

N

N∑
i=1

Φ(H,Lρ,k, fk)(xi)

∣∣∣∣∣ (99)

≤ 1

N
∥ΦG(H,LN ,xk)−PNΦ(H,Lρ, fk)∥1 (100)

≤ 1√
N

∥ΦG(H,LN ,xk)−PNΦ(H,Lρ, fk)∥2 (101)

≤ 1√
N

(
(C1CL + C2)ϵ+

π2

6

√
log(1/δ)

N

)
(102)

The second term is ∣∣∣∣∣ 1N
N∑
i=1

Φ(H,Lρ,k, fk)(xi)−
∫
Mk

Φ(H,Lρ,k, fk)dµk(x)

∣∣∣∣∣ (103)

=

∣∣∣∣∣
N∑
i=1

∫
Vi

Φ(H,Lρ,k, fk)(xi)dµk(x)−
N∑
i=1

∫
Vi

Φ(H,Lρ,k, fk)(x)dµk(x)

∣∣∣∣∣ (104)

≤
N∑
i=1

∫
Vi

|Φ(H,Lρ,k, fk)(xi)−Φ(H,Lρ,k, fk)(x)| dµk(x) (105)

≤ FLC3

(
logN

N

) 1
d

(106)

This depends on the Lipschitz continuity of the output manifold function in Proposition 3.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F EXPERIMENT DETAILS AND FURTHER EXPERIMENTS

All experiments were done using a NVIDIA GeForce RTX 3090, and each set of experiments took at most 10
hours to complete. In total, we run 10 datasets, which amounts for around 100 hours of GPU use. All datasets
used in this paper are public, and free to use. They can be downloaded using the pytorch package (https:
//pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html), the ogb pack-
age (https://ogb.stanford.edu/docs/nodeprop/) and the Princeton ModelNet project (https://
modelnet.cs.princeton.edu/). In total, the datasets occupy around 5 gb. However, they do not need to
be all stored at the same time, as the experiments that we run can be done in series.

F.1 MODELNET10 AND MODELNET40 GRAPH CLASSIFICATION TASKS

ModelNet10 dataset (Wu et al., 2015) includes 3,991 meshed CAD models from 10 categories for training and 908
models for testing as Figure 9 shows. ModelNet40 dataset includes 38,400 training and 9,600 testing models as Figure
10 shows. In each model, N points are uniformly randomly selected to construct graphs to approximate the underlying
model, such as chairs, tables.

Figure 9: Point cloud models in ModelNet10 with N = 300 sampled points in each model, corresponding to bathtub,
chair, desk, table, toiler, and bed.

Figure 10: Point cloud models from ModelNet40 with N = 300 sampled points in each model, corresponding to
airplane, person, car, guitar, plant, and bottle.

The weight function of the constructed graph is determined as equation 7 with ϵ = 0.1. We calculate the Laplacian
matrix for each graph as the input graph shift operator. In this experiment, we implement GNNs with different numbers
of layers and hidden units with K = 5 filters in each layer. All the GNN architectures are trained by minimizing the
cross-entropy loss. We implement an ADAM optimizer with the learning rate set as 0.005 along with the forgetting
factors 0.9 and 0.999. We carry out the training for 40 epochs with the size of batches set as 10. We run 5 random
dataset partitions and show the average performances and the standard deviation across these partitions.

F.2 NODE CLASSIFICATION TRAINING DETAILS AND DATASETS

In this section, we present the results for node classification. In this paragraph we present the common details for all
datasets, we will next delve into each specific detail inside the dataset subsection that follows.

In all datasets, we used the graph convolutional layer GCN, and trained for 1000 epochs. For the optimizer, we used
AdamW, with using a learning rate of 0.01, and 0 weight decay. We trained using the graph convolutional layer, with a
varying number of layers and hidden units. For dropout, we used 0.5. We trained using the cross-entropy loss. In all
cases, we trained 2 and 3 layered GNNs.

26

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://ogb.stanford.edu/docs/nodeprop/
https://modelnet.cs.princeton.edu/
https://modelnet.cs.princeton.edu/

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

10 20 30 40 50 60 70 80
Number of Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
ffe

re
nc

es
 o

f A
ve

ra
ge

 G
ra

ph
 O

ut
pu

ts

32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers
256 hidden units, 3 layers

(a) Differences of the outputs of 3-layer GNNs.

10 20 30 40 50 60 70 80
Number of Nodes

0.2

0.4

0.6

0.8

1.0

Di
ffe

re
nc

es
 o

f A
ve

ra
ge

 G
ra

ph
 O

ut
pu

ts

32 hidden units, 4 layers
64 hidden units, 4 layers
128 hidden units, 4 layers
256 hidden units, 4 layers

(b) Differences of the outputs of 4-layer GNNs.

Figure 11: Graph outputs differences of GNNs with different architectures on ModelNet40 dataset.

Name Nodes Edges Features Number
of Classes Reference

Arxiv 169, 343 1, 166, 243 128 40 Wang et al. (2020); Mikolov et al. (2013)
Cora 2, 708 10, 556 1, 433 7 Yang et al. (2016b)

CiteSeer 3, 327 9, 104 3, 703 6 Yang et al. (2016b)
PubMed 19, 717 88, 648 500 3 Yang et al. (2016b)

Coauthor Physics 18, 333 163, 788 6, 805 15 Shchur et al. (2018)
Coauthor CS 34, 493 495, 924 8, 415 5 Shchur et al. (2018)

Amazon-ratings 24, 492 93, 050 300 5 Platonov et al. (2023)
Roman-empire 22, 662 32, 927 300 18 Platonov et al. (2023)

Table 2: Details of the datasets considered in the experiments.

To compute the linear approximation in the plots, we used the mean squared error estimator of the form

y = s ∗ log(n) + p. (107)

Where s is the slope, p is the point, and n is the vector with the nodes in the training set for each experiment. Note
that we repeated each experiment for 10 independent runs. In all experiments, we compute the value of s and p that
minimize the mean square error over the mean of the experiment runs, and we compute the Pearson correlation index
over those values.

Our experiment shows that our bound shows the same rate dependency as the experiments. That is to say, in the
logarithmic scale, the generalization gap of GNNs is linear with respect to the logarithm of the number of nodes. In
most cases, the Pearson correlation index is above 0.9 in absolute value, which indicates a strong linear relationship.
We noticed that the linear relationship changes the slope in the overfitting regime, and in the non-overfitting regime.
That is to say, when the GNN is overfitting the training set, the generalization gap decreases at a much slower rate than
it does with the GNN does not have the capacity to do so. Therefore, in the case in which the GNN overfits the training
set for all nodes when computed s using all the samples in the experiment. On the other hand, when the number of
nodes is large enough that the GNN cannot overfit the training set, then we computed the s and p with the nodes in the
non overfitting regime.

F.3 SPECTRAL CONTINUITY CONSTANT REGULARIZER

We add a regularization term to the loss to better control the value of the spectral continuity constant (defined in
Definition 4) while training. To do so, given a convolutional filter h ∈ RK , its associated spectral continuity constant is

R(h) =

K−1∑
k=0

k|hk|λk−1
max, (108)

Where λmax is the largest eigenvalue of the graph G.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F.3.1 ARXIV DATASET

For this datasets, we trained 2, 3, 4 layered GNN. We also used a learning rate scheduler ReduceLROnPlateau with
mode min, factor 0.5, patience 100 and a minimum learning rate of 0.001.

102 103 104 105

Number of nodes in training set

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train acc
Test acc
Train acc
Test acc
Train acc
Test acc
Train acc
Test acc

102 103 104 105

Number of nodes in training set

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train acc
Test acc
Train acc
Test acc
Train acc
Test acc
Train acc
Test acc

102 103 104 105

Number of nodes in training set

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train acc
Test acc
Train acc
Test acc
Train acc
Test acc
Train acc
Test acc

102 103 104 105

Number of nodes in training set

101

102

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

64 hidden units
64 hidden units linear fit
128 hidden units
128 hidden units linear fit
256 hidden units
256 hidden units linear fit
512 hidden units
512 hidden units linear fit

(a) Two Layers

102 103 104 105

Number of nodes in training set

101

102

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

64 hidden units
64 hidden units linear fit
128 hidden units
128 hidden units linear fit
256 hidden units
256 hidden units linear fit
512 hidden units
512 hidden units linear fit

(b) Three Layers

102 103 104 105

Number of nodes in training set

101

102

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

64 hidden units
64 hidden units linear fit
128 hidden units
128 hidden units linear fit
256 hidden units
256 hidden units linear fit
512 hidden units
512 hidden units linear fit

(c) Four Layers

Figure 12: Generalization gap for the OGBN-Arxiv dataset on the accuracy as a function of the number of nodes in the
training set.

F.3.2 CORA DATASET

For the Cora dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’Cora’).

F.3.3 CITESEER DATASET

For the CiteSeer dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’CiteSeer’).

F.3.4 PUBMED DATASET

For the PubMed dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Planetoid(root="./data",name=’PubMed’).

F.3.5 COAUTHORS CS DATASET

For the CS dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Coauthor(root="./data", name=’CS’). In this case, given
that there are no training and testing sets, we randomly partitioned the datasets and used 90% of the samples for training
and the remaining 10% for testing.

F.3.6 COAUTHORS PHYSICS DATASET

For the Physics dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.Coauthor(root="./data", name=’Physics’). In this case,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

102 103 104 105

Number of nodes in training set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Train loss
Test loss
Train loss
Test loss
Train loss
Test loss
Train loss
Test loss

102 103 104 105

Number of nodes in training set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Train loss
Test loss
Train loss
Test loss
Train loss
Test loss
Train loss
Test loss

102 103 104 105

Number of nodes in training set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Train loss
Test loss
Train loss
Test loss
Train loss
Test loss
Train loss
Test loss

102 103 104 105

Number of nodes in training set

10 1

100

101

Lo
ss

 d
iff

er
en

ce

64 hidden units
64 hidden units linear fit
128 hidden units
128 hidden units linear fit
256 hidden units
256 hidden units linear fit
512 hidden units
512 hidden units linear fit

(a) Two Layers

102 103 104 105

Number of nodes in training set

10 1

100

101

Lo
ss

 d
iff

er
en

ce

64 hidden units
64 hidden units linear fit
128 hidden units
128 hidden units linear fit
256 hidden units
256 hidden units linear fit
512 hidden units
512 hidden units linear fit

(b) Three Layers

102 103 104 105

Number of nodes in training set

10 1

100

101

Lo
ss

 d
iff

er
en

ce

64 hidden units
64 hidden units linear fit
128 hidden units
128 hidden units linear fit
256 hidden units
256 hidden units linear fit
512 hidden units
512 hidden units linear fit

(c) Four Layers

Figure 13: Generalization gap for the OGBN-arxiv dataset on the loss (cross-entropy) as a function of the number of
nodes in the training set.

1026 × 101 2 × 102 3 × 102 4 × 102

Hidden Units Size

0.60

0.55

0.50

0.45

0.40

Va
lu

e
of

 a

1026 × 101 2 × 102 3 × 102 4 × 102

Hidden Units Size

3.0

3.1

3.2

3.3

3.4

3.5

Va
lu

e
of

 b

1026 × 101 2 × 102 3 × 102 4 × 102

Hidden Units Size

0.65

0.60

0.55

0.50

0.45

Va
lu

e
of

 a

1026 × 101 2 × 102 3 × 102 4 × 102

Hidden Units Size
1.7

1.8

1.9

2.0

2.1

2.2

Va
lu

e
of

 b

2 layers 3 layers 4 layers

(a) Accuracy (b) Loss

Figure 14: Values of slope (a) and point (b) corresponding to the linear fit (a ∗ log(N) + b) of Figures 13 and 12.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 64 −6.301e− 01 3.621e+ 00 −9.980e− 01
Accuracy 2 128 −6.034e− 01 3.663e+ 00 −9.985e− 01
Accuracy 2 256 −5.347e− 01 3.493e+ 00 −9.952e− 01
Accuracy 2 512 −5.328e− 01 3.605e+ 00 −9.975e− 01
Accuracy 3 64 −6.271e− 01 3.600e+ 00 −9.987e− 01
Accuracy 3 128 −5.730e− 01 3.567e+ 00 −9.970e− 01
Accuracy 3 256 −4.986e− 01 3.393e+ 00 −9.910e− 01
Accuracy 3 512 −4.529e− 01 3.315e+ 00 −9.934e− 01
Accuracy 4 64 −5.343e− 01 3.236e+ 00 −9.971e− 01
Accuracy 4 128 −5.096e− 01 3.299e+ 00 −9.987e− 01
Accuracy 4 256 −4.827e− 01 3.337e+ 00 −9.920e− 01
Accuracy 4 512 −4.264e− 01 3.229e+ 00 −9.927e− 01

Loss 2 64 −6.853e− 01 2.265e+ 00 −9.975e− 01
Loss 2 128 −6.562e− 01 2.311e+ 00 −9.988e− 01
Loss 2 256 −5.907e− 01 2.174e+ 00 −9.968e− 01
Loss 2 512 −5.848e− 01 2.280e+ 00 −9.989e− 01
Loss 3 64 −6.739e− 01 2.228e+ 00 −9.980e− 01
Loss 3 128 −6.229e− 01 2.224e+ 00 −9.976e− 01
Loss 3 256 −5.581e− 01 2.111e+ 00 −9.942e− 01
Loss 3 512 −5.141e− 01 2.057e+ 00 −9.955e− 01
Loss 4 64 −6.039e− 01 1.964e+ 00 −9.980e− 01
Loss 4 128 −5.701e− 01 2.014e+ 00 −9.991e− 01
Loss 4 256 −5.379e− 01 2.051e+ 00 −9.951e− 01
Loss 4 512 −4.810e− 01 1.957e+ 00 −9.937e− 01

Table 3: Details of the linear approximation of the Arxiv Dataset. Note that in this case, we used only the values of the
generalization gap whose training error is below 95%.

100 101 102

Number of nodes in training set

102

3 × 101

4 × 101

6 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

8 hidden units, 2 layers
16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
8 hidden units, 3 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers

100 101 102

Number of nodes in training set

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train loss, 8 hidden units, 3 layers
Test loss, 8 hidden units, 3 layers
Train loss, 16 hidden units, 3 layers
Test loss, 16 hidden units, 3 layers
Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

100 101 102

Number of nodes in training set

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train loss, 8 hidden units, 2 layers
Test loss, 8 hidden units, 2 layers
Train loss, 16 hidden units, 2 layers
Test loss, 16 hidden units, 2 layers
Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

100 101 102

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

8 hidden units, 2 layers
16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
8 hidden units, 3 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers

(a) Generalization Gap.

100 101 102

Number of nodes in training set

0

2

4

6

8

10

12

14

Lo
ss

Train loss, 8 hidden units, 2 layers
Test loss, 8 hidden units, 2 layers
Train loss, 16 hidden units, 2 layers
Test loss, 16 hidden units, 2 layers
Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

(b) 2 Layers

100 101 102

Number of nodes in training set

0

10

20

30

40

Lo
ss

Train loss, 8 hidden units, 3 layers
Test loss, 8 hidden units, 3 layers
Train loss, 16 hidden units, 3 layers
Test loss, 16 hidden units, 3 layers
Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

(c) 3 Layers

Figure 15: Generalization gap, testing, and training losses with respect to the number of nodes in the Cora dataset. The
top row is in accuracy, and the bottom row is the cross-entropy loss.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −2.839e− 01 2.022e+ 00 −9.803e− 01
Accuracy 2 32 −2.917e− 01 2.014e+ 00 −9.690e− 01
Accuracy 2 64 −3.006e− 01 2.021e+ 00 −9.686e− 01
Accuracy 3 16 −2.656e− 01 1.996e+ 00 −9.891e− 01
Accuracy 3 32 −2.637e− 01 2.008e+ 00 −9.679e− 01
Accuracy 3 64 −2.581e− 01 1.981e+ 00 −9.870e− 01

Loss 2 16 −3.631e− 01 9.406e− 01 −9.250e− 01
Loss 2 32 −4.228e− 01 9.638e− 01 −9.657e− 01
Loss 2 64 −4.991e− 01 1.067e+ 00 −9.776e− 01
Loss 3 16 −4.131e− 01 1.276e+ 00 −9.753e− 01
Loss 3 32 −4.605e− 01 1.385e+ 00 −9.730e− 01
Loss 3 64 −4.589e− 01 1.455e+ 00 −9.756e− 01

Table 4: Details of the linear approximation of the Cora Dataset. Note that in this case we used all the values given that
the training accuracy is 100% for all nodes.

100 101 102

Number of nodes in training set

4 × 101

6 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

8 hidden units, 2 layers
16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
8 hidden units, 3 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers

100 101 102

Number of nodes in training set

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train loss, 8 hidden units, 2 layers
Test loss, 8 hidden units, 2 layers
Train loss, 16 hidden units, 2 layers
Test loss, 16 hidden units, 2 layers
Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

100 101 102

Number of nodes in training set

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train loss, 8 hidden units, 3 layers
Test loss, 8 hidden units, 3 layers
Train loss, 16 hidden units, 3 layers
Test loss, 16 hidden units, 3 layers
Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

100 101 102

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

8 hidden units, 2 layers
16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
8 hidden units, 3 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers

(a) Generalization Gap

100 101 102

Number of nodes in training set

0

2

4

6

8

10

Lo
ss

Train loss, 8 hidden units, 2 layers
Test loss, 8 hidden units, 2 layers
Train loss, 16 hidden units, 2 layers
Test loss, 16 hidden units, 2 layers
Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

(b) 2 Layers

100 101 102

Number of nodes in training set

0

10

20

30

40

50

60

Lo
ss

Train loss, 8 hidden units, 3 layers
Test loss, 8 hidden units, 3 layers
Train loss, 16 hidden units, 3 layers
Test loss, 16 hidden units, 3 layers
Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

(c) 3 Layers

Figure 16: Generalization gap, testing, and training losses with respect to the number of nodes in the CiteSeer dataset.
The top row is in accuracy, and the bottom row is the cross-entropy loss.

given that there are no training and testing sets, we randomly partitioned the datasets and used 90% of the samples for
training and the remaining 10% for testing.

F.3.7 HETEROPHILOUS AMAZON RATINGS DATASET

For the Amazon dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.HeterophilousGraphDataset(root="./data", name=’Amazon’).
In this case, we used the 10 different splits that the dataset has assigned.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −1.699e− 01 1.972e+ 00 −9.518e− 01
Accuracy 2 32 −1.856e− 01 1.978e+ 00 −9.714e− 01
Accuracy 2 64 −1.749e− 01 1.966e+ 00 −9.534e− 01
Accuracy 3 16 −1.585e− 01 1.956e+ 00 −9.721e− 01
Accuracy 3 32 −1.659e− 01 1.963e+ 00 −9.721e− 01
Accuracy 3 64 −1.658e− 01 1.967e+ 00 −9.702e− 01

Loss 2 16 −1.049e− 01 7.757e− 01 −5.924e− 01
Loss 2 32 −1.762e− 01 7.646e− 01 −7.981e− 01
Loss 2 64 −2.186e− 01 8.384e− 01 −9.120e− 01
Loss 3 16 −1.802e− 01 1.169e+ 00 −8.345e− 01
Loss 3 32 −1.629e− 01 1.200e+ 00 −8.767e− 01
Loss 3 64 −5.917e− 02 1.283e+ 00 −2.562e− 01

Table 5: Details of the linear approximation of the CiteSeer Dataset. Note that in this case we used all the values given
that the training accuracy is 100% for all nodes.

100 101

Number of nodes in training set

3 × 101

4 × 101

6 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

8 hidden units, 2 layers
16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
8 hidden units, 3 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers

100 101

Number of nodes in training set

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train loss, 8 hidden units, 2 layers
Test loss, 8 hidden units, 2 layers
Train loss, 16 hidden units, 2 layers
Test loss, 16 hidden units, 2 layers
Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

100 101

Number of nodes in training set

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train loss, 8 hidden units, 3 layers
Test loss, 8 hidden units, 3 layers
Train loss, 16 hidden units, 3 layers
Test loss, 16 hidden units, 3 layers
Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

100 101

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

8 hidden units, 2 layers
16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
8 hidden units, 3 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers

(a) Generalization Gap

100 101

Number of nodes in training set

0

2

4

6

8

10

Lo
ss

Train loss, 8 hidden units, 2 layers
Test loss, 8 hidden units, 2 layers
Train loss, 16 hidden units, 2 layers
Test loss, 16 hidden units, 2 layers
Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

(b) 2 Layers

100 101

Number of nodes in training set

0

5

10

15

20

25

Lo
ss

Train loss, 8 hidden units, 3 layers
Test loss, 8 hidden units, 3 layers
Train loss, 16 hidden units, 3 layers
Test loss, 16 hidden units, 3 layers
Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

(c) 3 Layers

Figure 17: Generalization gap, testing, and training losses with respect to the number of nodes in the PubMed dataset.
The top row is in accuracy, and the bottom row is the cross-entropy loss.

F.3.8 HETEROPHILOUS ROMAN EMPIRE DATASET

For the Roman dataset, we used the standard one, which can be obtained running
torch_geometric.datasets.HeterophilousGraphDataset(root="./data", name=’Roman’).
In this case, we used the 10 different splits that the dataset has assigned.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 16 −2.523e− 01 1.834e+ 00 −9.942e− 01
Accuracy 2 32 −2.433e− 01 1.812e+ 00 −9.583e− 01
Accuracy 2 64 −2.764e− 01 1.869e+ 00 −9.761e− 01
Accuracy 3 16 −2.748e− 01 1.844e+ 00 −9.910e− 01
Accuracy 3 32 −2.661e− 01 1.861e+ 00 −9.712e− 01
Accuracy 3 64 −2.558e− 01 1.827e+ 00 −9.890e− 01

Loss 2 16 −4.166e− 01 7.695e− 01 −9.718e− 01
Loss 2 32 −4.733e− 01 7.852e− 01 −9.137e− 01
Loss 2 64 −4.368e− 01 7.547e− 01 −9.718e− 01
Loss 3 16 −4.424e− 01 1.067e+ 00 −9.549e− 01
Loss 3 32 −5.518e− 01 1.223e+ 00 −9.655e− 01
Loss 3 64 −5.246e− 01 1.169e+ 00 −9.632e− 01

Table 6: Details of the linear approximation of the PubMed Dataset. Note that in this case we used all the values given
that the training accuracy is 100% for all nodes.

102 103 104

Number of nodes in training set

101Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
128 hidden units, 2 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers

102 103 104

Number of nodes in training set

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

102 103 104

Number of nodes in training set

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

102 103 104

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
128 hidden units, 2 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers

(a) Generalization Gap

102 103 104

Number of nodes in training set

0

2

4

6

8

Lo
ss

Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

(b) 2 Layers

102 103 104

Number of nodes in training set

0

5

10

15

20

25

Lo
ss

Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

(c) 3 Layers

Figure 18: Generalization gap, testing, and training losses with respect to the number of nodes in the CS dataset. The
top row is in accuracy, and the bottom row is the cross-entropy loss.

G FURTHER REFERENCES

Graphon theory Different from the manifold model we’re using, some research constructs graphs derived from
graphons, which can be viewed as a random limit graph model. This research has focused on their convergence,
stability, as well as transferability (Ruiz et al., 2020; Maskey et al., 2023; Keriven et al., 2020). In (Parada-Mayorga
et al., 2023), graphon is used as a pooling tool in GNNs. Despite its utility, the graphon presents several limitations
compared to the manifold model we use. Firstly, the graphon model assumes an infinite degree at every node (Lovász,
2012), which is not the case in the manifold model. Additionally, graphons offer limited insight into the underlying
model; visualizing a graphon is challenging, except in the stochastic block model case. Manifolds, however, are more
interpretable, especially when based on familiar shapes like spheres and 3D models (see Figure 2). Finally, the manifold
model supports a wider range of characterizable models, making it a more realistic choice.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

102 103 104

Number of nodes in training set

101

6 × 100

2 × 101

3 × 101

4 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(a) Linear fit for accuracy generalization gap

102 103 104

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(b) Linear fit for loss generalization gap

Figure 19: Generalization gaps as a function of the number of nodes in the training set in the CS dataset.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −2.138e− 01 1.659e+ 00 −9.007e− 01
Accuracy 2 64 −2.250e− 01 1.685e+ 00 −8.969e− 01
Accuracy 3 32 −1.979e− 01 1.695e+ 00 −9.009e− 01
Accuracy 3 64 −1.862e− 01 1.646e+ 00 −8.980e− 01

Loss 2 32 −2.523e− 01 6.273e− 01 −8.244e− 01
Loss 2 64 −2.933e− 01 7.762e− 01 −7.925e− 01
Loss 3 32 −3.558e− 01 1.207e+ 00 −8.924e− 01
Loss 3 64 −3.560e− 01 1.256e+ 00 −8.568e− 01

Table 7: Details of the linear approximation of the CS Dataset. Note that in this case we used all the values given that
the training accuracy is 100% for all nodes.

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −1.524e− 01 1.235e+ 00 −9.064e− 01
Accuracy 2 64 −1.478e− 01 1.218e+ 00 −9.145e− 01
Accuracy 3 32 −1.227e− 01 1.190e+ 00 −9.328e− 01
Accuracy 3 64 −1.268e− 01 1.200e+ 00 −8.826e− 01

Loss 2 32 −1.111e− 01 −5.257e− 02 −7.591e− 01
Loss 2 64 −9.684e− 02 −7.335e− 02 −7.696e− 01
Loss 3 32 −1.410e− 01 2.875e− 01 −8.280e− 01
Loss 3 64 −1.068e− 01 2.388e− 01 −7.679e− 01

Table 8: Details of the linear approximation of the Physics Dataset. Note that in this case we used all the values given
that the training accuracy is 100% for all nodes.

Transferability of GNNs The transferability of GNNs has been extensively studied by examining the differences
in GNN outputs across graphs of varying sizes as they converge to a limit model. This analysis, however, often lacks
statistical generalization. Several studies have explored GNN transferability with graphon models, proving bounds on
the differences in GNN outputs (Ruiz et al., 2023; 2020; Maskey et al., 2023). Other research has demonstrated how
increasing graph size during GNN training can improve generalization to large-scale graphs (Cervino et al., 2023). The
transferability of GNNs has also been investigated in the context of graphs generated from general topological spaces

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

102 103 104

Number of nodes in training set

101

3 × 100

4 × 100

6 × 100

2 × 101

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
128 hidden units, 2 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers

102 103 104

Number of nodes in training set

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

102 103 104

Number of nodes in training set

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 (%
)

Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

102 103 104

Number of nodes in training set

100

Lo
ss

 d
iff

er
en

ce

16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
128 hidden units, 2 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers

(a) Generalization Gap

102 103 104

Number of nodes in training set

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Lo
ss

Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

(b) 2 Layers

102 103 104

Number of nodes in training set

0.0

0.5

1.0

1.5

2.0

Lo
ss

Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

(c) 3 Layers

Figure 20: Generalization gap, testing, and training losses with respect to the number of nodes in the Physics dataset.
The top row is in accuracy, and the bottom row is the cross-entropy loss.

102 103 104

Number of nodes in training set

101

4 × 100

6 × 100

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(a) Linear fit for accuracy generalization gap

102 103 104

Number of nodes in training set

100

3 × 10 1

4 × 10 1

6 × 10 1

Lo
ss

 d
iff

er
en

ce

32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(b) Linear fit for loss generalization gap

Figure 21: Generalization Gaps as a function of the number of nodes in the training set in the Physics dataset.

(Levie et al., 2021) and manifolds (Wang et al., 2024a). Furthermore, a novel graphop operator has been proposed as a
limit model for both dense and sparse graphs, with proven transferability results (Le & Jegelka, 2024). Further research
has focused on transfer learning for GNNs by measuring distances between graphs without assuming a limit model (Lee
et al., 2017; Zhu et al., 2021). Finally, a transferable graph transformer has been proposed and empirically validated
(He et al., 2023).

H LOW PASS FILTER ASSUMPTION

In the main results, we assume that the GNN and MNN are low-pass filters. This is a reasonable assumption because
high-frequency signals on graphs or manifolds can fluctuate significantly between adjacent entries, leading to instability
and learning challenges. We expect a degree of local homogeneity, which translates to low-frequency signals. This
assumption is supported by empirical evidence in various domains, including opinion dynamics, econometrics, and
graph signal processing (Degroot, 1974; Billio et al., 2012; Ramakrishna et al., 2020).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

101 102 103 104

Number of nodes in training set

101Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
128 hidden units, 2 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers

101 102 103 104

Number of nodes in training set

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

101 102 103 104

Number of nodes in training set

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

101 102 103 104

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
128 hidden units, 2 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers

(a) Generalization Gap

101 102 103 104

Number of nodes in training set

0

1

2

3

4

5

6

7

Lo
ss

Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

(b) 2 Layers

101 102 103 104

Number of nodes in training set

0

2

4

6

8

10

12

Lo
ss

Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

(c) 3 Layers

Figure 22: Generalization gap, testing, and training losses with respect to the number of nodes in the Amazon dataset.
The top row is in accuracy, and the bottom row is the cross-entropy loss.

101 102 103 104

Number of nodes in training set

101

102

103

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(a) Linear fit for accuracy generalization gap

101 102 103 104

Number of nodes in training set

100

101

102

103

Lo
ss

 d
iff

er
en

ce

32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(b) Linear fit for loss generalization gap

Figure 23: Generalization Gaps as a function of the number of nodes in the training set in the Amazon dataset.

Moreover, several other effective learning techniques, such as Principal Component Analysis (PCA) and Isomap,
implicitly employ low-pass filtering. Therefore, we believe that the low-pass filter assumption is not restrictive and is
well-supported by both practical applications and theoretical considerations.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −7.693e− 01 4.236e+ 00 −9.914e− 01
Accuracy 2 64 −7.788e− 01 4.404e+ 00 −9.972e− 01
Accuracy 3 32 −7.268e− 01 4.101e+ 00 −9.868e− 01
Accuracy 3 64 −7.354e− 01 4.257e+ 00 −9.921e− 01

Loss 2 32 −1.086e+ 00 3.971e+ 00 −9.968e− 01
Loss 2 64 −1.096e+ 00 4.189e+ 00 −9.985e− 01
Loss 3 32 −1.134e+ 00 4.339e+ 00 −9.965e− 01
Loss 3 64 −1.154e+ 00 4.629e+ 00 −9.991e− 01

Table 9: Details of the linear approximation of the Amazon Dataset. Note that in this case we used only the values of
the generalization gap whose training error is below 95%.

101 102 103 104

Number of nodes in training set

101

102

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
128 hidden units, 2 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers

101 102 103 104

Number of nodes in training set

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

101 102 103 104

Number of nodes in training set

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

101 102 103 104

Number of nodes in training set

100

101

Lo
ss

 d
iff

er
en

ce

16 hidden units, 2 layers
32 hidden units, 2 layers
64 hidden units, 2 layers
128 hidden units, 2 layers
16 hidden units, 3 layers
32 hidden units, 3 layers
64 hidden units, 3 layers
128 hidden units, 3 layers

(a) Generalization Gap

101 102 103 104

Number of nodes in training set

0

2

4

6

8

10

Lo
ss

Train loss, 32 hidden units, 2 layers
Test loss, 32 hidden units, 2 layers
Train loss, 64 hidden units, 2 layers
Test loss, 64 hidden units, 2 layers

(b) 2 Layers

101 102 103 104

Number of nodes in training set

0

2

4

6

8

10

12

14

Lo
ss

Train loss, 32 hidden units, 3 layers
Test loss, 32 hidden units, 3 layers
Train loss, 64 hidden units, 3 layers
Test loss, 64 hidden units, 3 layers

(c) 3 Layers

Type Lay. Feat. Slope Point
Pearson

Correlation
Coefficient

Accuracy 2 32 −8.408e− 01 4.644e+ 00 −9.963e− 01
Accuracy 2 64 −7.435e− 01 4.477e+ 00 −1.000e+ 00
Accuracy 3 32 −9.476e− 01 5.049e+ 00 −9.956e− 01
Accuracy 3 64 −9.145e− 01 5.182e+ 00 −1.000e+ 00

Loss 2 32 −1.006e+ 00 3.829e+ 00 −9.992e− 01
Loss 2 64 −9.656e− 01 3.915e+ 00 −1.000e+ 00
Loss 3 32 −1.244e+ 00 4.764e+ 00 −9.994e− 01
Loss 3 64 −1.225e+ 00 5.011e+ 00 −1.000e+ 00

Table 10: Details of the linear approximation of the Roman Dataset. Note that in this case we used only the values of
the generalization gap whose training error is below 95%

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

101 102 103 104

Number of nodes in training set

102

103

104

Ac
cu

ra
cy

 d
iff

er
en

ce
 (%

)

32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(a) Linear fit for accuracy generalization gap

101 102 103 104

Number of nodes in training set

100

101

102

103

Lo
ss

 d
iff

er
en

ce
32 hidden units, 2 layers
32 hidden units, 2 layers linear fit
64 hidden units, 2 layers
64 hidden units, 2 layers linear fit
32 hidden units, 3 layers
32 hidden units, 3 layers linear fit
64 hidden units, 3 layers
64 hidden units, 3 layers linear fit

(b) Linear fit for loss generalization gap

Figure 25: Generalization Gaps as a function of the number of nodes in the training set in the Roman dataset.

38

	Introduction
	Related works
	 Generalization bounds of GNNs
	Neural networks on manifolds

	Preliminaries
	Graph neural networks
	Manifold neural networks

	Generalization analysis of GNNs based on manifolds
	Manifold label prediction via node label prediction
	Manifold classification via graph classification

	Experiments
	Conclusion
	Induced manifold signals
	Convergence of GNN to MNN
	Local Lipschitz continuity of MNNs
	Proof of Theorem 1
	Proof of Theorem 2
	Experiment details and further experiments
	ModelNet10 and ModelNet40 graph classification tasks
	Node classification training details and datasets
	Spectral Continuity Constant Regularizer
	Arxiv dataset
	Cora dataset
	CiteSeer dataset
	PubMed dataset
	Coauthors CS dataset
	Coauthors Physics dataset
	Heterophilous Amazon ratings dataset
	Heterophilous Roman Empire dataset

	Further references
	Low Pass Filter Assumption

