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A EXTENDED METHOD

The following algorithms provide detailed pseudocode implementations of the key components de-
scribed in Section 3. Algorithm 1 formalizes the group-wise diversity computation from Section 3.2,
Algorithm 2 details the curriculum learning strategy from Section 3.3, and Algorithm 3 presents the
complete training procedure that integrates all components from Section 3.4.

A.1 GROUP-WISE DIVERSITY ALGORITHM

Algorithm 1 Group-Level Identity Diversity Computation
Require: Group G = {xi}Mi=1, face embeddings {Fi}Mi=1, scaling parameter λ
FG ←

⋃M
i=1 Fi {All faces across group}

SG ← AvgPairwiseSim(FG) {Baseline group similarity}
for i = 1 to M do
FG−i ← FG \ Fi {Remove faces from image i}
SG−i ← AvgPairwiseSim(FG−i) {Similarity without image i}
∆i ← SG − SG−i {Image i’s contribution to similarity}
rdgrp(xi, G)← σ(−λ ·∆i) {Sigmoid mapping with σ(u) = 1

1+e−u }
end for
return {rdgrp(x1, G), . . . , rdgrp(xM , G)}

Algorithm 1 provides the implementation details for the counterfactual reward computation de-
scribed in Section 3.2. The algorithm efficiently computes the baseline similarity SG once per
group, then performs M leave-one-out evaluations to determine each image’s diversity contribution
∆i. In practice, with typical group sizes of M = 21 and face counts of 2-7 per image, the algorithm
executes efficiently within the GRPO training loop.

A.2 SINGLE-STAGE CURRICULUM LEARNING ALGORITHM
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Algorithm 2 DISCO: Single-stage Curriculum Learning

Require: Prompt sets {Pn}Nmax
n=2 , curriculum parameters tcurriculum, γc

Initialize training step t = 0
while training not converged do

if t ≤ tcurriculum then
λt ←

(
t

tcurriculum

)γc

{Exponential annealing weight}
for n = 2 to Nmax do

if n ∈ {2, 3, 4} then
psimple(n)← 1

3
else
psimple(n)← 0

end if
puniform(n)← 1

Nmax−1

pt(n)← λt · puniform(n) + (1− λt) · psimple(n)
end for

else
for n = 2 to Nmax do

pt(n)← 1
Nmax−1 {Uniform sampling}

end for
end if
Sample n ∼ pt(·)
Sample prompt c from Pn

Generate group G and update model with prompt c
t← t+ 1

end while

Algorithm 2 provides the implementation details for the exponential curriculum strategy outlined in
Section 3.3. The gamma parameter γc controls the steepness of complexity introduction, with higher
values maintaining focus on simple prompts for longer durations before transitioning to the full
complexity range. The curriculum duration tcurriculum determines the absolute training steps allocated
to gradual complexity introduction before switching to uniform sampling across all prompt types.
We define scenarios with 2-4 people as "simple" based on empirical analysis of baseline model
performance degradation patterns. As shown in Figure 4, both Count Accuracy and Unique Face
Accuracy exhibit the most pronounced performance drops at the 4-person threshold, with steeper
degradation beyond this point, motivating our curriculum design that focuses initial training on
these manageable scenarios before introducing the full complexity range.

A.3 DISCO ALGORITHM

Algorithm 3 DISCO: Overall Algorithm
Require: Pretrained flow-matching model vθ0 , prompt dataset P , curriculum parameters η, tstart,

tend, reward weights α, β, γ, ζ
while not converged do

Sample n ∼ pt(·) and prompt c ∈ Pn using Algorithm 2
Generate group G = {τi}Mi=1 using SDE policy πθ(·|c)
Extract facial embeddings: Fi = {E(crop(xi, b)) : b ∈ D(xi)} for all i
Compute compositional rewards: r(τi, G) = αrdimg + βrdgrp + γrcimg + ζrqimg

Compute group-normalized advantages {Ãi} and update θ using GRPO objective
t← t+ 1

end while
return Fine-tuned model θ

Algorithm 3 integrates all components described in Section 3 into the complete DISCO training
procedure. The reward weights α, β, γ, ζ control the relative importance of intra-image diversity,
group diversity, count accuracy, and quality objectives respectively, allowing fine-grained control

15
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over the optimization priorities. The group size M determines the number of trajectories generated
per prompt, directly affecting both the quality of group-normalized advantage estimation and the
computational cost per training iteration.

B DATASET DETAILS

B.1 TRAINING DATASET

Our training dataset consists of 30,000 carefully curated prompts designed to capture diverse multi-
human scenarios. Each prompt describes group scenes containing 2-7 people engaged in various
activities and contexts. The captions were generated using GPT-5 to ensure high-quality, diverse
descriptions that encompass a wide range of:

• Social contexts: Family gatherings, business meetings, friend groups, professional teams,
recreational activities

• Settings: Indoor and outdoor environments, formal and informal occasions, workplace and
leisure contexts

• Activities: Collaborative tasks, social interactions, professional activities, recreational pur-
suits

• Group compositions: Varying numbers of individuals (2-7) with diverse demographic
representations

The prompts were designed to avoid overlap with evaluation datasets while maintaining sufficient
diversity to train robust multi-human generation capabilities. The following are 5 examples of these
prompts.

• Seven people on the desert dunes, hazy sun, diverse faces, clear faces visible, studio-
quality, vivid detail

• Six people in an astronomy studio, Clean composition, Professional portrait, Portrait
photography, Soft shadows, Natural lighting, Even exposure

• Three people in an aviation observatory, Sharp focus, Clean composition, Bokeh back-
ground, Color graded, Smiling expressions, Well lit

• Five people in a dawn-lit bakeshop, Studio quality, Even exposure, Group harmony,
Cinematic lighting, Portrait photography, Soft shadows

• Seven people on a coastal boardwalk, afternoon light, diverse faces, clear faces visible,
ultra-realistic, 8K resolution

B.2 EVALUATION DATASETS

B.2.1 DIVERSEHUMANS TEST SET

We developed DiverseHumans, a comprehensive evaluation dataset of 1,200 prompts specifically
designed to assess identity consistency and diversity in multi-human generation. The dataset is
systematically organized as follows:

Structure: Six sections of 200 prompts each, corresponding to scenes with 2, 3, 4, 5, 6, and 7 people
respectively.

Diversity Tags: Each prompt includes one of four diversity specification levels:

1. No tag (25% of prompts): Basic scene descriptions without explicit diversity instructions
2. “Diverse faces” tag (25% of prompts): General diversity encouragement
3. Single ethnicity specification (25% of prompts): Mentions one of six racial/ethnic cate-

gories
4. Individual ethnicity assignments (25% of prompts): Specific ethnicity assigned to each

person

16
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Example Prompts:

• No tag: Five people on a island cove beach, High dynamic range, Group harmony,
Professional portrait, Natural lighting, Smiling expressions

• Diverse faces: Five people in a antique arcade, High dynamic range, Sharp focus, Group
harmony, Clear faces, Smiling expressions, Diverse faces among people

• Single ethnicity: Five people in a sidewalk cafe, Sharp focus, Bokeh background, Well
lit, Clear faces, Group harmony, Indian ethnicity

• Individual assignments: Five people in a coastal market, Bokeh background, High dy-
namic range, Sharp focus, Professional portrait, Portrait photography, One person is
White, One person is Middle-eastern, One person is Asian, One person is Black, One
person is Hispanic

Context Differentiation: The DiverseHumans prompts deliberately feature different contexts and
scenarios compared to the training set to evaluate generalization capabilities and prevent overfitting
to training distributions.

B.2.2 MULTIHUMAN-TESTBENCH (MHTB)

We additionally evaluate on the established MultiHuman-TestBench, a standardized benchmark for
multi-human generation that provides consistent evaluation protocols and enables fair comparison
with existing methods. MHTB focuses on general multi-human generation capabilities without spe-
cific emphasis on identity diversity, complementing our DiverseHumans evaluation. MHTB also
asks for people performing specific actions (cooking, boxing, dancing, etc.) ranging from simple to
complex, which is a key differentiator to DiverseHumans testset. We use their official implementa-
tion1 to download data and compute metrics.

C EVALUATION METRICS

To comprehensively evaluate multi-human generation performance as described in Section 4, we
employ three core metrics that capture different aspects of identity consistency and counting accu-
racy. All metrics are computed using facial embeddings extracted via RetinaFace detection followed
by ArcFace encoding, as detailed in our reward computation pipeline. All metrics are reported as
percentages.

Count Accuracy. This metric measures the percentage of generated images that contain the exact
number of individuals specified in the input prompt. For a given prompt c with target count Ntarget(c)
and evaluation set X , Count Accuracy is defined as:

Count Accuracy (%) = 100× 1

|X |
∑
x∈X

1{F (x) = Ntarget(c)}

where F (x) = |D(x)| represents the number of detected faces in image x using RetinaFace with
confidence threshold κdet = 0.7.

Unique Face Accuracy (UFA). This metric quantifies the percentage of images in which all de-
picted individuals correspond to visually distinct identities, ensuring no duplicate faces within a
single image. We define faces as duplicates if their cosine similarity exceeds a threshold. Specifi-
cally, within image x, duplicates exist if:

∃ i ̸= j : s(fi, fj) ≥ κdup

where s(·, ·) denotes cosine similarity between face embeddings. The UFA metric is then computed
as:

UFA (%) = 100× 1

|X |
∑
x∈X

1{no duplicates in x}

We set κdup = 0.5.

1https://github.com/Qualcomm-AI-research/MultiHuman-Testbench
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Global Identity Spread (GIS). This metric assesses identity diversity across an entire dataset
of generated images by measuring the percentage of unique identities created relative to the total
number of people requested across all prompts. For a batch X of images generated from prompts
with respective target counts {Ntarget(ci)}, we first cluster all face embeddings

⋃
x∈X F (x) using

single-linkage clustering with threshold κdup = 0.5. Let C denote the total number of unique
clusters (identities) found. The Global Identity Spread is then computed as:

GIS (%) = 100× C∑
i Ntarget(ci)

where the denominator represents the total number of people requested across all prompts in the
batch. Higher GIS values indicate better identity diversity, with perfect diversity yielding GIS =
100% when every requested person has a unique identity.

Action Score. We use the Action score as implemented in the MultiHuman-TestBench Borse et al.
(2025) paper. This is an MLLM metric, which prompts Gemini-2.0-Flash using the image, and asks
if the people in the image are performing the Action requested by the prompt.

HPSv2: Due to our use of HPSv3 as a reward, we use the HPSv2 model to measure perceptual
quality and prompt alignment. This step is to make the comparison with other methods fair, which
may or may not have been trained with an HPSv3 reward.

D IMPLEMENTATION DETAILS

DISCO Training. We implement DISCO using the public flow_grpo2 framework with Flux
pipeline, training in bf16 mixed precision on 512×512 images. Training uses 14 timesteps for reward
computation and 28 steps for evaluation, with classifier-free guidance of 4.5 for Flux-Krea and 3.5
for Flux-Dev. We train for 480 epochs with batch sizes of 3 (train) and 16 (test), with a group size
of 21. The compositional reward function combines intra-image diversity (α = 0.50), group-wise
diversity (β = 0.10), count accuracy (γ = 0.15), and HPS quality (ζ = 0.15) components, with
KL regularization weight βKL = 0.01 to stabilize learning. We apply the proposed curriculum with
tcurriculum = 60 epochs, and γc = 3

Training is distributed across 21 GPUs on 3 H100 clusters, with a single dedicated GPU for HPSv3
reward (3 nodes, 7 GPUs per node for training, 1 GPU as the HPSv3 server). We use a learning rate
of 1 × 10−4 with EMA enabled and checkpoint every 30 epochs. The curriculum learning strategy
transitions from simple to complex prompts using exponential weighting parameter η = 2.0, with
transition period from steps 10,000 to 40,000. Face detection uses RetinaFace (Deng et al., 2019)
with confidence threshold 0.7, followed by ArcFace (Deng et al., 2022) embeddings for identity
similarity computation. Total training time to 480 epochs is 13 hours.

Baseline Model Evaluation Settings. For fair comparison, we evaluate all baseline models us-
ing their recommended hyperparameters from official documentation. For OmniGen2, we use 50
inference steps with text guidance scale of 2.5 and image guidance scale of 3.0 for multi-modal
tasks.3 We set FLUX-Dev to 50 timesteps with CFG guidance of 3.5, while for FLUX-Krea we
use 28 timesteps with CFG guidance 4.5 as specified in the official repository.45 For SD3.5-Large,
we apply 40 timesteps with guidance scale of 4.5.6 We configure HiDream-I1 Full model with 50
timesteps and guidance scale 5.0.7 We use 12 timesteps for DreamO and CFG guidance 4.5.8. We
generate all images at 1024×1024 resolution. We set a different seed for every image (the image
index itself), and we share these seeds across all evaluations.

2https://github.com/yifan123/flow_grpo
3https://huggingface.co/OmniGen2/OmniGen2
4https://huggingface.co/black-forest-labs/FLUX.1-dev
5https://github.com/krea-ai/flux-krea
6https://huggingface.co/stabilityai/stable-diffusion-3.5-large
7https://huggingface.co/HiDream-ai/HiDream-I1-Full
8https://github.com/bytedance/DreamO
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E EXTENDED RESULTS

E.1 QUANTITATIVE RESULTS

The quantitative results presented in this section provide detailed analysis of DISCO’s performance
across various experimental conditions and model configurations. These results complement the
main paper findings by examining performance variations across different prompt types, reward
weight configurations, and computational efficiency metrics.

E.1.1 PERFORMANCE ON VARIOUS DIVERSITY TAGS IN PROMPTS

Table E.1 analyzes performance across the four diversity specification levels in our DiverseHumans
dataset. The results reveal interesting patterns that demonstrate DISCO’s effectiveness in addressing
different types of diversity challenges.

For Unique Face Accuracy, baseline models show variable performance across diversity tags,
with some models (like Gemini-Nanobanana) performing significantly better on explicit diversity
prompts (D=2: 70.8%, D=4: 78.3%) compared to unspecified prompts (D=1: 41.5%). This suggests
that baseline models can leverage explicit diversity instructions but struggle with implicit diver-
sity requirements. In contrast, DISCO maintains consistently high UFA performance (97.7-99.7%)
across all diversity specifications, effectively eliminating duplicate identities regardless of prompt
formulation.

The Global Identity Spread metric reveals a complementary pattern: baseline models generally
achieve higher GIS scores on simpler diversity specifications (D=1, D=3) but struggle with com-
plex individual assignments (D=4), where detailed ethnicity specifications appear to constrain their
generation diversity. For instance, Flux-Krea drops from 71.9% (D=1) to 52.8% (D=4), and Om-
niGen2 falls from 48.5% to 29.2%. This indicates that explicit individual constraints paradoxically
reduce overall identity diversity in baseline models. DISCO overcomes this limitation, achieving
near-perfect GIS scores (98.5-100%) across all prompt types, demonstrating that our compositional
reward system successfully handles both implicit and explicit diversity requirements without com-
promising identity uniqueness.

These patterns confirm that DISCO generalizes robustly across diverse prompt formulations, re-
solving the fundamental tension between following specific diversity instructions and maintaining
overall identity spread that challenges existing models.

Table E.1: Performance across diversity tags (D=1: No tag, D=2: "Diverse faces", D=3: Single
ethnicity, D=4: Individual assignments). DisCo shows consistent improvements across all diversity
specifications. Green scores indicate the highest results and Red scores indicate the lowest results.

Model Count Accuracy Unique Face Accuracy Global Identity Spread
D=1 D=2 D=3 D=4 D=1 D=2 D=3 D=4 D=1 D=2 D=3 D=4

DiverseHumans-TestPrompts
Gemini-Nanobanana 71.0 71.7 70.7 76.0 41.5 70.8 38.3 78.3 56.6 69.2 53.8 55.7
Flux-Dev 70.0 70.0 69.0 74.3 47.8 41.7 47.0 56.3 64.74 58.8 67.8 62.3
Flux-Krea 75.0 68.0 71.3 80.3 51.3 45.3 37.5 49.2 71.9 66.66 56.9 52.8
OmniGen2 62.3 61.3 67.0 62.3 32.3 33.5 27.2 36.2 48.5 36.2 41.2 29.2
DreamO 71.7 70.0 70.0 70.3 31.8 20.7 27.0 45.5 52.1 40.0 51.2 43.7
HiDream-Default 55.7 60.0 56.0 60.0 35.7 32.0 29.3 32.5 32.4 26.2 28.3 15.9
DisCo 92.0 86.3 95.7 95.7 98.7 98.3 97.7 99.7 100.0 100.0 98.7 98.5

E.1.2 GRID SEARCH ON REWARD WEIGHTS

Table E.2 presents results from our systematic exploration of reward weight combinations to under-
stand the sensitivity and optimal balance of our compositional reward function. It is on the Flux-Dev
baseline. We apply DisCo finetuning for 300 epochs. The analysis reveals that intra-image diversity
(α) has the strongest impact on overall performance, with higher weights leading to better Unique
Face Accuracy and Global Identity Spread. The group-wise diversity component (β) shows dimin-
ishing returns beyond moderate values, while count accuracy (γ) requires careful balancing to avoid
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over-penalization. Quality component (ζ) demonstrates that moderate values suffice for maintain-
ing perceptual quality without sacrificing diversity objectives. We pick the optimal configuration
α = 0.5, β = 0.1, γ = 0.3, ζ = 0.2 for our final experiment. Note that the final results in Sec-
tion 4(at 480 epochs) are slightly different, as the results in this Table are all compared at 300 epochs
to stay consistent.

Table E.2: Ablation study on reward weight parameters. Results are for DisCo(Flux-Dev). Each row
shows the effect of different weight configurations on overall performance metrics. Our selected
hyperparameter configuration is represented in the Blue row.

Reward Weights Metrics
α β γ ζ Count Unique Face Global Identity HPS

(Intra-Img) (Grp-wise) (Count) (Quality) Accuracy Accuracy (UFA) Spread (GIS)
0.3 0.1 0.2 0.4 84.2 90.1 77.7 33.8
0.3 0.1 0.4 0.2 81.2 86.3 87.7 33.0
0.5 0.1 0.2 0.2 88.3 96.7 97.4 33.6
0.5 0.2 0.3 0.0 90.0 95.3 98.1 29.3
0.5 0.0 0.3 0.2 87.8 94.5 80.1 33.7

E.1.3 INTRA-IMAGE DIVERSITY AGGREGATION FUNCTION ANALYSIS

Table E.3 compares different aggregation strategies for computing the intra-image diversity reward
when multiple faces are detected within a single image. We perform this analysis on the harder-to-
converge DisCo-Krea setup. The results are on DiversePrompts. The choice of aggregation function
impacts both convergence behavior and final performance characteristics.

Table E.3: Comparison of aggregation functions for intra-image diversity reward computation. Re-
sults show performance on Flux-Krea baseline. Blue represents the selected aggregation function.

Aggregation Count Unique Face Global Identity HPS
Function Accuracy Accuracy (UFA) Spread (GIS) Score
max() 83.8 80.1 84.1 32.9
mean() 84.3 77.8 82.3 32.8
min() 84.1 74.2 77.7 32.9

Using max() aggregation drives the network toward eliminating the most similar face pair within
each image, penalizing any identity overlaps. This approach, particularly when combined with cur-
riculum learning, enables faster convergence and achieves lesser overlapping identities. It essentially
implements a "fix the worst violation" strategy that systematically eliminates duplicate identities.

In contrast, mean() aggregation optimizes for low average similarity across all face pairs, which can
result in suboptimal solutions where multiple moderate violations persist rather than being elimi-
nated entirely. It converges more slowly and allows identity overlaps to remain, as the model can
satisfy the average similarity constraint without addressing individual duplicate pairs. The min()
function shows the poorest performance, as it focuses on the least similar pair and provides insuffi-
cient pressure to address problematic duplicates.

E.2 FINAL RUN REWARD CURVES

Figure E.1 demonstrates the training progression of DISCO across all four reward components
throughout the learning process. The curves show consistent improvement in intra-image diversity,
group-wise diversity, count accuracy, and HPS quality metrics during both training and evaluation
phases. While training rewards continue to grow post 500 epochs, the model generates diminishing
returns on the testset post 480 epochs. The total training time for a single run is 13 hours.

E.2.1 COMPUTATIONAL ANALYSIS

Table E.4 presents a comprehensive comparison of computational efficiency across all evaluated
models. We report average performance scores from our multi-human generation benchmarks along-
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Figure E.1: DisCo training and evaluation reward curves. As observed, we notice a steady
improvement in all four rewards during training and inference.

side timing measurements to assess the quality-efficiency trade-off. For proprietary models, we re-
port API response times including network latency, while for open-source models we measure local
inference runtime on standardized hardware (NVIDIA H100) for generating a 1024×1024 image
with default sampling steps.

DISCO demonstrates an excellent balance between generation quality and computational efficiency.
While proprietary models like GPT-Image-1 achieve competitive scores, they incur ongoing API
costs and lack deployment flexibility. Gemini-Nanobanana offers faster API responses but with sig-
nificantly lower generation quality. Among open-source alternatives, DISCO variants significantly
outperform existing methods in generation quality while maintaining identical inference times to
their respective base models. This makes DISCO particularly attractive for applications requiring
both high-quality multi-human generation and practical deployment constraints, offering superior
performance without sacrificing efficiency.

Table E.4: Computational efficiency comparison across all evaluated models. Average scores are
from DiverseHumans-TestPrompts benchmark. Runtimes are measured on NVIDIA H100 for open-
source models.

Model Average API Time
Score (seconds)

Gemini-Nanobanana 60.0 7Proprietary
GPT-Image-1 78.7 28

Average Runtime
Score (seconds)

HiDream 46.2 22
Qwen-Image 60.1 23
OmniGen2 48.8 14
Flux 56.0 9

Open-Source

Flux-Krea 57.8 6
DISCO(Flux) 81.7 9Ours
DISCO(Krea) 76.8 6

E.3 QUALITATIVE RESULTS

E.3.1 VISUALIZING GLOBAL IDENTITY SPREAD

Figure E.3 demonstrates the effectiveness of DISCO in achieving global identity diversity compared
to the baseline Flux-Dev model. The visualization shows three different prompts, each generating
six images using consistent random seeds. The baseline Flux model exhibits significant identity
overlap both within individual images and across the generated set, with many faces appearing
similar or identical. In contrast, DISCO fine-tuning successfully pushes facial identities apart in the
embedding space, resulting in visually distinct individuals across all generations while maintaining
high visual quality and prompt adherence.
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Figure E.2: DISCO v/s Flux-Dev As observed in this Figure, we visualize three prompts of people
containing the same ethnicity, over six consistent seeds for DisCo and Flux. As observed, Flux re-
sults not only generate overlapping identites in the same image, but generate similar looking people
across the dataset. However, DisCo finetuning pushes the faces further from each other.

E.3.2 RESULTS ON FLUX-KREA

Figure E.3 showcases the qualitative improvements achieved by applying DISCO fine-tuning to the
Flux-Krea baseline model. The comparison demonstrates that our approach successfully addresses
identity consistency issues present in existing methods while preserving the aesthetic qualities that
make Flux-Krea distinctive. The generated images show clear improvements in generating distinct
individuals without duplicate identities, accurate person counts matching prompt specifications, and
maintained perceptual quality. These results validate that our method generalizes effectively across
different base models while preserving their unique characteristics.

E.3.3 VISUAL EFFECTS OF COUNT AND HPS REWARD COMPONENTS

Figure E.4 illustrates the visual effects of our count and HPS reward components in addressing
common failure modes during DISCO training. These components are essential for preventing visual
artifacts and ensuring realistic multi-person generation.

The top row of Figure E.4 demonstrates the visual improvements achieved through HPS rewards.
Without perceptual oversight, models produce unnatural grid-like face arrangements that technically
satisfy count and diversity requirements but result in unrealistic images. The progression from no
HPS to HPSv2 to HPSv3 shows systematic improvement in visual coherence, with HPSv3 producing
the most aesthetically pleasing results and minimal degradation artifacts.

The bottom row illustrates the visual impact of count rewards: as shown in Figure E.4, without count
control the model generates fewer people than requested (5 instead of 7) to avoid the challenging
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Figure E.3: DISCO-KREA v/s Related Work DISCO finetuning applied to Flux-Krea improves
performance over current baselines to generate results which consistently generate accurate people
without overlapping identity, without a hit in perceptual quality.

Figure E.4: Visual effects of count and HPS reward components. Top row: HPS rewards reduce
grid artifacts and improve visual quality, with HPSv3 achieving the most natural arrangements. Bot-
tom row: Count rewards ensure correct number generation (7 people instead of 5) while maintaining
visual coherence.

task of creating multiple distinct identities. Our count reward component directly addresses this by
ensuring the correct number of people are generated while maintaining visual quality.

Together, these reward components ensure that our approach produces visually coherent and accu-
rate multi-person generations, preventing both under-generation and visual artifacts that can emerge
from optimizing individual objectives in isolation.
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F LIMITATIONS AND FUTURE WORK

Our approach relies on face detection and face-embedding similarity; as such, failure cases can
arise under heavy occlusion, extreme poses, partial profiles, or when faces are very small. Future
directions for this line of work include integrating body/appearance cues beyond faces (e.g., re-
identification or whole-body embeddings), extending DISCO to videos with spatiotemporal identity
consistency, extending disco to other (diverse in nature) concepts such as animals, learning adaptive
curricula, and exploring human-in-the-loop or active reward shaping. Finally, we aim to study fair-
ness and demographic balance more explicitly, and to evaluate robustness to higher person counts.
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