
A. Artifact Appendix
A.1 Abstract
The artifact appendix provides the dataset, code, proce-
dure, hyper-parameter settings, etc. needed to reproduce
the HyC-LoRA project. The overall training framework is
implemented by PyTorch, some of the operators are imple-
mented by OpenAI Triton, and can be run on the Linux
operating system with NVIDIA GPU support. This arti-
fact appendix evaluates the HyC-LoRA project’s code avail-
ability, algorithmic effectiveness, and system performance.
Github project: https: // github. com/ Ther-nullptr/
HyC-LoRA-release

A.2 Artifact check-list (meta-information)
• Program: Python 3.10+
• Models: Checkpoints from huggingface: llama-2-7b (https:
//huggingface.co/meta-llama/Llama-2-7b-hf), llama-
2-13b (https://huggingface.co/meta-llama/Llama-2-13b-hf),
mistral-7b (https://huggingface.co/mistralai/Mistral-7B-v0.
1), roberta-base (https://huggingface.co/FacebookAI/
roberta-base)

• Dataset: Auto download from huggingface: GSM8K, Wikitext-
2, GLUE; Download use script: Math10K, SVAMP, mawps,
AQuA; Download from google drive: redpajama, proof-pile,
PG-19. The download path can be seen in Github project.

• Run-time environment: Ubuntu 20.04 LTS, CUDA Version
12.0+, PyTorch version 2.0+

• Hardware: CPU: x86 architecture; GPU: NVIDIA GPU (Am-
pere arch. is recommend) with 16GB+ memory.

• Execution: See the README.md in attachments provided
• Metrics: loss, accuracy, memory consumption, throughput
• Output: training log, task accuracy/perplexity, checkpoints
• Experiments: See A.5 Experiment workflow, Evaluation

and expected result part.
• How much disk space required (approximately)?: 200GB+
• How much time is needed to prepare workflow (approxi-

mately)?: Download the checkpoints/datasets: 30min; Build
the Python environment: 10min.

• How much time is needed to complete experiments (approx-
imately)?: Full experiment: about 2-3 days. Demo experiment:
about 2h.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License 2.0
• Data licenses (if publicly available)?: MIT license
• Workflow framework used?: No

A.3 Description
A.3.1 How delivered
The artifact is distributed as an environment configuration man-
ual. A companion GitHub repository https://github.com/

Ther-nullptr/HyC-LoRA-release contains:
• Source code
• Detailed descriptions of scripts
• Links of models and datasets

A.3.2 Hardware dependencies
• CPU: x86 architecture. Since the computation in this project

mainly relies on the GPU, there is no special requirement for
CPU performance. It is worth noting that although some of our
experiments were conducted on devices with arm architecture
(e.g., NVIDIA Jetson Orin series), the open-source repository
code is mainly compatible with x86 architecture.

• GPU: Proved GPUs: NVIDIA A800 80GB PCIe, NVIDIA
RTX 6000 Ada, NVIDIA GeForce RTX 3090. Other GPUs
were not tested, but might work if meeting the following con-
ditions: ❶ HBM: 16GB+ is recommended, more specific min-
imum memory requirements can be obtained from Figure 8 in
the original paper. ❷: Arch: Ampere or Hopper architecture for
bf16/tf32 tensor core support.

• Disk: 200GB+: models (about 70GB), datasets (about 50GB)
and rest for generated checkpoints.

A.3.3 Software dependencies
See Quick Start part in README.md of Github Project.

A.3.4 Datasets
• GSM8K: experiments for Table 3
• Wikitext2: experiments for Table 3
• Math10K, SVAMP, mawps, AQuA: experiments for Table 4
• redpajama, proof-pile, PG-19: experiments for Table 5
• GLUE: experiments for Table 6

A.4 Installation
See Quick Start part in README.md of Github Project. One possi-
ble organization of the directory tree is as follows:

Listing 1. dir tree
.
|-- figures # Thesis illustration
| |-- main -intra -inter.jpg
| |-- main -intra -inter.pdf
|-- models # Model structure implementation
| |-- llama
| |-- llama_flash_attn
| |-- mistral
| |-- roberta
| |-- utils
| |-- compute_utils.py
|-- operators # Triton kernels for certain operator
| |-- compress_function_kernel.py
.. ..
| |--

triton_fuse_lora_silu_hadamard_forward_kernels.py
|-- ckpt # Needs to be created on your own , for

placing models checkpoints (e.g. llama -2-7b)
|-- README.md
|-- requirements.txt # Dependency libraries required

by the project
|-- download_dataset.sh # Download the datasets for ‘

run_multitask.sh‘
|-- run_glue.py
|-- run_glue.sh
|-- run_gsm8k.py # main process of gsm8k experiment
|-- run_gsm8k.sh # script for running gsm8k

experiment
|-- run_longseq.py
|-- run_longseq.sh
|-- run_multitask.py
|-- run_multitask.sh
|-- run_wikitext2.py
|-- run_wikitext2.sh

1

https://github.com/Ther-nullptr/HyC-LoRA-release
https://github.com/Ther-nullptr/HyC-LoRA-release
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://github.com/Ther-nullptr/HyC-LoRA-release
https://github.com/Ther-nullptr/HyC-LoRA-release

|-- utils # utils functions
|-- accuracy
|-- glue
|-- longseq
|-- math_10k

A.5 Experiment workflow, Evaluation and expected
result

Full experiments require a lot of arithmetic and time. If the device
has less arithmetic or limited time, try demo experiments.

(E1) Basic Algorithm Experiments – demo [5 min human-
time and about 10 min compute-time]

• Preparation: ❶ Setup the environment following Quick Start
part in README.md. ❷ Download the models on huggingface,
e.g., llama-2-7b (https://huggingface.co/meta-llama/
Llama-2-7b-hf), and put the model dir to a certain position
e.g., ckpt/. ❸ Change the model name and model dir config
in run gsm8k.sh to your own path like:
model_name=<your model name >
model_dir=<your model dir >
model_name_full=${model_dir }/${model_name}

• Execution: Run bash run gsm8k.sh

• Results:
❶ After launch, the configuration of the core parameters will
be printed on the terminal in green color:
********** HycLora Configuration **********
[INFO] HycLora type: intra_inter
[INFO] Iteration Threshold: 5
[INFO] Softmax Outlier Ratio: 0.05
[INFO] Layernorm Outlier Ratio: 0.005
[INFO] Quantization Bit: 2

❷ After a few minutes, a progress bar recording the training
process and degrading model loss record will appear on the
terminal, proving that the model is training properly (then the
program can be canceled manually):

{’loss ’: 1.0592 , ’grad_norm ’:

0.158203125 , ’learning_rate ’:

3.529411764705882e-05, ’epoch ’:

0.02}

{’loss ’: 0.9622 , ’grad_norm ’: 0.234375 ,

’learning_rate ’: 7.058823529411764e

-05, ’epoch ’: 0.04}

{’loss ’: 0.682 , ’grad_norm ’: 0.375 , ’

learning_rate ’:

0.00010588235294117647 , ’epoch ’:

0.06}

{’loss ’: 0.5484 , ’grad_norm ’:

0.1689453125 , ’learning_rate ’:

0.00014117647058823528 , ’epoch ’:

0.09}

2%|-- |

49/2802 [02:48 <1:19:14 , 1.73s/it]

• Notes: The first time you start the programme, it will automat-
ically download the required datasets, which may take a few
minutes, so please ensure you have a good internet connection.
The program may display the following error if your network
encounters an issue. In this case, please check your network
connection:

Traceback (most recent call last):
File "/home/abc/HyC -LoRA -release/run_gsm8k.py",

line 569, in <module >
train_and_eval ()

...
File "/home/abc/anaconda3/envs/hyclora/lib/

python3 .10/site -packages/datasets/load.py",
line 1780, in dataset_module_factory

raise ConnectionError(f"Couldn ’t reach ’{path
}’ on the Hub ({type(e).__name__ })")

ConnectionError: Couldn ’t reach ’gsm8k ’ on the Hub
(SSLError)

(E2) Basic Algorithm Experiments – full [5 min human-time
and about 1.5 h compute-time on A800 / about 3 h compute-time
on 3090]

• Preparation: Same as E1.

• Execution: Same as E1.

• Results:
❶ When the model has been trained, the terminal will display a
summary of the training phase:

{’loss ’: 0.145 , ’grad_norm ’: 0.296875 , ’

learning_rate ’: 4.8529260605706386e

-08, ’epoch ’: 5.95}

{’loss ’: 0.1338 , ’grad_norm ’:

0.27734375 , ’learning_rate ’:

1.4439004654120956e-08, ’epoch ’:

5.97}

{’loss ’: 0.1266 , ’grad_norm ’:

0.30859375 , ’learning_rate ’:

4.0108971875452144e-10, ’epoch ’:

5.99}

{’train_runtime ’: 4772.7021 , ’

train_samples_per_second ’: 9.395, ’

train_steps_per_second ’: 0.587 , ’

train_loss ’: 0.28048270989706653 , ’

epoch ’: 6.0}

❷ After that, the script will step into evaluation stage. Final
evaluation result will be displayed on the terminal:

prediction [18.0 , 3.0, ..., 11.0]

ground truth [18.0, 3.0, ..., 14.0]

adapter: None | GSM8K test accuracy:

29.42% | full precision: False

❸ A .log file will be generated in exp results gsm8k/,
recording the configuration of the experiment, the training pro-
cess and the evaluation process.

• Corresponding Content: Table 3: Algorithm performance ...
(the same as below) in original paper.

• Notes: If you want to complete the flow of the full experiment
while saving time, you can modify the num train epochs

config in run gsm8k.sh.

(E3) Reset Configurations – demo/full [time consumptions
same as E1]

• Preparation: Same as E1.

• Execution:
❶ Modify the core HyC-LoRA hyper-parameters in run gsm8k.sh

script:

2

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf

use_hyclora=True

layer_type=intra_inter

iteration_threshold =5

softmax_outlier_ratio =0.05

layernorm_outlier_ratio =0.005

q_bit=2

The exact meaning of the hyper-parameters can be found in the
Configuration Guide part in README.md.
❷ Rerun bash run gsm8k.sh

• Result:
Same as E1 and E2. The training and evaluation logs change
with configuration changes.

• Corresponding Content: Table 3: Algorithm performance ...
(the same as below) in original paper.

(E4) Memory Consumption Evaluation [5 min human-time
and about 5 min compute-time]

• Preparation: Same as E1 (for run memory throughput.sh).

• Execution:
❶ Modify the evaluation config and the core HyC-LoRA hyper-
parameters in run memory throughput.sh script:

#! evaluation config

evaluation sequence length

seq_len =512

evaluation batch size

per_device_train_batch_size =4

whether to evaluate memory or

throughput

evaluate_memory=True

evaluate_throughput=False

#! HyCLoRA core parameters

use_hyclora=True

layer_type=intra_inter

iteration_threshold =5

softmax_outlier_ratio =0.05

layernorm_outlier_ratio =0.005

q_bit=2

❷ Run bash run memory throughput.sh

• Result:
The profiled memory consumption should be printed in the
terminal:

0%| | 0/2802 [00:00<?,

?it/s]

torch.cuda.memory_allocated (static):

4327.07 MiB

torch.cuda.memory_allocated: 6045.48 MiB

torch.cuda.memory_allocated: 6134.20 MiB

The program will automatically stop after two iterations.

• Corresponding Content: Figure 8: Measured Memory... in
original paper.

• Notes: The ”(static)” part means the static memory alloca-
tion during training, including the weight and optimizer state;

The subsequent data represent the dynamic peak memory al-
location after considering the buffered activation memory con-
sumption. The two above can be subtracted to get the buffered
activation memory usage.

(E5) Throughput Evaluation [5 min human-time and about 10
min compute-time]

• Preparation: Same as E1.

• Execution: Modify the evaluation config and the core HyC-
LoRA hyper-parameters in run memory throughput.sh script:

whether to evaluate memory or

throughput

evaluate_memory=False

evaluate_throughput=True

• Result: The training throughput data can be read from the right
side of the progress bar:

1%|- |20/2802[02:06 <1:56:26 ,2.51s/it]

1%|- |30/2802[02:31 <1:55:34 ,2.50s/it]

1%|-- |40/2802[02:56 <1:54:51 ,2.50s/it]

2%|-- |49/2802[03:18 <1:54:23 ,2.49s/it]

In the original paper’s setting, per iteration has 16 sequences
(per device train batch size=4 and gradient accu steps=4),
so the sequence per second can be calculated as: 16

second per iteration
.

After the data has been read, the program can be canceled man-
ually.

• Corresponding Content: Figure 7: Throughput... in original
paper.

• Notes: Due to the cold start and short calibration phase of the
machine, we strongly recommend reading the throughput data
after the operation has stabilized (after about 20-30 iterations).

A.6 Experiment customization
None.

A.7 Notes
None.

A.8 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/artifact-review-badging

3

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How delivered
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow, Evaluation and expected result
	Experiment customization
	Notes
	Methodology

