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We divide the supplementary material in three sections. Appendix A contains the proofs related to the
accelerated algorithm, i.e. the proofs of Theorems 2.4 and 2.5. In Appendix B we prove the results
related to the reductions in Section 3. Finally, in Appendix C, we prove the geometric lemmas that
take into account the geodesic map h to obtain relationships between F and f , namely Lemmas 2.1,
2.2 and 2.3.

A ACCELERATION. PROOFS OF THEOREM 2.4 AND THEOREM 2.5

Diakonikolas & Orecchia (2019) developed the approximate duality gap technique which is a
technique that provides a structure to design and prove first order methods and their guarantees for the
optimization of convex problems. We take inspiration from this ideas to apply them to the non-convex
problem we have at hand Theorem 2.4, as it was sketched in Section 2.1. We start with two basic
definitions.
Definition A.1. Given two points x̃, ỹ, we define the Bregman divergence with respect to ψ(·) as

Dψ(x̃, ỹ)
def
= ψ(x̃)− ψ(ỹ)− 〈∇ψ(ỹ), x̃− ỹ〉.

Definition A.2. Given a closed convex set Q and a function ψ : Q → R, we define the convex
conjugate of ψ, also known as its Fenchel dual, as the function

ψ∗(z̃) = max
x̃∈Q
{〈z̃, x̃〉 − ψ(x̃)}.

For simplicity, we will use ψ(x̃) = 1
2‖x̃‖

2 in Algorithm 1, but any strongly convex map works. The
gradient of the Fenchel dual of ψ(·) is ∇ψ∗(z̃) = arg minz̃′∈X {‖z̃′ − z̃‖}, that is, the Euclidean
projection ΠQ(z̃) of the point z̃ onto Q. Note that when we apply Theorem 2.4 to Theorem 2.5
our constraint X will be a ball centered at 0 of radius R̃, so the projection of a point z̃ outside of
X will be the vector normalization R̃z̃/‖z̃‖. Any continuously differentiable strongly convex ψ
would work, provided that ψ∗(z) is easily computable, preferably in closed form. Note that by the
Fenchel-Moreau theorem we have for any such map that ψ∗∗ = ψ.

We recall we assume that f satisfies

f(x̃) +
1

γn
〈∇f(x̃), ỹ − x̃〉 ≤ f(ỹ) if 〈∇f(x̃), ỹ − x̃〉 ≤ 0,

f(x̃) + γp〈∇f(x̃), ỹ − x̃〉 ≤ f(ỹ) if 〈∇f(x̃), ỹ − x̃〉 ≥ 0.

(8)

Let αt be an increasing function of time t. We want to work with continuous and discrete approaches
in a unified way so we use Lebesgue-Stieltjes integration. Thus, when αt is a discrete measure, we
have that αt =

∑∞
i=1 aiδ(t− (t0 + i− 1)) is a weighted sum of Dirac delta functions. We define

At =
∫ t
t0
dατ =

∫ t
t0
α̇τdτ . In discrete time, it is At =

∑t−t0+1
i=1 ai. In the continuous case note that

we have αt −At = at0 .

We start defining a continuous method that we discretize with an approximate implementation of
the implicit Euler method. Let x̃t be the solution obtained by the algorithm at time t. We define
the duality gap Gt

def
= Ut − Lt as the difference between a differentiable upper bound Ut on the

function at the current point and a lower bound on f(x∗). Since in our case f is differentiable
we use Ut

def
= f(x̃t). The idea is to enforce the invariant d

dt (αtGt) = 0, so we have at any time
f(x̃t)− f(x̃∗) ≤ Gt = Gt0αt0/αt.

Note that for a global minimum x̃∗ of f and any other point x̃ ∈ Q, we have 〈∇f(x̃), x̃∗ − x̃〉 ≤ 0.
Otherwise, we would obtain a contradiction since by (8) we would have

f(x̃) < f(x̃) + γp〈∇f(x̃), x̃∗ − x̃〉 ≤ f(x̃∗).

Therefore, in order to define an appropriate lower bound, we will make use of the inequality f(x̃∗) ≥
f(x̃) + 1

γn
〈∇f(x̃), x̃∗ − x̃〉, for any x̃ ∈ Q, which holds true by (8), for ỹ = x̃∗. Combining this

inequality for all the points visited by the continuous method we have

f(x̃∗) ≥
∫ t
t0
f(x̃τ )dατ

At
+

∫ t
t0

1
γn
〈∇f(x̃τ ), x̃∗ − x̃τ 〉dατ

At
.
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We cannot compute this lower bound, since the right hand side depends on the unknown point x̃∗.
We could compute a looser lower bound by taking the minimum over ũ ∈ Q of this expression,
substituting x̃∗ by ũ. However, this would make the lower bound non-differentiable and we could
have problems at t0. In order to solve the first problem, we first add a regularizer and then take the
minimum over ũ ∈ Q.

f(x̃∗)+
Dψ(x̃∗, x̃t0)

At

≥
∫ t
t0
f(x̃τ )dατ

At
+

minũ∈Q

{∫ t
t0

1
γn
〈∇f(x̃τ ), ũ− x̃τ 〉dατ +Dψ(ũ, x̃t0)

}
At

In order to solve the second problem, we mix this lower bound with the optimal lower bound f(x̃∗)
with weight αt − At (this is only necessary in continuous time, in discrete time this term is 0).
Not knowing f(x̃∗) or Dψ(x̃∗, x̃t0) will not be problematic. Indeed, we only need to guarantee
d
dt (αtGt) = 0, so after taking the derivative these terms will vanish. After rescaling the normalization
factor, we finally obtain the lower bound

f(x̃∗) ≥ Lt
def
=

∫ t
t0
f(x̃τ )dατ

αt
+

minũ∈Q

{∫ t
t0
〈 1
γn
∇f(x̃τ ), ũ− x̃τ 〉dατ +Dψ(ũ, x̃t0)

}
αt

+
(αt −At)f(x̃∗)−Dψ(x̃∗, x̃t0)

αt
.

(9)

Let z̃t = ∇ψ(x̃t0)−
∫ t
t0

1
γn
∇f(x̃τ )dατ . Then, by Fact A.7, we can compute the optimum ũ above

as

∇ψ∗(z̃t) = arg min
ũ∈Q

{∫ t

t0

〈 1

γn
∇f(x̃τ ), ũ− x̃τ 〉dατ +Dψ(ũ, x̃t0)

}
. (10)

Recalling Ut = f(x̃t) and using (9) and Danskin’s theorem in order to differentiate inside the min
we obtain:

d

dt
(αtGt) =

d

dt
(αtf(x̃t))− α̇tf(x̃t)− α̇t

1

γn
〈∇f(x̃t),∇ψ∗(z̃t)− x̃t〉

=
1

γn
〈∇f(x̃t), γnαt ˙̃x− α̇t(∇ψ∗(z̃t)− x̃t)〉.

Thus, to satisfy the invariant d
dt (αtGt) = 0, it is enough to set γnαt ˙̃xt = α̇t(∇ψ∗(z̃t)− x̃t), yielding

the following continuous accelerated dynamics

˙̃zt = − 1

γn
α̇t∇f(x̃t),

˙̃xt =
1

γn
α̇t
∇ψ∗(z̃t)− x̃t

αt
,

z̃(t0) = ∇ψ(x̃t0),

x̃t0 ∈ Q is an arbitrary initial point.

(11)

Now we proceed to discretize the dynamics. Let Ei+1
def
= Ai+1Gi+1 − AiGi be the discretization

error. Then we have

Gk =
A1

Ak
G1 +

∑k−1
i=1 Ei+1

Ak
.

Lemma A.3. If we have

f(x̃i+1)− f(x̃i) ≤ γ̂i〈∇f(x̃i+1), x̃i+1 − x̃i〉+ ε̂i, (12)

for some γ̂i, ε̂i ≥ 0, then the discretization error satisfies

Ei+1 ≤ 〈∇f(x̃i+1), (Aiγ̂i +
ai+1

γn
)x̃i+1 − γ̂iAix̃i −

ai+1

γn
∇ψ∗(z̃i+1))〉 −Dψ∗(z̃i, z̃i+1) +Aiε̂i.
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Proof. In a similar way to Diakonikolas & Orecchia (2018), we could compute the discretization
error as the difference between the gap and the gap computed allowing continuous integration rules
in the integrals that it contains. However, we will directly bound Ei+1 as Ai+1Gi+1 −AiGi instead.
Using the definition of Gi, Ui, Li we have

Ai+1Gi+1 −AiGi
≤ (Ai+1f(x̃i+1)−Aif(x̃i))−Ai+1Li+1 +AiLi

1
≤ (Aif(x̃i+1)−Aif(x̃i) + ai+1f(x̃i+1))

−
i+1∑
j=1

ajf(x̃j)−
i+1∑
j=1

aj
γn
〈∇f(x̃j),∇ψ∗(z̃i+1)− x̃j〉 −Dψ(∇ψ∗(z̃i+1), x̃0)

+

i∑
j=1

ajf(x̃j) +

i∑
j=1

aj
γn
〈∇f(x̃j),∇ψ∗(z̃i)− x̃j〉+Dψ(∇ψ∗(z̃i), x̃0)

2
≤ Ai(f(x̃i+1)− f(x̃i))− 〈

ai+1

γn
∇f(x̃i+1),∇ψ∗(z̃i+1)− x̃i+1〉

+

i∑
j=1

〈aj
γn
∇f(x̃j),∇ψ∗(z̃i)−∇ψ∗(z̃i+1)〉

[−〈∇ψ(x̃0),∇ψ∗(z̃i)−∇ψ∗(z̃i+1)〉+ ψ(∇ψ∗(z̃i))− ψ(∇ψ∗(z̃i+1))]

3
≤ Ai(f(x̃i+1)− f(x̃i))− 〈

ai+1

γn
∇f(x̃i+1),∇ψ∗(z̃i+1)− x̃i+1〉 −Dψ∗(z̃i, z̃i+1)

4
≤ 〈∇f(x̃i+1), (Aiγ̂i +

ai+1

γn
)x̃i+1 − γ̂iAix̃i −

ai+1

γn
∇ψ∗(z̃i+1))〉 −Dψ∗(z̃i, z̃i+1) +Aiε̂i.

In 1 we write down the definitions of Li+1 and Li and split the first summand so it is clear
that in 2 we cancel all the ajf(x̃j). In 2 we also cancel some terms involved in the inner
products, we write the definitions of the Bregman divergences and cancel some terms. We recall
z̃i = ∇ψ(x0)−

∑i
j=1

aj
γn
∇f(xj) so we use this fact for the second line of 2 and the first summand

of the third line to obtain, along with the last two summands, the term Dψ(∇ψ∗(z̃i+1),∇ψ∗(z̃i)).
We use Lemma A.8 to finally obtain 3 . Inequality 4 uses (12).

We show now how to cancel out the discretization error by an approximate implementation of implicit
Euler discretization of (11). Note that we need to take into account the assumptions (8) instead of
the usual convexity assumption. According to the previous lemma, we can set x̃i+1 so that the right
hand side of the inner product in Ei+1 is 0. Assume for the moment, that the x̃i+1 we are going to
compute satisfies the assumption of the previous lemma for some γ̂i ∈ [γp, 1/γn]. Thus, the implicit
equation that defines the ideal method we would like to have is

x̃i+1 =
γ̂iAi

Aiγ̂i + ai+1/γn
x̃i +

ai+1/γn

Aiγ̂i + ai+1/γn
∇ψ∗(z̃i −

ai+1

γn
∇f(x̃i+1)).

Note that x̃i+1 is a convex combination of the other two points so it stays in Q. Indeed, x0 ∈ Q
and by (10) we have that∇ψ∗(z̃j) ∈ Q for all j ≥ 0. However this method is implicit and possibly
computationally expensive to implement. Nonetheless, two steps of a fixed point iteration procedure
of this equation will be enough to have discretization error that is bounded by the Aiε̂i: the last
term of our bound. The error in Ei+1 that the inner product incurs is compensated by the Bregman
divergence term. In such a case, the equations of this method become

χ̃i = γ̂iAi

Aiγ̂i+ai+1/γn
x̃i + ai+1/γn

Aiγ̂i+ai+1/γn
∇ψ∗(z̃i)

ζ̃i = z̃i − ai+1

γn
∇f(χ̃i)

x̃i+1 = γ̂iAi

Aiγ̂i+ai+1/γn
x̃i + ai+1/γn

Aiγ̂i+ai+1/γn
∇ψ∗(ζ̃i)

z̃i+1 = z̃i − ai+1

γn
∇f(x̃i+1)

(13)
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We prove now that this indeed leads to an accelerated algorithm. After this, we will show that we can
perform a binary search at each iteration, to ensure that even if we do not know x̃i+1 a priori, we can
compute a γ̂i ∈ [γp, 1/γn] satisfying assumption (12). This will only add a log factor to the overall
complexity.
Lemma A.4. Consider the method given in (13), starting from and arbitrary point x̃0 ∈ Q with
z̃0 = ∇ψ(x̃0) and A0 = 0. Assume we can compute γ̂i such that x̃i+1 satisfies (12). Then, the error
from Lemma A.3 is bounded by

Ei+1 ≤
ai+1

γn
〈∇f(x̃i+1)−∇f(χ̃i),∇ψ∗(ζ̃i)−∇ψ∗(z̃i+1)〉 −Dψ∗(ζ̃i, z̃i+1)−Dψ∗(z̃i, ζ̃i) +Aiε̂i.

Proof. Using Lemma A.3 and the third line of (13) we have

Ei+1 −Aiε̂i ≤
ai+1

γn
〈∇f(x̃i+1),∇ψ∗(ζ̃i)−∇ψ∗(z̃i+1)〉 −Dψ∗(z̃i, z̃i+1)

≤ ai+1

γn
〈∇f(x̃i+1)−∇f(χ̃i) +∇f(χ̃i),∇ψ∗(ζ̃i)−∇ψ∗(z̃i+1)〉 −Dψ∗(z̃i, z̃i+1)

By the definition of ζ̃i we have (ai+1/γn)∇f(χ̃i) = z̃i− ζ̃i. Using this fact and the triangle inequality
of Bregman divergences Lemma A.9, we obtain

ai+1

γn
〈∇f(χ̃i),∇ψ∗(ζ̃i)−∇ψ∗(z̃i+1)〉 = 〈z̃i − ζ̃i,∇ψ∗(ζ̃i)−∇ψ∗(z̃i+1)〉

= Dψ∗(z̃i, z̃i+1)−Dψ∗(ζ̃i, z̃i+1)−Dψ∗(z̃i, ζ̃i).

The lemma follows after combining these two equations.

Theorem A.5. Let Q be a convex set of diameter D. Let f : Q → R be an L̃-smooth function
satisfying (8). Assume there is a point x̃∗ ∈ Q such that ∇f(x∗) = 0. Let x̃i, z̃i, χ̃i, ζ̃i be updated
according to (13), for i ≥ 0 starting from an arbitrary initial point x̃0 ∈ Q with z̃0 = ∇ψ(x̃0)
and A0 = 0, assuming we can find γ̂i satisfying (12). Let ψ : B → R be σ-strongly convex. If
L̃a2

i+1/γnσ ≤ ai+1 +Aiγnγp, then for all t ≥ 1 we have

f(x̃t)− f(x̃∗) ≤ Dψ(x̃∗, χ̃0)

At
+

t−1∑
i=1

Aiε̂i
At

.

In particular, if ai = i
2 ·

σ
L̃
· γ2

nγp, ψ(x̃) = σ
2 ‖x̃‖

2, ε̂i = Atε
2(t−1)Ai

and t =
√

2L̃‖x̃0−x̃∗‖2
γ2
nγpε

=

O(
√
L̃/(γ2

nγpε)) then

f(x̃t)− f(x̃∗) ≤ 2L̃‖x̃0 − x∗‖2

γ2
nγpt(t+ 1)

+
ε

2
< ε.

Proof. We bound the right hand side of the discretization error given by Lemma A.4. Define
a = ‖∇ψ∗(ζ̃i)−∇ψ∗(z̃i+1)‖ and b = ‖∇ψ∗(ζ̃i)−∇ψ∗(z̃i)‖. We have

Ei+1 −Aiε̂i
1
≤ ai+1

γn
〈∇f(x̃i+1)−∇f(χ̃i),∇ψ∗(ζ̃i)−∇ψ∗(z̃i+1)〉 −Dψ∗(ζ̃i, z̃i+1)−Dψ∗(z̃i, ζ̃i)

2
≤ ai+1

γn
L̃‖x̃i+1 − χ̃i‖ · a−Dψ∗(ζ̃i, z̃i+1)−Dψ∗(z̃i, ζ̃i)

3
≤ ai+1

γn
L̃‖x̃i+1 − χ̃i‖ · a−

σ

2
(a2 + b2)

4
≤

a2
i+1/γ

2
n

Aiγ̂i + ai+1/γn
L̃ · ab− σ

2
(a2 + b2)

5
≤ ab

(
a2
i+1/γ

2
n

Aiγ̂i + ai+1/γn
L̃− σ

)
.

18



Under review as a conference paper at ICLR 2021

Here 1 follows from Lemma A.4, 2 uses the Cauchy-Schwartz inequality and smoothness, 3 uses
Lemma A.10, and 4 uses the fact that by the definition of the method (13) we have x̃i+1 − χ̃i =

ai+1/γn
Aiγ̂i+ai+1/γn

(∇ψ∗(ζ̃i) − ∇ψ∗(z̃i)). Finally 5 uses −(a2 + b2) ≤ −2ab, which comes from
(a− b)2 ≥ 0. By the previous inequality, if we want Ei+1 ≤ Aiε̂i, it is enough to guarantee the right
hand side of the last expression is ≤ 0 which is implied by

L̃

σγn
a2
i+1 ≤ ai+1 +Aiγnγp,

since γp ≤ γ̂i. By inspection, if we use the value in the statement of the theorem ai = i
2 ·

σ
L̃
· γ2

nγp

into the previous inequality and noting that Ai = i(i+1)
4 · σ

L̃
· γ2

nγp we have

L̃

σγn
a2
i+1 =

(i+ 1)2

4
· σ
L̃
· γ3

nγ
2
p

≤
(
i+ 1

2
+
i(i+ 1)

4

)
σ

L̃
· γ3

nγ
2
p

≤ i+ 1

2

σ

L̃
· γ2

nγp +
i(i+ 1)

4

σ

L̃
· γ3

nγ
2
p

= ai+1 +Aiγnγp

which holds true. So this choice guarantees discretization error Ei+1 ≤ Aiε̂i. By the definition of Gi
and Ei we have

f(x̃t)− f(x̃∗) ≤ A1G1

Gt
+

t∑
i=1

Ai−1ε̂i
At

So it only remains to bound the initial gap G1. In order to do this, we note that the initial conditions
and the method imply the following computation of the first points, from x̃0 ∈ Q, which is an
arbitrary initial point:

z̃0 = ∇ψ(x̃0)

χ̃0 = γ̂0A0

A0γ̂0+a1/γn
x̃0 + a1/γn

A0γ̂0+a1/γn
∇ψ∗(z̃0) = ∇ψ∗(∇ψ(x̃0)) = x̃0

ζ̃0 = z̃0 − a1
γn
∇f(χ̃0) = z̃0 − a1

γn
∇f(x̃0)

x̃1 = γ̂0A0

A0γ̂0+a1/γn
x̃0 + a1/γn

A0γ̂0+a1/γn
∇ψ∗(ζ̃0) = ∇ψ∗(ζ̃0)

(14)

We have used A0 = 0. Note this first iteration does not depend on γ̂0. Recall also that, using (9), the
first lower bound computed is

L1 = f(x̃1) +
1

γn
〈∇f(x̃1),∇ψ∗(z̃1)− x̃1〉+

1

A1
Dψ(∇ψ∗(z̃1), χ̃0)− 1

A1
Dψ(x̃∗, χ̃0).

Using a1 = A1, x̃1 = ∇ψ∗(ζ̃0), (a1/γn)∇f(χ̃0) = z̃0− ζ̃0, and the triangle inequality for Bregman
divergences Lemma A.9 we obtain

1

γn
〈∇f(χ̃0),∇ψ∗(z̃1)− x̃1〉 =

1

A1
〈z̃0 − ζ̃0,∇ψ∗(z̃1)−∇ψ∗(ζ̃0)〉

=
1

A1

(
Dψ∗(z̃0, ζ̃0)−Dψ∗(z̃0, z̃1) +Dψ∗(ζ̃0, z̃1)

)
.

(15)

On the other hand, by smoothness of f and the initial condition we have

1

γn
〈∇f(x̃1)−∇f(χ̃0),∇ψ∗(z̃1)− x̃1〉 ≥ −

L̃

γn
‖∇ψ∗(ζ̃0)− χ̃0‖‖∇ψ∗(z̃1)− x̃1‖. (16)
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We can now finally bound G1:

G1

1
≤ L̃

γn
‖∇ψ∗(ζ̃0)− χ̃0‖ · ‖∇ψ∗(z̃1)− x̃1‖

− 1

A1

(
Dψ∗(z̃0, ζ̃0) +Dψ∗(ζ̃0, z̃1)

)
+

1

A1
Dψ(x̃∗, χ̃0)

2
≤ L̃

γn
‖∇ψ∗(ζ̃0)− χ̃0‖ · ‖∇ψ∗(z̃1)− x̃1‖

− σ

2A1

(
‖∇ψ∗(ζ̃0)− χ̃0‖2 + ‖∇ψ∗(z̃1)− x̃1‖2

)
+

1

A1
Dψ(x̃∗, χ̃0)

3
≤ ‖∇ψ∗(ζ̃0)− χ̃0‖ · ‖∇ψ∗(z̃1)− x̃1‖

(
L̃

γn
− σ

A1

)
+

1

A1
Dψ(x̃∗, χ̃0)

4
≤ 1

A1
Dψ(x̃∗, χ̃0).

We used in 1 the definition of G1 = U1 − L1 = f(x̃1)− L1 and we bound the inner product in L1

using (15), and (16). Also, since z̃0 = ∇ψ(χ̃0) we have Dψ∗(z̃0, z̃1) = Dψ(∇ψ∗(z̃1),∇ψ∗(z̃0)) =

Dψ(∇ψ∗(z̃1), χ̃0), so we can cancel two of the Bregman divergences. In 2 , we used Lemma A.10,
∇ψ∗(z̃0) = χ̃0, and ∇ψ∗(ζ̃0) = x̃1. In 3 we used again the inequality −(a2 + b2) ≤ −2ab.
Finally 4 is deduced from A1 = a1 ≤ σγn/L̃ which comes from the assumption L̃a2

i+1/γnσ ≤
ai+1 +Aiγnγp for i = 0.

The first part of the theorem follows. The second one is a straightforward application of the first one
as we see below. Indeed, taking into account At =

t(t+1)σγ2
nγp

4L̃
and the choice of t we derive the

second statement.

f(x̃t)− f(x̃∗) ≤ A1G1

At
+

t−1∑
i=1

Aiε̂i
At
≤

σ
2 ‖x̃0 − x̃∗‖2

At
+
ε

2
< ε.

We present now the final lemma, that proves that γ̂i can be found efficiently. As we advanced in the
sketch of the main paper, we use a binary search. The idea behind it is that due to (8) we satisfy the
equation for γ̂i = 1

γn
or γ̂i = γp, or there is γ̂i ∈ (γp, 1/γn) such that 〈∇f(x̃i+1), x̃i+1 − x̃i〉 = 0.

The existence of x̃∗ that satisfies ∇f(x̃∗) = 0 along with the boundedness of Q and smoothness,
imply the Lipschitzness of f . Both Lipschitzness and smoothness allow to prove that a binary search
finds efficiently a suitable point.

Lemma A.6. Let Q ⊆ Rd be a convex set of diameter 2R̃. Let f : Q → R be a function that
satisfies 8, is L̃ smooth and such that there is x̃∗ ∈ Q such that ∇f(x∗) = 0. Let the strongly convex
parameter of ψ(·) be σ = O(1). Let i ≥ 1 be an index. Given two points x̃i, z̃i ∈ Q and the method
in (6) using the learning rates ai = i

2 ·
σ
L̃
· γ2

nγp prescribed in Theorem A.5, we can compute γ̂i
satisfying (12), i.e.

f(x̃i+1)− f(x̃i) ≤ γ̂i〈∇f(x̃i+1), x̃i+1 − x̃i〉+ ε̂i. (17)

And the computation of γ̂i requires no more than

O

(
log

(
L̃R̃

γnε̂i
· i

))
queries to the gradient oracle.

Proof. Let Γ̂i(λ) : [ ai+1

Ai+1
, ai+1/γn
Aiγp+ai+1/γn

]→ R be defined as

Γ̂i

(
ai+1/γn

Ai~x + ai+1/γn

)
= ~x, for ~x ∈ [γp,

1

γn
]. (18)
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By monotonicity, that it is well defined. Let x̃λi+1 be the point computed by one iteration of (6) using
the parameter γ̂i = Γ̂i(λ). Likewise, we define the rest of the points in the iteration (6) depending on
λ. We first try γ̂i = 1/γn and γ̂i = γp and use any of them if they satisfy the conditions. If neither of
them do, it means that for the first choice we had 〈∇f(x̃λ1

i+1), x̃λ1
i+1 − x̃i〉 < 0 and for the second one,

it is 〈∇f(x̃λ2
i+1), x̃λ2

i+1 − x̃i〉 > 0, for λ1 = Γ̂−1
i (1/γn) and λ2 = Γ̂−1

i (γp). Therefore, by continuity,
there is λ∗ ∈ [λ1, λ2] such that 〈∇f(x̃λ

∗

i+1), x̃λ
∗

i+1 − x̃i〉 = 0. The continuity condition is easy to
prove. We omit it because it is derived from the Lipschitzness condition that we will prove below.
Such a point satisfies (8) for ε̂i = 0. We will prove that the function Gi : [ ai+1

Ai+1
, ai+1/γn
Aiγp+ai+1/γn

]→ R,
defined as

Gi(λ)
def
= −Γ̂i(λ)〈∇f(x̃λi+1), x̃λi+1 − x̃i〉+ (f(x̃λi+1)− f(x̃i)), (19)

is Lipschitz so we can guarantee that (12) holds for an interval around λ∗. Finally, we will be able to
perform a binary search to efficiently find a point in such interval or another interval around another
point that satisfies that the inner product is 0.

So
|Gi(λ)−Gi(λ′)| ≤ |f(x̃λi+1)− f(x̃λ

′

i+1)|

+ |Γ̂i(λ′)| · |〈∇f(x̃λ
′

i+1), x̃λ
′

i+1 − x̃i〉 − 〈∇f(x̃λi+1), x̃λi+1 − x̃i〉|
+ |〈∇f(x̃λi+1), x̃λi+1 − x̃i〉| · |Γ̂i(λ′)− Γ̂i(λ)|

(20)

We have used used the triangular inequality and the inequality
|α1β1 − α2β2| ≤ |α1||β1 − β2|+ |β2||α1 − α2|, (21)

which is a direct consequence of the triangular inequality, after adding and subtracting α1β2 in the |·|
on the left hand side. We bound each of the three summands of the previous inequality separately, but
first we bound the following which will be useful for our other bounds,

‖x̃λ
′

i+1 − x̃λi+1‖
1
= ‖(λ′∇ψ∗(ζ̃λ

′

i ) + (1− λ′)x̃i)− (λ∇ψ∗(ζ̃λi ) + (1− λ)x̃i)‖

2
≤ ‖∇ψ∗(ζ̃λi )− x̃i‖|λ′ − λ|+ ‖λ′∇ψ∗(ζ̃λ

′

i )− λ′∇ψ∗(ζ̃λi )‖

3
≤ 2R̃|λ− λ′|+ ‖∇ψ∗(ζ̃λ

′

i )−∇ψ∗(ζ̃λi )‖

4
≤ 2R̃|λ− λ′|+ 1

γnσ
‖∇f(χ̃λi )−∇f(χ̃λ

′

i )‖

5
≤ 2R̃|λ− λ′|+ L̃

γnσ
‖χ̃λi − χ̃λ

′

i ‖

6
≤

(
2R̃+

2LR̃

γnσ

)
|λ− λ′|

(22)

Here, 1 uses the definition of x̃λi+1 as a convex combination of x̃i and ∇ψ∗(ζ̃λi ). 2 adds and
substracts λ′∇ψ∗(ζ̃λi ), groups terms and uses the triangular inequality. In 3 we use the fact that the
diameter of Q is 2R̃ and bound λ′ ≤ 1, and |λ| ≤ 1. 4 uses the 1

σ smoothness of ∇ψ∗(·), which
is a consequence of the σ-strong convexity of ψ(·). 5 uses the smoothness of f . In 6 , from the
definition of χ̃λi we have that ‖χ̃λi − χ̃λ

′

i ‖ ≤ ‖x̃i − z̃i‖|λ− λ′|. We bounded this further using the
diameter of Q.

Note that f is Lipschitz over Q. By the existence of x∗, L̃-smoothness, and the diameter of Q we
obtain that the Lipschitz constant Lp is Lp ≤ 2R2L. Now we can proceed and bound the three
summands of (20). The first one reduces to the inequality above after using Lipschitzness of f(·):

|f(x̃λi+1)− f(x̃λ
′

i+1)| ≤ Lp‖x̃λ
′

i+1 − x̃λi+1‖. (23)
In order to bound the second summand, we note that

|(Γ̂−1
i )′(~x)| =

∣∣∣∣ Aiai+1/γn

(Ai~x + ai+1/γn)2

∣∣∣∣ ≥ γnAiai+1

A2
i+1

, (24)
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so Γ̂i(λ
′), appearing in the first factor, is bounded by A2

i+1/(γnAiai+1). We used ~x ∈ [γp, 1/γn] for
the bound. For the second factor, we add and subtract 〈∇f(x̃λi+1), x̃λ

′

i+1 − x̃i〉 and use the triangular
inequality and then Cauchy-Schwartz. Thus, we obtain

|〈∇f(x̃λ
′

i+1), x̃λ
′

i+1 − x̃i〉 − 〈∇f(x̃λi+1), x̃λi+1 − x̃i〉|

≤ ‖∇f(x̃λi+1)‖ · ‖x̃λ
′

i+1 − x̃λi+1‖+ ‖∇f(x̃λ
′

i+1)−∇f(x̃λi+1)‖ · ‖x̃λ
′

i+1 − x̃i‖

1
≤ (2Lp + 2L̃R̃)‖x̃λ

′

i+1 − x̃λi+1‖.

(25)

In 1 , we used Lipschitzness to bound the first factor. We also used the diameter of Q to bound the
last factor and the smoothness of f(·) to bound the first factor of the second summand.

For the third summand, we will bound the first factor using Cauchy-Schwartz, smoothness of f(·)
and the diameter of Q. We just proved in (24) that Γ̂i is Lipschitz, so use use this property for the
second factor. The result is the following

|〈∇f(x̃λi+1), x̃λi+1 − x̃i〉| · |Γ̂i(λ′)− Γ̂i(λ)| ≤ 4L̃R̃2 A2
i+1

γnAiai+1
|λ′ − λ|. (26)

Applying the bounds of the three summands (23), (24), (25), (26) into (20) we obtain the inequality
|Gi(λ′)−Gi(λ)| ≤ L̂|λ′ − λ| for

L̂ =

(
2R̃+

2L̃R̃

γnσ

)(
Lp + (2Lp + 2L̃R̃)

A2
i+1

γnAiai+1

)
+ 4L̃R̃2 A2

i+1

γnAiai+1
.

We will use the following to bound L̂. If we use the learning rates prescribed in Theorem A.5, namely
ai =

iσγ2
nγp

2L and thus Ai =
i(i+1)σγ2

nγp
4L we can bound A2

i+1/(Aiai+1) ≤ 3(i+ 2), using that i ≥ 1.
In our setting, by smoothness and the existence of x̃∗ ∈ Q such that ∇f(x̃∗) = 0, we have that
Lp ≤ 2R̃L̃. Recall we assume σ = O(1). In Algorithm 1 we use σ = 1.

Recall we are denoting by λ∗ a value such that 〈∇f(x̃λ
∗

i+1), x̃λ
∗

i+1 − x̃i〉 = 0 so Gi(λ
∗) ≤ 0.

Lipschitzness of G implies that if Gi(λ∗) ≤ 0 then Gi(λ) ≤ ε̂i for λ ∈ [λ∗ − ε̂i
L̂
, λ∗ + ε̂i

L̂
] ∩

[Γ−1
i (γn),Γ−1

i (γp)]. If the extremal points, Γ−1
i (γn),Γ−1

i (γp) did not satisfy (17), then this interval
is of length 2ε̂i

L̂
and a point in such interval or another interval that is around another point λ̄∗ that

satisfies 〈∇f(x̃λ̄
∗

i+1), x̃λ̄
∗

i+1 − x̃i〉 = 0 can be found with a binary search in at most

O

(
log

(
L̂

ε̂i

))
1
= O

(
log

(
L̃R̃

γnε̂i
· i

))
iterations, provided that at each step we can ensure we halve the size of the search interval. The
bounds of the previous paragraph are applied in 1 .The binary search can be done easily: we start with
[Γ−1
i (γn),Γ−1

i (γp)] and assume the extremes do not satisfy (17), so the sign of 〈∇f(x̃λi+1), x̃λi+1−x̃i〉
is different for each extreme. Each iteration of the binary search queries the midpoint of the current
working interval and if (17) is not satisfied, we keep the half of the interval such that the extremes
keep having the sign of 〈∇f(x̃λi+1), x̃λi+1− x̃i〉 different from each other, ensuring that there is a point
in which this expression evaluates to 0 and thus keeping the invariant. We include the pseudocode of
this binary search in Algorithm 2.

We proceed to prove Theorem 2.4, which is an immediate consequence of the previous results.

Proof of Theorem 2.4. The proof follows from Theorem A.5, provided that we can find γ̂i satisfying
(12). Lemma A.6 shows that this is possible after performing a logarithmic number of queries to the
gradient oracle. Note that given our choice of ε̂i, t and ai, the number of queries to the gradient oracle
Lemma A.6 requires is no more than O(log(L̃R/γnε)) for any i ≤ t. So we find an ε-minimizer of

f after Õ(
√
L̃/(γ2γpε)) queries to the gradient oracle.
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Proof of Theorem 2.5. Given the function to optimize F : M → R and the geodesic map h, we
define f = F ◦ h−1. Using Lemma 2.3 we know that f is L̃-smooth, with L̃ = O(L). Lemma 2.2
proves that f satisfies (8) for constants γn and γp depending on R. So Theorem 2.4 applies and

the total number of queries to the oracle needed to obtain an ε-minimizer of f is Õ(
√
L̃/γ2

nγpε) =

Õ(
√
L/ε). The result follows, since f(x̃t)− f(x̃∗) = F (xt)− F (x∗).

We recall a few concepts that were assumed during Section 2 to better interpret Theorem 2.5. We
work in the hyperbolic space or an open hemisphere. The aim is to minimize a smooth and g-convex
function defined on any of these manifolds, or a subset of them. The existence of a point x∗ that
satisfies ∇F (x∗) = 0 is assumed. Starting from an arbitrary point x0, we let R be a bound of the
distance between x0 and x∗, that is, R ≥ d(x0, x

∗). We letM = Expx(B̄(0, R)) so that x∗ ∈ M.
We assume F :M′ → R is a differentiable function, whereM′ = ExpxB(0, R′) and R′ > R. We
define F onM′ only for simplicity, to avoid the use of subdifferentials.M has constant sectional
curvature K. If K is positive, we restrict R < π/2

√
K soM is contained in an open hemisphere and

it is uniquely geodesic. We define a geodesic map h from the hyperbolic plane or a open hemisphere
onto a subset of Rd and define the function f : h(M) → R as f = F ◦ h−1. We optimize this
function in an accelerated way up to constants and log factors, where the constants appear as an
effect of the deformation of the geometry and depend on R and K only. Note the assumption of the
existence of x∗ such that ∇F (x∗) = 0 is not necessary, since arg minx∈Expx0

(B̄(0,R)){F (x)} also
satisfies the first inequality in (8) so the lower bounds Li can be defined in the same way as we did.
In that case, if we want to perform constrained optimization, one needs to use the Lipschitz constant
of F , when restricted to Expx(B̄(0, R)), for the analysis of the binary search.

Algorithm 2 BinaryLineSearch(x̃i, z̃i, f,X , ai+1, Ai, ε, L̃, γn, γp)

Input: Points x̃i, z̃i, function f , domain X , learning rate ai+1, accumulated learning rate Ai, final
target accuracy ε, final number of iterations t, smoothness constant L̃, constants γn, γp. Define
ε̂i ← (Atε)/(2(t− 1)Ai) as in Theorem A.5, i.e. with At = t(t+ 1)γ2

nγp/4L̃. Γ̂i defined as in
(18) and Gi defined as in (19) i.e.

Gi(λ)
def
= −Γ̂i(λ)〈∇f(x̃λi+1), x̃λi+1 − x̃i〉+ (f(x̃λi+1)− f(x̃i)),

for xλi+1 being the result of method (13) when γ̂i = Γ̂i(λ).
Output: λ = ai+1/γn

Aiγ̂i+ai+1/γn
for γ̂i such that Gi(Γ̂−1

i (γ̂i)) ≤ ε̂i.
1: if Gi(Γ̂−1

i (1/γn)) ≤ ε̂i then λ = Γ̂−1
i (1/γn)

2: else if Gi(Γ̂−1
i (γp)) ≤ ε̂i then λ = Γ̂−1

i (γp)
3: else
4: left← Γ̂−1

i (1/γn)

5: right← Γ̂−1
i (γp)

6: λ← (left + right)/2
7: while Gi(λ) > ε̂i do
8: if 〈∇f(x̃λi+1), x̃λi+1 − x̃i〉 < 0 then right← λ
9: else left← λ

10: end if
11: λ← (left + right)/2
12: end while
13: end if
14: return λ

A.1 AUXILIARY LEMMAS

The following are classical lemmas of convex optimization that we used in this section and that we
add for completeness.
Fact A.7. Let ψ : Q→ R be a differentiable strongly-convex function. Then

∇ψ∗(z̃) = arg max
x̃∈Q

{〈z̃, x̃〉 − ψ(x̃)}.
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Lemma A.8 (Duality of Bregman Div.). Dψ(∇ψ∗(z̃), x̃) = Dψ∗(∇ψ(x̃), z̃) for all z̃, x̃.

Proof. From the definition of the Fenchel dual (A.2) and (A.7) we have

ψ∗(z̃) = 〈∇ψ∗(z̃), z̃〉 − ψ(∇ψ∗(z̃)) for all z̃.

Since by the Fenchel-Moreau Theorem we have ψ∗∗ = ψ, it holds

ψ(x̃) = 〈∇ψ(x̃), x̃〉 − ψ∗(∇ψ(x̃)), for all x̃.

Using the definition of Bregman divergence (A.1) and (A.7):

Dψ(∇ψ∗(z̃), x̃) = ψ(∇ψ∗(z̃))− ψ(x̃)− 〈∇ψ(x̃),∇ψ∗(z̃)− x̃〉
= ψ(∇ψ∗(z̃)) + ψ∗(∇ψ(x̃))− 〈∇ψ(x̃),∇ψ∗(z̃)〉
= ψ∗(∇ψ(x̃))− ψ∗(z̃)− 〈∇ψ∗(z̃),∇ψ(x̃)− z̃〉
= Dψ∗(∇ψ(x̃), z̃).

Lemma A.9 (Triangle inequality of Bregman Divergences). For all x̃, ỹ, z̃ ∈ Q we have

Dψ∗(x̃, ỹ) = Dψ∗(z̃, ỹ) +Dψ∗(x̃, z̃) + 〈∇ψ∗(z̃)−∇ψ∗(ỹ), x̃− z̃〉.

Proof.

Dψ∗(z̃, ỹ) +Dψ∗(x̃, z̃) + 〈∇ψ∗(z̃)−∇ψ∗(ỹ), x̃− z̃〉
= (ψ∗(z̃)− ψ∗(ỹ)− 〈∇ψ∗(ỹ), z̃ − ỹ〉)

+ (ψ∗(x̃)− ψ∗(z̃)− 〈∇ψ∗(z̃), x̃− z̃〉)
+ 〈∇ψ∗(z̃)−∇ψ∗(ỹ), x̃− z̃〉

= ψ∗(x̃)− ψ∗(ỹ)− 〈∇ψ∗(ỹ), z̃ − ỹ〉+ 〈−∇ψ∗(ỹ), x̃− z̃〉
= Dψ∗(x̃, ỹ).

Lemma A.10. Given a σ-strongly convex function ψ(·) the following holds:

Dψ∗(z̃1, z̃2) ≥ σ

2
‖∇ψ∗(z̃1)−∇ψ∗(z̃2)‖2.

Proof. Using the first order optimality condition of the Fenchel dual and (A.7) we obtain

〈∇ψ(∇ψ∗(z̃1))− z̃1l,∇ψ∗(z̃2)−∇ψ∗(z̃1)〉 ≥ 0

Using σ-strong convexity of ψ and the previous inequality we have

Dψ∗(z̃1, z̃2) = ψ(∇ψ∗(z̃2))− ψ(∇ψ∗(z̃1))− 〈z̃1,∇ψ∗(z̃2)−∇ψ∗(z̃1)〉

≥ σ

2
‖∇ψ∗(z̃1)−∇ψ∗(z̃2)‖2 + 〈∇ψ(∇ψ∗(z̃1))− z̃1,∇ψ∗(z̃2)−∇ψ∗(z̃1)〉

≥ σ

2
‖∇ψ∗(z̃1)−∇ψ∗(z̃2)‖2.

B REDUCTIONS. PROOFS OF RESULTS IN SECTION 3.

Proof of Theorem 3.1. Let Ans be the algorithm in the statement of the theorem. By strong g-
convexity of F and the assumptions on Ans we have that x̂T satisfies

µ

2
d(x̂T , x

∗)2 ≤ F (x̂T )− F (x∗) ≤ µ

2

d(x0, x
∗)2

2
,
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after T = Timens(L, µ,R) queries to the gradient oracle. This implies d(x̂T , x
∗)2 ≤ d(x0, x

∗)2/2.
Then, by repeating this process r def

= dlog(µ · d(x0, x
∗)2/ε)− 1e times, using the previous output as

input for the next round, we obtain a point x̂rT that satisfies

F (x̂rT )− F (x∗) ≤
µ · d(x̂r−1

T , x∗)2

4
≤ · · · ≤ µ · d(x0, x

∗)2

4 · 2r−1
≤ ε.

And the total running time is Timens(L, µ,R) · r = O(Timens(L, µ,R) log(µ · d(x0, x
∗)2/ε)) =

O(Timens(L, µ,R) log(µ/ε)).

Proof of Corollary 3.2. Let R be an upper bound on the distance between the initial point x0 and
an optimum x∗, i.e. d(x0, x

∗) ≤ R. Note that ‖x̃0 − x̃∗‖/R is bounded by a constant depending
on R by Lemma 2.1.a). Note that γn and γp are constants depending on R by Lemma 2.2. As any
g-strongly convex function is g-convex, by using Theorem A.5 and Lemma A.6 with ε = µR

2

4 we
obtain that Algorithm 1 obtains a µR

2

4 -minimizer in at most

T = O

(
‖x̃0 − x̃∗‖

R

√
L

µγ2
nγp

log

(
‖x̃0 − x̃∗‖

R

√
L

µγ2
nγp

))
= O

(√
L/µ log(L/µ)

)
queries to the gradient oracle. Subsequent stages, i.e. calls to Algorithm 1, need a time at most equal
to this. The analysis is the same, but we start at the previous output point and take into account that
the initial distance to the optimum has decreased. Using the reduction Theorem 3.1 we conclude that
given ε > 0 and running Algorithm 1 in stages, we obtain an ε-minimizer of F in

O(
√
L/µ log(L/µ) log(µ · d(x0, x

∗)2/ε)) = O∗(
√
L/µ log(µ/ε)),

queries to the gradient oracle.

As advanced in the main paper, each of the stages of the algorithm resulting from combining
Theorem 3.1 and Corollary 3.2 reduces the distance to x∗ by a factor of 1/

√
2. This means that

subsequent stages can be run using a geodesic map centered at the new starting point, and with the
new parameter R being the previous one reduced by a factor of 1/

√
2. This reduces the constants

incurred by the deformation of the geometry which ultimately reduces the overall constant in the rate.
Note that in order to perform the method with the recentering steps, we need the function F to be
defined over at least Expx0

(B̄(0, R · (1 + 2−1/2))), since subsequent centers are only guaranteed to
be ≤ R/

√
2 close to x∗, and they could get slightly farther from x0.

B.1 PROOF OF THEOREM 3.3

The algorithm is the following. We successively regularize the function with strongly g-convex
regularizers in this way F (µi)(x)

def
= F (x) + µi

2 d(x, x0)2 for i ≥ 0. For each i ≥ 0, we use the
algorithmA on the function F (µi) for the time in the statement of the theorem and obtain a point x̂i+1,
starting from point x̂i, where x̂0 = x0. The regularizers are decreased exponentially µi+1 = µi/2
until we reach roughly µT = ε/R2, see below for the precise value. Let’s see how this algorithm
works. We first state the following fact, that says that indeed µi

2 d(x, x0)2 is a strongly g-convex
regularizer. Let D be the diameter ofM. We define the following quantities

K+
R

def
=

{
1 if Kmax ≤ 0√
KmaxD cot(

√
KmaxD) if Kmax > 0

K−R
def
=

{√
−KminD coth(

√
−KminD) if Kmin < 0

1 if Kmin ≥ 0

Here Kmax and Kmin are the upper and lower bounds on the sectional curvature of the manifoldM.
In Theorem 3.3, it is D = 2R.
Fact B.1. LetM = Expx0

(B̄(0, R)) be a manifold with sectional curvature bounded below and
above by Kmin and Kmax, respectively, where x0 ∈M is a point. The function f :M→ R defined
as f(x) = 1

2d(x, x0)2 is K+
R-g-strongly convex and K−R-smooth.
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The result regarding strong convexity can be found, for instance, in Alimisis et al. (2019) and it is a
direct consequence of the following inequality, which can also be found in Alimisis et al. (2019):

d(y, x0)2 ≥ d(x, x0)2 − 2〈Exp−1
x (x0), y − x〉+K+

Rd(x, y)2,

along with the fact that grad f(x) = −Exp−1
x (x0). The result regarding smoothness is, similarly,

obtained from the following inequality:

d(y, x0)2 ≤ d(x, x0)2 − 2〈Exp−1
x (x0), y − x〉+K−Rd(x, y)2,

which can be found in Zhang & Sra (2016) (Lemma 6). Alternatively, one can derive these inequalities
from upper and lower bounds on the Hessian of f(x) = 1

2d(x, x0), cf. Jost & Jost (2008), Theorem
4.6.1, as it was done in Lezcano-Casado (2020).

We prove now that the regularization makes the minimum to be closer to x0, so the assumption of the
Theorem on F̂ holds for the functions we use. Define xi+1 as the minimizer of F (µi).
Lemma B.2. We have d(xi+1, x0) ≤ d(x∗, x0).

Proof. By the fact that xi+1 is the minimizer of F (µi) we have F (µi)(xi+1)− F (µi)(x∗) ≤ 0. Note
that by g-strong convexity, equality only holds if xi+1 = x∗ which only happens if x0 = xi+1 = x∗.
By using the definition of F (µi)(x) = F (x) + µi

2 d(x, x0)2 we have:

F (xi+1) +
µi
2
d(xi+1, x0)2 − F (x∗)− µi

2
d(x∗, x0)2 ≤ 0

⇒ d(xi+1, x0) ≤ d(x∗, x0),

where in the last step we used the fact F (xi+1)− F (x∗) ≥ 0 that holds because x∗ is the minimizer
of F .

We note that previous techniques proved and used the fact that d(xi+1, x
∗) ≤ d(x0, x

∗) instead Allen
Zhu & Hazan (2016). But crucially, we need our former lemma in order to prove the bound for our
non-Euclidean case. Our technique could be applied to Allen Zhu & Hazan (2016) to decrease the
constants of the Euclidean reduction. Now we are ready to prove the theorem.

Proof of Theorem 3.3. We recall the definitions above. F (µi)(x) = F (x) + µi

2 d(x, x0)2. We start
with x̂0 = x0 and compute x̂i+1 using algorithmA with starting point x̂i and function F (µi) for time
Time(L(i), µ(i),M, R), where L(i) and µ(i) are the smoothness and strong g-convexity parameters
of F (µi). We denote by xi+1 the minimizer of F (µi). We pick µi = µi−1/2 and we will choose later
the value of µ0 and the total number of stages. By the assumption of the theorem on A, we have that

F (µi)(x̂i+1)− min
x∈M

F (µi)(x) = F (µi)(x̂i+1)− F (µi)(xi+1) ≤ F (µi)(x̂i)− F (µi)(xi+1)

4
. (27)

Define Di
def
= F (µi) (x̂i) − F (µi) (xi+1) to be the initial objective distance to the minimum on

function F (µi) before we call A for the (i+ 1)-th time. At the beginning, we have the upper bound
D0 = F (µ0)(x̂0)−minx F

(µ0)(x) ≤ F (x0)− F (x∗). For each stage i ≥ 1, we compute that

Di = F (µi) (x̂i)− F (µi) (xi+1)

1
= F (µi−1) (x̂i)−

µi−1 − µi
2

d(x0, x̂i)
2 − F (µi−1) (xi+1) +

µi−1 − µi
2

d(x0, xi+1)2

2
≤ F (µi−1) (x̂i)− F (µi−1) (xi) +

µi−1 − µi
2

d(x0, xi+1)2

3
≤ Di−1

4
+
µi
2
d(x0, xi+1)2

4
≤ Di−1

4
+
µi
2
d(x0, x

∗)2.
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Above, 1 follows from the definition of F (µi)(·) and F (µi−1)(·); 2 follows from the fact that xi is
the minimizer of F (µi−1)(·). We also drop the negative term −(µi−1 − µi)d(x0, x̂i)/2. 3 follows
from the definition of Di−1, the assumption on A, and the choice µi = µi−1/2 for i ≥ 1; and 4
follows from Lemma B.2. Now applying the above inequality recursively, we have

DT ≤
D0

4T
+ d(x0, x

∗)2 · (µT
2

+
µT−1

8
+ · · · ) ≤ F (x0)− F (x∗)

4T
+ µT · d(x0, x

∗)2. (28)

We have used the choice µi = µi−1/2 for the second inequality. Lastly, we can prove that x̂T , the
last point computed, satisfies

F (x̂T )− F (x∗)
1
≤ F (µT )(x̂T )− F (µT )(x∗) +

µT
2
d(x0, x

∗)2

2
≤ F (µT )(x̂T )− F (µT )(xT+1) +

µT
2
d(x0, x

∗)2

3
= DT +

µT
2
d(x0, x

∗)2

4
≤ F (x0)− F (x∗)

4T
+

3µT
2
d(x0, x

∗)2.

We use the definition of F (µT ) in 1 and drop −µT

2 d(x0, x̂T )2. In 2 we use the fact that xT+1 is
the minimizer of F (µT ). The definition of DT is used in 3 . We use inequality (28) for step 4 .
Finally, by choosing T = dlog2(∆/ε)/2e+ 1 and µ0 = ∆/R2 we obtain that the point x̂T satisfies

F (x̂T )− F (x∗) ≤ F (x0)− F (x∗)

4∆/ε
+

3µ0

8∆/ε
d(x0, x

∗)2 ≤ ε

4
+

3ε

8
< ε,

and can be computed in time
∑T−1
t=0 Time(L+ 2−tµ0K−R , 2−tµ0K+

R,M, R), since by Fact B.1 the
function F (µt) is L+ 2−tµ0K−R smooth and 2−tµ0K+

R g-strongly convex.

B.2 EXAMPLE 3.4

We use the algorithm in Corollary 3.2 as the algorithm A of the reduction of Theorem 3.3. Given
M = H orM = S , the assumption onA is satisfied for Time(L, µ,M, R) = O(

√
L/µ log(L/µ)).

Indeed, if ∆ is a bound on the gap F̂ (x0) − F̂ (x∗) = F̂ (x0) − minx∈M F̂ (x) = F̂ (x0) −
minx∈Expx0

(B̄(0,R)) F̂ (x) for some µ strongly g-convex F̂ , then we know that d(x0, x
∗)2 ≤ 2∆

µ . By

calling the algorithm in Corollary 3.2 with ε = ∆
4 we require a time that is

O(
√
L/µ log(L/µ) log(µ · d(x0, x

∗)2/(∆/4))) = O(
√
L/µ log(L/µ) log(µ · (2∆/µ)/(∆/4)))

= O(
√
L/µ log(L/µ)).

Let T = dlog2(∆/ε)/2e+ 1. The reduction of Theorem 3.3 gives an algorithm with rates
T−1∑
t=0

Time(L+ 2−tµ0K−R , 2
−tµ0K+

R,M, R)

= O

(
T−1∑
t=0

√
L

2−tK+
R∆/R2

+
K−R
K+
R

· log

(
L

2−tK+
R∆/R2

+
K−R
K+
R

))
1
= O

((√
L

K+
Rε

+

√
K−R
K+
R

log(∆/ε)

)
log

(
L

K+
Rε

+
K−R
K+
R

))
= Õ(

√
L/ε)

In 1 we have used Minkowski’s inequality
√
a+ b ≤

√
a+
√
b. We used the value µ0 = ∆/R2. In

order to group the sum of the first summands, we used the fact that
√

1/ε+
√

1/2ε+· · · = O(
√

1/ε),
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along with the fact 2−(T−1)µ0 ≥ log(ε/∆). We added up the group of second summands. For the log
factor, we upper bounded L/(2−tK+

R∆/R2) = O(L/K+
Rε), for t < T . Note that by L-smoothness

and the diameter being 2R, we have ∆ ≤ 2LR2 so
√
K−R/K

+
R log(∆/ε) = Õ(1).

C GEOMETRIC RESULTS. PROOFS OF LEMMAS 2.1, 2.2 AND 2.3

In this section we prove the lemmas that take into account the deformations of the geometry and
the geodesic map h to obtain relationships between F and f . Namely Lemma 2.1, Lemma 2.2
and Lemma 2.3. First, we recall the characterizations of the geodesic map and some consequences.
Then in Appendix C.2, Appendix C.3 and Appendix C.4 we prove the results related to distances
angles and gradient deformations, respectively. That is, each of the three parts of Lemma 2.1. In
Appendix C.4 we also prove Lemma 2.3, which comes naturally after the proof of Lemma 2.1.c).
Finally, in Appendix C.5 we prove Lemma 2.2. Before this, we note that we can assume without loss
of generality that the curvature of our manifolds of interest can be taken to be K ∈ {1,−1}. One can
see that the final rates depend on K through R, L and µ.
Remark C.1. For a function F : M → R whereM = H orM = S is a manifold of constant
sectional curvature K 6∈ {1,−1, 0}, we can apply a rescaling to the Gnomonic or Beltrami-Klein
projection to define a function on a manifold of constant sectional curvature K ∈ {1,−1}. Namely,
we can mapM to B via h, then we can rescale B by multiplying each vector in B by the factor√
|K| and then we can apply the inverse geodesic map for the manifold of curvature K ∈ {1,−1}.

If R is the original bound of the initial distance to an optimum, and F is L-smooth and µ-strongly
g-convex (possibly with µ = 0) then the initial distance bound becomes

√
|K|R and the induced

function becomes L/|K|-smooth and µ/|K|-strongly g-convex. This is a simple consequence of
the transformation rescaling distances by a factor of

√
|K|, i.e. if r : MK → MK/|K| is the

rescaling function, then dK(x, y)
√
|K| = dK/|K|(r(x), r(y)), where dc(·, ·) denotes the distance on

the manifold of constant sectional curvature c.

C.1 PRELIMINARIES

We recall our characterization of the geodesic map. Given two points x̃, ỹ ∈ B, we have that d(x, y),
the distance between x and y with the metric ofM, satisfies

CK(d(x, y)) =
1 +K〈x̃, ỹ〉√

1 +K‖x̃‖2 ·
√

1 +K‖ỹ‖2
. (29)

And since the expression is symmetric with respect to rotations, X = h(M) is a closed ball of radius
R̃, with CK(R) = (1 +KR̃2)−1/2. Equivalently,

R̃ = tan(R) if K = 1,

R̃ = tanh(R) if K = −1.
(30)

Similarly, we can write the distances as

d(x, y) = arccos

(
1 + 〈x̃, ỹ〉√

1 + ‖x̃2‖
√

1 + ‖ỹ2‖

)
if K = 1,

d(x, y) = arccosh

(
1− 〈x̃, ỹ〉√

1− ‖x̃2‖
√

1− ‖ỹ2‖

)
if K = −1,

(31)

Alternatively, we have the following expression for the distance d(x, y) when K = −1. Let ã, b̃ be
the two points of intersection of the ball B = B(0, 1) with the line joining x̃, ỹ, so the order of the
points in the line is ã, x̃, ỹ, b̃. Then

d(x, y) =
1

2
log

(
‖ã− ỹ‖‖x̃− b̃‖
‖ã− x̃‖‖b̃− ỹ‖

)
if K = −1. (32)

We will use this expression when working with the hyperbolic space. A simple elementary proof of
the equivalence of the expressions in (31) and (32) is the following. We can assume without loss of
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generality that we work with the hyperbolic plane, i.e. d = 2. By rotational symmetry, we can also
assume that x̃ = (x1, x2) and ỹ = (y1, y2), for x1 = y1. In fact, it is enough to prove it in the case
x2 = 0 because we can split a general segment into two, each with one endpoint at (x1, 0), and then
add their lengths up. So according to (31) and (32), respectively, we have

1

cosh2(d(x, y))
=

(1− x2
1)(1− y2

1 − y2
2)

(1− x2
1)2

=
(1− x2

1 − y2
2)

1− x2
1

.

d(x, y) =
1

2
log

(
(
√

1− y2
1 + y2)(

√
1− x2

1)

(
√

1− x2
1)(
√

1− y2
1 − y2)

)
=

1

2
log

(
1 + y2/

√
1− x2

1

1− y2/
√

1− x2
1

)

= arctanh

(
y2√

1− x2
1

)

where we have used the equality tanh(t) = 1
2 log( 1+t

1−t ). Now, using the trigonometric identity
1

cosh2(t)
= 1 − tanh2(t), for t = d(x, y), we obtain that the two expressions above are equal. See

Theorem 7.4 in (Greenberg, 1993) (p. 268) for more details about the distance formula under this
geodesic map.

The spherical case is of a remarkable simplicity. If we have a d-sphere of radius 1 centered at 0, we
can see the transformation as the projection onto the plane xd = 1. Given two points x = (x̃, 1),
y = (ỹ, 1) then the angle between these two vectors is the distance of the projected points on the
sphere so we have cos(d(x, y)) = 〈x,y〉/‖x‖‖y‖ which is equivalent to the corresponding formula
in 31.

C.2 DISTANCE DEFORMATION

Lemma C.2. LetH = Expx0
(B̄(0, R)) be a subset of the hyperbolic space with constant sectional

curvature K = −1. Let x, y ∈ H be two different points. Then, we have

1 ≤ d(x, y)

‖x̃− ỹ‖
≤ cosh2(R).

Proof. We can assume without loss of generality that the dimension is d = 2. As in (30), let
R̃ = tanh(R), so any point x̃ ∈ X satisfies ‖x̃‖ ≤ R̃, or equivalently d(x, x0) ≤ R. Recall
x̃0 = h(x0) = 0. Without loss of generality, we parametrize an arbitrary segment of length ` in
X by two endpoints x̃, ỹ with coordinates x̃ = (x1, x2) and ỹ = (x1 − `, x2), for 0 ≤ x2 ≤ R̃,

0 ≤ x1 ≤
√
R̃2 − x2

2 and 0 < ` ≤ x1 +
√
R̃2 − x2

2. Let d(x1, x2, `)
def
= d(x,y)

` , the quantity we aim
to bound. We will prove the upper bound on d(x1, x2, `) in three steps.

1. If x1 = ` then d(·) is larger the larger x1 is. This allows to prove that it is enough to consider
points with the extra constraint ` ≤ x1.

2. The partial derivative of d(·) with respect to x1, whenever ` ≤ x1, is non-negative. So we

can just look at the points for which x1 =
√
R̃2 − x2

2.

3. With the constraints above, d(·) is larger the smaller ` is. So we have d(x1, x2, `) ≤
lim`→0 d(

√
R̃2 − x2

2, x2, `) =
√

1− x2
2/(1−R̃2). This expression is maximized at x2 = 0

and evaluates to 1/(1− tanh2(R)) = cosh2(R).

We proceed now to prove the steps above. For the first step, we note

d(x1, x2, x1) =
1

2x1
log

(√
1− x2

2(
√

1− x2
2 + x1)√

1− x2
2(
√

1− x2
2 − x1)

)
=

1

2x1
log

(
1 +

2x1√
1− x2

2 − x1

)
.
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We prove that the inverse of this expression is not increasing with respect to x1. By taking a partial
derivative:

∂(1/d(x1, x2, x1))

∂x1
= 2

−2x1

√
1−x2

2

1−x2
2−x2

1
+ log(1 + 2x1/(

√
1− x2

2 − x1))

log(1 + 2x1/(
√

1− x2
2 − x1))2

?
≤ 0

⇐⇒ 2x1

√
1− x2

2

1− x2
2 − x2

1

− log(1 + (2x1

√
1− x2

2 + 2x2
1)/(1− x2

2 − x2
1))

?
≥ 0.

In order to see that the last inequality is true, note that the expression on the left hand side is 0 when
x1 = x2 = 0. And the partial derivatives of this with respect to x1 and x2, respectively, are:

4
√

1− x2
2x

2
1

(1− x2
2 − x2

1)2
and

4x2x
3
1√

1− x2
2(1− x2

2 − x2
1)2

.

Both are greater than 0 in the interior of the domain 0 ≤ x2 ≤ R̃, 0 ≤ x1 ≤
√
R̃2 − x2

2 and at least
0 in the border. Now we use this monotonicity to prove that we can consider ` ≤ x1 only. Suppose
` > x1. The segment ` is divided into two parts by the e2 axis and we can assume without loss of
generality that the negative part is no greater than the other, i.e. x1 ≥ ` − x1. Otherwise, we can
perform the computations after a symmetry over the e2 axis. Let r̃ be the point (0, x2). We want to
see that the segment from x̃ to r̃ gives a greater value of d(·):

d(x, r)

x1
≥ d(x, y)

`
⇐⇒ d(x, r)(x1 + (`− x1)) ≥ x1(d(x, r) + d(r, y))

⇐⇒ d(x, r)/x1 ≥ d(r, y)/(`− x1),

and the last inequality holds true by the monotonicity we just proved.

In order to prove the second step, we take the partial derivative of d(x1, x2, `) with respect to x1. We
have

d(x1, x2, `) =
1

2`
log

(
1 + `/(

√
1− x2

2 − x1)

1− `/
√

1− x2
2 + x1

)
,

∂d(x1, x2, `)

∂x1
=

√
1− d2(2x1 − `)

2(1− x2
2 − x2

1)(1− x2
2 − (x1 − `)2)

.

And the derivative is positive in the domain we are considering.

We now prove step 3. We want to show that d(
√
R̃2 − x2

2, x2, `·) decreases with `, within our

constraints ` ≤ x1 =
√
R̃2 − x2

2, 0 ≤ x2 ≤ R̃. If we split the segment joining x̃ and ỹ in
half with, respect to the metric in B, we see that due to the monotonicity proved in step 1, the
segment that is farther to the origin is longer in M than the other one and so d(·) is greater for
this half of the segment than for the original one. In symbols, let r̃ be the middle point of the
segment joining x̃ and ỹ. We have by monotonicity that d(x1, x2, `/2) ≥ d(x1, x2 − `/2, `/2). So
d(x1, x2, `/2) = d(x̃,r̃)

`/2 ≥
d(x̃,r̃)+d(r̃,ỹ)

` = d(x1, x2, `). Thus,

d(x1, x2, `) ≤ lim
`→0

d(

√
R̃2 − x2

2, x2, `)

= lim
`→0

1

2`
log

1 + `/

(√
1− x2

2 −
√
R̃2 − x2

2

)
1− `/

(√
1− x2

2 +
√
R̃2 − x2

2

)


1
= lim

`→0

√
1− x2

2

1− R̃2 − 2`
√
R̃2 − x2

2 + `2

=

√
1− x2

2

1− R̃2
.
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We used L’Hôpital’s rule for 1 . We can maximize the last the result of the limit by setting x2 = 0
and obtain that for any two different x̃, ỹ ∈ X

d(x, y)

‖x̃− ỹ‖
≤ 1

1− R̃2
=

1

1− tanh2(R)
= cosh2(R).

The lower bound is similar, assume that ` > x1 and define r̃ as above. We assume again without loss
of generality that x1 ≥ `− x1. Then

d(x, r) + d(r, y)

`
≥ d(x, r)

`− x1
⇐⇒ d(r, y)

x1
≥ d(x, r)

`− x1

and the latter is true by the monotonicity proved in step 1. This means that we can also consider
` ≤ x1. But this time, according to step 2, we want x1 to be the lowest possible, so it is enough to
consider x1 = `. Using step 1 again, we obtain that the lowest value of d(·) can be bounded by the
limit lim`→0 d(`, x2, `) which using L’Hôpital’s rule in 1 is

d(x1, x2, `) ≥ lim
`→0

d(`, x2, `)

= lim
`→0

1

2`
log

(
1 +

2`√
1− x2

2 − `

)

1
= lim

`→0

2(
√

1−x2
2−`)+2`

(
√

1−x2
2−`)2

2(1 + 2`/(
√

1− x2
2 − `))

=
1√

1− x2
2

.

The expression is minimized at x2 = 0 and evaluates to 1.

The proof of the corresponding lemma for the sphere is analogous, we add it for completeness.
Lemma C.3. Let S = Expx0

(B̄(0, R)) be a subset of the sphere with constant sectional curvature
K = 1 and R < π

2 . Let x, y ∈ S be two different points. Then, we have

cos2(R) ≤ d(x, y)

‖x̃− ỹ‖
≤ 1.

Proof. We proceed in a similar way than with the hyperbolic case. We can also work with d = 2
only, since x̃, ỹ and x̃0 lie on a plane. We parametrize a general pair of points as x̃ = (x1, x2) ∈ X
and y = (x1 − `, x2) ∈ X , so x2

1 + x2
2 ≤ R̃2, for R̃ = tan(R) and by definition ` = ‖x̃− ỹ‖.

Let d(x1, x2, `)
def
= d(x, y)/‖x̃− ỹ‖. We proceed to prove the result in three steps, similarly to the

hyperbolic case.

1. If x1 = ` then d(x1, x2, `) decreases whenever x1 increases. This allows to prove that it is
enough to consider points in which ` ≤ x1.

2. ∂d(·)
∂x1
≤ 0, whenever ` ≤ x1. So we can consider x1 =

√
R̃2 − x2

2 only.

3. With the constraints above, d(·) increases with `, so in order to lower bound d(·) we can
consider lim`→0 d(

√
R̃− x2, x2, `) =

√
1 + x2

2/(1 + R̃2). This is minimized at x2 = 0

and evaluates to 1/(1 + R̃2).

For the first step, we compute the partial derivative:

∂d(x1, x2, x1)

∂x1
=
x1

√
1 + x2

2/(1 + x2
1 + x2

2)− arccos
(√

(1 + x2
2)/(1 + x2

1 + x2
2)
)

x2
1

. (33)
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In order to see that it is non-positive, we compute the partial derivative of the denominator with
respect to x2 and obtain

2x3
1x2√

1 + x2
2(1 + x2

1 + x2
2)
≥ 0.

so in order to maximize (33) we set x2 =
√
R̃− x2

1. In that case, the numerator is

x1

√
1 +R2 − x2

1

1 +R2
− arccos

√1 +R2 − x2
1

1 +R2

 , (34)

and its derivative with respect to x1 is

− 2x2
1

(1 +R2)
√

1 +R2 − x2
1

≤ 0.

and given that (34) with x1 = 0 evaluates to 0 we conclude that (33) is non-positive. Similarly to
Lemma C.2, suppose the horizontal segment that joins x̃ and ỹ passes through r̃ def

= (0, x2). And
suppose without loss of generality that d(x, r) ≥ d(r, y), i.e. x1 ≥ `− x1. Then by the monotonicity
we just proved, we have

d(x, r)

‖x̃− r̃‖
= d(x1, x2, x1) ≤ d(`− x1, x2, `− x1) =

d(r, y)

‖r̃ − ỹ‖
. (35)

And this implies d(x1, x2, x1) ≤ d(x1, x2, `). Indeed, that is equivalent to show

d(x, r)

‖x̃− r̃‖
≤ d(x, y)

‖x̃− ỹ‖
=
d(x, r) + d(r + y)

‖x̃− r̃‖+ ‖r̃ − ỹ‖
.

Which is true, since after simplifying we arrive to (35). So in order to lower bound d(·), it is enough
to consider ` ≤ x1.

We focus on step 2 now. We have

∂d(x1, x2, `)

∂x1
=

√
1 + x2

2(`− 2x1)

(1 + x2
2 + (`− x1)2)(1 + x2

2 + x2
1)
.

which is non-positive given the restrictions we imposed after step 1. So in order to lower bound d(·)
we can consider x1 =

√
R̃− x2

2 only.

Finally, in order to complete step 3 we compute

∂d(
√
R̃− x2

2, x2, `)

∂`
=

√
1 + x2

2

`(1 + R̃2) + `3 − 2`2
√
R̃2 − x2

2

− 1

`2
arccos

 1 + R̃2 − `
√
R̃2 − x2

2√
(1 + R̃2)(1 + R̃2 + `2 − 2`

√
R̃2 − x2

2)


And in order to prove that this is non-negative, we will prove that the same expression is non-negative,
when multiplied by `2. We compute the partial derivative of the aforementioned expression with
respect to `:

∂

∂`

∂d(
√
R̃− x2

2, x2, `)

∂`
`2

 =
2`
√

1 + x2
2(
√
R̃2 − x2

2 − `)

(1 + R̃2 + `2 − 2`
√
R̃2 − x2

2)2

≥ 0.

And `2(∂d(
√
R̃− x2

2, x2, `)/∂`) evaluated at 0 is 0 for all choices of parameters R and x2 in the

domain. So we conclude that ∂d(
√
R̃− x2

2, x2, `)/∂` ≥ 0.
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Thus, we can consider the limit when `→ 0 in order to lower bound d(·). In the defined domain, we
have

lim
`→0

d(

√
R̃− x2, x2, `) = lim

`→0

1

`
arccos

 1 + R̃2 − x
√
R̃2 − x2

2√
1 + R̃2

√
1 + x2

2 + (`−
√
R̃2 − x2

2)2


1
= lim

`→0

√
1 + x2

2

1 + R̃2 + `2 − 2`
√
R̃2 − x2

2

=

√
1 + x2

2

1 + R̃2
.

We used L’Hôpital’s rule for 1 . Now, the right hand side of the previous expression is minimized at
x2 = 0 so we conclude that we have

cos2(R) =
1

1 + tan2(R)
=

1

1 + R̃2
≤ d(x1, x2, `) =

d(p, q)

‖p̃− q̃‖
.

The upper bound uses again a similar argument. Assume that ` > x1 and define r̃ as above. We
assume again without loss of generality that x1 ≥ `− x1. Then

d(x, r) + d(r, y)

`
≤ d(x, r)

`− x1
⇐⇒ d(r, y)

x1
≤ d(x, r)

`− x1

and the latter is true by the monotonicity proved in step 1. Consequently we can just consider the
points that satisfy ` ≤ x1. By step 2, d(·) is maximal whenever x1 is the lowest possible, so it is
enough to consider x1 = `. Using step 1 again, we obtain that the greatest value of d(·) can be
bounded by the limit lim`→0 d(`, x2, `) which using L’Hôpital’s rule in 1 and simplifying is

d(x1, x2, `) ≤ lim
`→0

d(`, x2, `)

= lim
`→0

1

`
arccos

(√
1 + x2

2

1 + `2 + x2
2

)
1
=

1√
1 + x2

2

.

The expression is maximized at x2 = 0 and evaluates to 1.

C.3 ANGLE DEFORMATION

Lemma C.4. LetM = H orM = S and K ∈ {1,−1}. Let x, y ∈ M be two different points and
different from x0. Let α̃ be the angle ∠x0xy, formed by the vectors x0 − x and y − x. Let α be the
corresponding angle between the vectors Exp−1

x (x0) and Exp−1
x (y). The following holds:

sin(α) = sin(α̃)

√
1 +K‖x̃‖2

1 +K‖x̃‖2 sin2(α̃)
, cos(α) = cos(α̃)

√
1

1 +K‖x̃‖2 sin2(α̃)
.

Proof. Note that we can restrict ourselves to α ∈ [0, π] because we have (̃−w) = −w̃ (recall our
notation about vectors with tilde). This means that the result for the range α ∈ [−π, 0] can be deduced
from the result for −α.

We start with the case K = −1. We can assume without loss of generality that the dimension is
d = 2, and that the coordinates of x̃ are (0, x2), for x2 ≤ tanh(R) that ỹ = (y1, y2), for some
y1 ≤ 0 and δ̃ def

= ∠ỹx̃0x̃ ∈ [0, π/2], since we can make the distance ‖x̃ − ỹ‖ as small as we want.
Recall x̃0 = 0. We recall that d(x, x0) = arctanh(‖x̃‖) and we note that sinh(arctanh(t)) = t

1−t2 ,
so that sinh(d(x, x0)) = ‖x̃‖/

√
1− ‖x̃‖2, for any x̃ ∈ B. We will apply the hyperbolic and
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Euclidean law of sines Fact C.5 in order to compute the value of sin(α) with respect to α̃. Let ã
and b̃ be points in the border of B such that the segment joining ã and b̃ is a chord that contains
x̃ and ỹ and ‖ã − x̃‖ ≤ ‖b̃ − ỹ‖. So ‖ã − x̃‖ and ‖b̃ − ỹ‖ are

√
1− ‖x̃‖2 sin(α̃)− d cos(α̃) and√

1− ‖x̃‖2 sin(α̃) + d cos(α̃), respectively. We have

sin(α)
1
=

sinh(d(x0, y)) sin(δ̃)

sinh(d(x, y))

2
=

‖x̃0 − ỹ‖√
1− ‖x̃0 − ỹ‖2

· ‖x̃− ỹ‖ sin(α̃)

‖x̃0 − ỹ‖
· 1

sinh(d(x, y))

3
=

sin(α̃)√
1− ‖x̃‖2 + ‖x̃− ỹ‖(−2‖x̃‖ cos(α̃) + ‖x̃− ỹ‖)

· ‖x̃− ỹ‖
sinh(d(x, y))

4
=

sin(α̃)√
1− ‖x̃‖2

lim
d(x,y)→0

‖x̃− ỹ‖ 1

sinh(d(x, y))

5
=

sin(α̃)√
1− ‖x̃‖2

lim
d(x,y)→0

(e2d(x,y) − 1)(‖ã− x̃‖ · ‖b̃− x̃‖)
e2d(x,y)‖ã− x̃‖+ ‖b̃− x̃‖

· 2ed(x,y)

e2d(x,y) − 1

=
sin(α̃)√
1− ‖x̃‖2

· 2‖ã− x̃‖ · ‖b̃− x̃‖
‖ã− x̃‖+ ‖b̃− x̃‖

6
=

sin(α̃)√
1− ‖x̃‖2

· 2(1− ‖x̃‖2 sin2(α̃)− ‖x̃‖2 cos2(α̃))

2
√

1− ‖x̃‖2 sin2(α̃)

= sin(α̃)

√
1− ‖x̃‖2

1− ‖x̃‖2 sin2(α̃)
.

In 1 we used the hyperbolic sine theorem. In 2 we used the expression above regarding segments
that pass through the origin, and the Euclidean sine theorem. In 3 , we simplify and use that the
coordinates of ỹ are (− sin(α̃)‖x̃− ỹ‖, ‖x̃‖ − cos(α̃)‖x̃− ỹ‖). Then, in 4 , since sin(α) does not
depend on ‖x̃− ỹ‖, we can take the limit when d(x, y)→ 0, by which we mean we take the limit
ỹ → x̃ by keeping the angle α̃ constant. Since a posteriori the limit of each fraction exists, we
compute them one at a time. 5 uses (32) and the definition of sinh(d(x, y)). In 6 we substitute
‖ã− x̃‖ and ‖b̃− x̃‖ by their values.

The spherical case is similar to the hyperbolic case. We also assume without loss of generality
that the dimension is d = 2. Define ỹ as a point such that ∠x̃0x̃ỹ = α̃. We can assume without
loss of generality that the coordinates of x̃ are (0, x2), that ỹ = (y1, y2), for y1 ≤ 0, and δ̃ def

=
∠ỹx̃0x̃ ∈ [0, π/2], since we can make the distance ‖x̃ − ỹ‖ as small as we want. We recall that
by (30) we have d(x0, x) = arctan(‖x̃0 − x̃‖) and we note that sin(arctan(t)) = t

1+t2 , so that
sin(d(x0, x)) = ‖x̃0 − x̃‖/

√
1 + ‖x̃0 − x̃‖2, for any x̃ ∈ B. We will apply the spherical and
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Euclidean law of sines Fact C.5 in order to compute the value of sin(α) with respect to α̃. We have

sin(α)
1
=

sin(d(x0, y)) sin(δ̃)

sin(d(x, y))

2
=

‖x̃0 − ỹ‖√
1 + ‖x̃0 − ỹ‖2

· ‖x̃− ỹ‖ sin(α̃)

‖x̃0 − ỹ‖
1

sin(d(x, y))

3
=

sin(α̃)‖x̃− ỹ‖√
1 + ‖x̃0 − ỹ‖2

√
1− (1−‖x‖ cos(α̃)‖x̃−ỹ‖+‖x̃‖2)2

(1+‖x̃‖2)(1+‖x̃0−ỹ‖2)

4
=

sin(α̃)‖x̃− ỹ‖√
‖x̃− ỹ‖2(1 + ‖x̃‖2 − ‖x̃‖2 cos(α̃))/(1 + ‖x̃‖2)

5
= sin(α̃)

√
1 + ‖x̃‖2

1 + ‖x̃‖2 sin2(α̃)
.

In 1 we used the spherical sine theorem. In 2 we used the expression above regarding segments that
pass through the origin, and the Euclidean sine theorem. In 3 , we use the fact that the coordinates
of ỹ are (− sin(α̃)‖x̃− ỹ‖, d− cos(α̃)‖x̃− ỹ‖), use the distance formula (31) and the trigonometric
inequality sin(arccos(x)) =

√
1− x2. Then, in 4 and 5 , we multiply and simplify.

Finally, in both cases, the cosine formula is derived from the identity sin2(α) + cos2(α) = 1 after
noticing that the sign of cos(α) and the sign of cos(α̃) are the same. The latter fact can be seen
to hold true by noticing that α is monotonous with respect to α̃ and the fact that α̃ = π/2 implies
sin(α) = 0.

Fact C.5 (Constant Curvature non-Euclidean Law of Sines). Let Sk(·) denote the special sine,
defined as SK(t) = sin(

√
Kt) if K > 0, SK(t) = sinh(

√
−Kt) if K < 0 and Sk(t) = t if K = 0.

Let a, b, c be the lengths of the sides of a geodesic triangle defined in a manifold of constant sectional
curvature. Let α, β, γ be the angles of the geodesic triangle, that are opposite to the sides a, b, c. The
following holds:

sin(α)

SK(a)
=

sin(β)

SK(b)
=

sin(γ)

SK(c)
.

We refer to Greenberg (1993) for a proof of this classical theorem.

C.4 GRADIENT DEFORMATION AND SMOOTHNESS OF f

Lemma C.4, with α̃ = π/2, shows that e1 ⊥ ej , for j 6= 1. The rotational symmetry implies
ei ⊥ ej for i 6= j and i, j > 1. As in Lemma 2.1, let x ∈ M be a point and assume without loss
of generality that x̃ ∈ span{ẽ1} and ∇f(x̃) ∈ span{ẽ1, ẽ2}. It can be assumed without loss of
generality because of the symmetries. So we can assume the dimension is d = 2. Using Lemma 2.1
we obtain that α̃ = 0 implies α = 0. Also α̃ = π/2 implies α = π/2, so the adjoint of the differential
of h−1 at x, (dh−1)∗x diagonalizes and has e1 and e2 as eigenvectors. We only need to compute the
eigenvalues. The computation of the first one uses that the geodesic passing from x0 and x can be
parametrized as h−1(x̃0 + arctan(λ̃ẽ1)) if K = 1 and h−1(x̃0 + arctanh(λ̃ẽ1)) if K = −1, by (29).
The derivative of arctan(·) or arctanh(·) reveals that the first eigenvector, the one corresponding to
e1, is 1/(1 + K‖x̃2‖), i.e. ∇f(x̃)1 = ∇F (x)1/(1 + K‖x̃2‖). For the second one, let x = (x1, 0)
and y = (y1, y2), with y1 = x1 the second eigenvector results from the computation, for K = −1:

lim
y2→0

d(x, y)

y2
= lim
y2→0

1

2y2
log

(
1 +

2y2√
1− x2

1 − y2

)

1
= lim

y2→0

2√
1−x2

1−y2
+ 2y2

(
√

1−x2
1−y2)2

2 + 4y2√
1−x2

1−y2

=
1√

1− x2
1

,
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and for K = 1:

lim
y2→0

d(x, y)

y2
= lim
y2→0

1

y2
arccos

( √
1 + x2

1√
1 + x2

1 + y2
2

)
2
= lim

y2→0

√
1 + x2

1

1 + x2
1 + y2

2

=
1√

1 + x2
1

.

So, since x1 = ‖x̃‖, we have ∇f(x̃)2 = ∇F (x)2/
√

1 +K‖x̃‖2 for K ∈ {1,−1}. We used
L’Hôpital’s rule in 1 and 2 .

Also note that if v ∈ TxM is a vector normal to ∇F (x), then ṽ is normal to ∇f(x). It is easy to
see this geometrically: Indeed, no matter how h changes the geometry, since it is a geodesic map, a
geodesic in the direction of first-order constant increase of F is mapped via h to a geodesic in the
direction of first-order constant increase of f . And the respective gradients must be perpendicular
to all these directions. Alternatively, this can be seen algebraically. Suppose first d = 2, then v is
proportional to (∇F (x)2,−∇F (x)1) = (

√
1 +K‖x̃‖2∇f(x̃)2,−(1 + K‖x̃‖2)∇f(x̃1)). And a

vector ṽ′ normal to ∇f(x) must be proportional to (−∇f(x)2,∇f(x)1). Let α be the angle formed
by v and −e1, α̃ the corresponding angle formed between ṽ and −ẽ1, and α̃′ the angle formed by ṽ′
and −ẽ1. Then we have, using the expression for the vectors proportional to v and ṽ′:

sin(α) =
−f(x)2√

∇f(x)2
2 + (1 + ‖x‖2)∇f(x)2

1

and sin(α̃′) =
−f(x)2√

∇f(x)2
2 +∇f(x)2

1

and an easy computation yields sin(α) = sin(α̃′)
√

(1 +K‖x̃2‖)/(1 +K‖x̃2‖ sin2(α̃′)), which
after applying Lemma C.4 we obtain sin(α̃′) = sin(α̃) from which we conclude that α̃′ = α̃ given
that the angles are in the same quadrant. So ṽ ⊥ ∇f(x). In order to prove this for d ≥ 3 one can
apply the reduction (42) to the case d = 2 that we obtain in the next section.

Combining the results obtained so far in Appendix C, we can prove Lemma 2.1. We continue by
proving Lemma 2.3, which will generalize the computations we just performed, in order to analyze
the Hessian of f and provide smoothness. Then, in the next section, we combine the results in
Lemma 2.1 to prove Lemma 2.2.

Proof of Lemma 2.1. The lemma follows from Lemmas C.2, C.3, C.4 and the previous reasoning in
this Section C.4.

Proof of Lemma 2.3. We will compute the Hessian of f = F ◦ h−1 and we will bound its spectral
norm for any point x̃ ∈ B. We can assume without loss of generality that d = 2 and x̃ = (˜̀, 0), for
˜̀> 0 (the case ˜̀= 0 is trivial), since there is a rotational symmetry with e1 as axis. This means that
by rotating we could align the top eigenvector of the Hessian at a point so that it is in span{e1, e2}.
Let ỹ = (y1, y2) ∈ B be another point, with y1 = ˜̀. We can also assume that y2 > 0 without loss of
generality, because of our symmetry. Our approach will be the following. We know by Lemma C.4
and by the beginning of this section C.4 that the adjoint of the differential of h−1 at y, (dh−1)∗y
has Exp−1

y (x0) and a normal vector to it as eigenvectors. Their corresponding eigenvalues are
1/(1 +K‖ỹ‖2) and 1/

√
1 +K‖ỹ‖2, respectively. Consider the basis of TxM{e1, e2} as defined

at the beginning of this section, i.e. where e1 is a unit vector proportional to −Exp−1
x (x0) and e2

is the normal vector to e1 that makes the basis orthonormal. Consider this basis being transported
to y using parallel transport and denote the result {vy, v>y }. Assume we have the gradient ∇F (y)

written in this basis. Then we can compute the gradient of f at y by applying (dh−1)∗y. In order
to do that, we compose the change of basis from {vy, v>y } to the basis of eigenvectors of (dh−1)∗y,
then we apply a diagonal transformation given by the eigenvalues and finally we change the basis to
{ẽ1, ẽ2}. Once this is done, we can differentiate with respect to y2 in order to compute a column of
the Hessian. Let α̃ be the angle formed by the vectors ỹ and x̃. Note that α̃ = arctan(y2/y1). Let γ̃
be the angle formed by the vectors (ỹ − x̃) and −ỹ. That is, the angle γ̃ = π − ∠x̃ỹx̃0. Since v>y
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is the parallel transport of e>2 , the angle between v>y and the vector Exp−1
y (x0) is γ. Note we use

the same convention as before for the angles, i.e. γ is the corresponding angle to γ̃, meaning that if
γ is the angle between two intersecting geodesics inM, then γ̃ is the angle between the respective
corresponding geodesics in B. Note the first change of basis is a rotation and that the angle of rotation
is γ − π/2. The last change of basis is a rotation with angle equal to the angle formed by a vector ṽ
normal to −ỹ ( ṽ is the one such that −ỹ × ṽ > 0) and the vector ẽ2. It is easy to see that this vector
is equal to α̃. So we have

∇f(y) =

(
cos(α̃) − sin(α̃)
sin(α̃) cos(α̃)

)( 1
1+K(y21+y22)

0

0 1√
1+K(y21+y22)

)(
sin(γ) − cos(γ)
cos(γ) sin(γ)

)
∇F (y)

(36)

We want to take the derivative of this expression with respect to y2 and we want to evaluate it at
y2 = 0. Let the matrices above be A, B and C so that ∇f(y) = ABC∇F (y). Using Lemma C.4
we have

sin(γ) = sin(γ̃)

√
1 +K(y2

1 + y2
2)

1 +K(y2
1 + y2

2) sin2(γ̃)

1
= cos(α̃)

√
1 +K(y2

1 + y2
2)

1 +K(y2
1 + y2

2) cos2(α̃)
,

cos(γ) = − sin(α̃)

√
1

1 +K(y2
1 + y2

2) cos2(α̃)
,

(37)

where 1 follows from sin(γ̃) = sin(α̃ + π/2) = cos(α̃). Now we can easily compute some
quantities

A|y2=0 = I, B|y2=0 =

( 1
1+Ky21

0

0 1√
1+Ky21

)
, C|y2=0 = I,

∂A

∂y2

∣∣∣∣
y2=0

=
∂α̃

∂y2

∣∣∣∣
y2=0

·
(

0 −1
1 0

)
1
=

(
0 −1

y1
1
y1

0

)
,

∂B

∂y2

∣∣∣∣
y2=0

=

(
2Ky2

(1+K(y21+y22))2
0

0 2Ky2
2(1+K(y21+y22))3/2

)∣∣∣∣∣
y2=0

=

(
0 0
0 0

)
,

∂C

∂y2

∣∣∣∣
y2=0

2
=

 0 1

y1
√

1+Ky21
−1

y1
√

1+Ky21
0

 .

Equalities 1 and 2 follow after using (37), α̃ = arctan(y2y1 ) and taking derivatives. Now we
differentiate (36) with respect to y2 and evaluate to y2 = 0 using the chain rule. The result is(
∇2f(x̃)12

∇2f(x̃)22

)
=

(
∂A

∂y2
BC∇F (x) +A

∂B

∂y2
C∇F (x) +AB

∂C

∂y2
∇F (x) +ABC

∂∇F (x)

∂y2

)∣∣∣∣
y2=0

=

 −∇f(x̃)2

y1
√

1+Ky21
∇f(x̃)1

y1(1+Ky21)

+

(
0
0

)
+

( ∇f(x̃)2
y1(1+Ky21)3/2

−∇f(x̃)1
y1(1+Ky21)

)
+

 ∇2F (x)12
(1+Ky21)3/2

∇2F (x)22
1+Ky21


Computing the other column of the Hessian is easier. We can just consider (36) with α̃ = 0 and
γ = π/2 and vary y1. Taking derivatives with respect to y1 gives(

∇2f(x̃)11

∇2f(x̃)21

)
=

(−2Ky1∇f(x̃)1
(1+Ky21)2

−Ky1∇f(x̃)2
(1+Ky21)3/2

)
+

 ∇2F (x)11
(1+Ky21)2

∇2F (x)21
(1+Ky21)3/2

 .

Note in the computations of both of the columns of the Hessian we have used

∂∇F (y)i
∂y1

= ∇F (x)i1 ·
1

1 +Ky2
1

and
∂∇F (y)i
∂y2

∣∣∣∣
y2=0

= ∇F (x)i2 ·
1√

1 +Ky2
1

,

for i = 1, 2. The eigenvalues of the adjoint of the differential of h−1 appear as a factor because
we are differentiating with respect to the geodesic in B which moves at a different speed than the
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corresponding geodesic inM. Note as well, as a sanity check, that the cross derivatives are equal,
since

− 1

y1

√
1 +Ky2

1

+
1

y1(1 +Ky2
1)3/2

=
1

y1

√
1 +Ky2

1

(
−1 +

1

1 +Ky2
1

)
=

−Ky1

(1− y2
1)3/2

.

Finally, we bound the new smoothness constant L̃ by bounding the spectral norm of this Hessian.
First note that using y1 = ˜̀we have that 1√

1+K ˜̀2
= CK(`) and then for K = −1 it is ˜̀= tanh(`)

and for K = 1 it is ˜̀= tan(`), where ` = d(x, x0) < R. We have that since there is a point x∗ ∈M
such that∇F (x∗) = 0 and F is L-smooth, then it is ‖∇F (x)‖ ≤ 2LR. Similarly, by L-smoothness
|∇2F (x)ij | ≤ L. We are now ready prove smoothness:

L̃2 ≤ ‖∇2f(x̃)‖22
≤ ‖∇2f(x̃)‖2F = ∇2f(x̃)11 + 2∇2f(x̃)12 +∇2f(x̃)22

≤ L2([C4
K(R) + 4RSK(R)C3

K(R)]2 + 2[C3
K(R) + 2RSK(R)C2

K(R)]2 + C4
K(R))

and this can be bounded by 44L2 max{1, R2} if K = 1 and 44L2 max{1, R2}C8
K(R) if K = −1.

In any case, it is O(L2).

C.5 PROOF OF LEMMA 2.2

Proof of Lemma 2.2. Assume for the moment the dimension is d = 2. We can assume without loss
of generality that x̃ = (˜̀, 0). We are given two vectors, that are the gradients∇F (x),∇f(x̃) and a
vector w ∈ TxM. Let δ̃ be the angle between w̃ and −x̃. Let δ be the corresponding angle, i.e. the
angle between w and u def

= Exp−1
x (x0). Let α be the angle in between ∇F (x) and u. Let β̃ be the

angle in between∇f(x̃) and −x. α̃ and β are defined similarly. We claim

〈 ∇F (x)
‖∇F (x)‖ ,

w
‖w‖ 〉

〈 ∇f(x̃)
‖∇f(x̃)‖ ,

w̃
‖w̃‖ 〉

=

√
1 +K ˜̀2

(1 +K ˜̀2 sin2(δ̃))(1 +K ˜̀2 cos2(β̃))
. (38)

Let’s see how to arrive to this expression. By Lemma 2.1.c) we have

tan(α) =
tan(β̃)√
1 +K ˜̀2

. (39)

From this relationship we can deduce

cos(α) = cos(β̃)

√
1 +K ˜̀2

1 +K ˜̀2 cos2(β̃)
. (40)

This comes from squaring (39), reorganizing terms and noting that sign(cos(α)) = sign(cos(β̃))
which is implied by Lemma 2.1.c). We are now ready to prove the claim (38) (for d = 2). We have

〈 ∇F (x)
‖∇F (x)‖ ,

w
‖w‖ 〉

〈 ∇f(x̃)
‖∇f(x̃)‖ ,

w̃
‖w̃‖ 〉

=
cos(α− δ)
cos(β̃ − δ̃)

2
=

cos(δ) + tan(α) sin(δ)

cos(β̃) cos(δ̃) + sin(β̃) sin(δ̃)
cos(α)

3
=

cos(δ̃)√
1+K ˜̀2 sin2(δ̃)

+ tan(β̃)√
1+K ˜̀2

sin(δ̃)
√

1+K ˜̀2√
1+K ˜̀2 sin2(δ̃)

cos(β̃) cos(δ̃) + sin(β̃) sin(δ̃)
cos(β̃)

√
1 +K ˜̀2

1 +K ˜̀2 cos2(β̃)

4
=

√
1 +K ˜̀2

(1 +K ˜̀2 sin2(δ̃))(1 +K ˜̀2 cos2(β̃))
.
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Equality 1 follows by the definition of α, δ, δ̃ and β̃. In 2 , we used trigonometric identities. In 3
we used Lemma C.4, (39) and (40). By reordering the expression, the denominator cancels out with a
factor of the numerator in 4 .

In order to work with arbitrary dimension, we note it is enough to prove it for d = 3, since in order to
bound

〈 ∇F (x)
‖∇F (x)‖ ,

v
‖v‖ 〉

〈 ∇f(x̃)
‖∇f(x̃)‖ ,

ṽ
‖ṽ‖ 〉

,

it is enough to consider the following submanifold

M′ def
= Expx(span{v,Exp−1

x (x0),∇F (x)}).

for an arbitrary vector v ∈ TxM and a point x defined as above. The case d = 3 can be further
reduced to the case d = 2 in the following way. SupposeM′ is a three dimensional manifold (if it
is one or two dimensional there is nothing to do). Define the following orthonormal basis of TxM,
{e1, e2, e3} where e1 = −Exp−1

x (x0)/‖Exp−1
x (x0)‖, e2 is a unit vector, normal to e1 such that

e2 ∈ span{e1,∇F (x)}. And e3 is a vector that completes the orthonormal basis. In this basis,
let v be parametrized by ‖v‖(sin(δ), cos(ν) cos(δ), sin(ν) cos(δ)), where δ can be thought as the
angle between the vector v and its projection onto the plane span{e2, e3} and ν can be thought
as the angle between this projection and its projection onto e2. Similarly we parametrize ṽ by
‖ṽ‖(sin(δ̃), cos(ν̃) cos(δ̃), sin(ν̃) cos(δ̃)), where the base used is the analogous base to the previous
one, i.e. The vectors {ẽ1, ẽ2, ẽ3}. Taking into account that e2 ⊥ e1, e3 ⊥ e1, ẽ2 ⊥ ẽ1, ẽ3 ⊥ ẽ1, and
the fact that e1 is parallel to −Expx(x0), by the radial symmetry of the geodesic map we have that
ν = ν̃. Also, by looking at the submanifold Expx(span{e1, v}) and using Lemma C.4 we have

sin(δ) = sin(δ̃)

√
1 +K ˜̀2

1 +K ˜̀2 sin(δ̃)
.

If we want to compare 〈∇F (x), v〉 with 〈∇f(x̃), ṽ〉 we should be able to just zero out the third
components of v and ṽ and work in d = 2. But in order to completely obtain a reduction to the
two-dimensional case we studied a few paragraphs above, we would need to prove that if we call
w

def
= (sin(δ), cos(ν) cos(δ), 0) the vector v with the third component made 0, then w̃ is in the same

direction of the vector ṽ, when the third component is made 0. The norm of these two vectors will not
be the same, however. Let w̃′ = (sin(δ̃), cos(ν) cos(δ̃), 0) be the vector ṽ when the third component
is made 0. Then

‖w‖ = ‖v‖
√

sin2(δ) + cos2(δ) cos2(ν) and ‖w̃′‖ = ‖ṽ‖
√

sin2(δ̃) + cos2(δ̃) cos2(ν). (41)

But indeed, we claim

w̃ and w̃′ have the same direction. (42)

This is easy to see geometrically: since we are working with a geodesic map, the submanifolds
Expx(span{v, e3}) and Expx(span{e1, e2}) containw. Similarly the submanifolds x+span{ṽ, ẽ3}
and x+ span{ẽ1, ẽ2} contain w̃′. If the intersections of each of these pair of manifolds is a geodesic
then the geodesic map must map one intersection to the other one, implying w̃ is proportional to w̃′. If
the intersections are degenerate the case is trivial. Alternatively, one can prove this fact algebraically
after some computations. If we call δ∗ and δ̃′ the angles formed by, respectively, the vectors e2 and w,
and the vectors ẽ2 and w̃′, then we have w̃′ is proportional to w̃ iff δ̃′ = δ̃∗, or equivalently δ′ = δ∗.
Using the definitions of w and w̃′ we have

sin(δ∗) = sin

(
arctan

(
sin(δ)

cos(ν) cos(δ)

))
=

tan(δ)/ cos(ν)

(tan(δ)/ cos(ν))2 + 1

=
sin(δ)√

sin2(δ) + cos2(ν) cos2(δ)
,
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and analogously

sin(δ̃′) = sin

(
arctan

(
sin(δ̃)

cos(ν) cos(δ̃)

))
=

tan(δ̃)/ cos(ν)

(tan(δ̃)/ cos(ν))2 + 1

=
sin(δ̃)√

sin2(δ̃) + cos2(ν) cos2(δ̃)
.

(43)

Using Lemma C.4 for the pairs δ′, δ̃′ and δ∗, δ̃∗, and the equations above we obtain

sin(δ∗) =
sin(δ̃)

√
1+K ˜̀2

1+K ˜̀2 sin2(δ̃)√
sin2(δ̃) 1+K ˜̀2

1+K ˜̀2 sin2(δ̃)
+ cos2(ν) cos2(δ̃)

1+K ˜̀2 sin2(δ̃)

=
sin(δ̃)

√
1 +K ˜̀2√

sin2(δ̃)(1 +K ˜̀2) + cos2(ν) cos2(δ̃)
,

and

sin(δ′) =
sin(δ̃)√

sin2(δ̃) + cos2(ν) cos2(δ̃)

√√√√ 1 +K ˜̀2

1 +K ˜̀2
(

sin2(δ̃)

sin2(δ̃)+cos2(ν) cos2(δ̃)

) ,
The two expressions on the right hand side are equal. This implies sin(δ′) = sin(δ∗). Since the
angles were in the same quadrant we have δ′ = δ∗ by checking in which sectors the angles must be.

We can now come back to the study of 〈∇F (x),v〉
〈∇f(x̃),ṽ〉 . By (41) we have

〈∇F (x), v〉
〈∇f(x̃), ṽ〉

=
‖∇F (x)‖
‖∇f(x̃)‖

‖v‖
‖ṽ‖
〈 ∇F (x)
‖∇F (x)‖ ,

w
‖w‖ 〉

〈 ∇f(x̃)
‖∇f(x̃)‖ ,

w̃
‖w̃‖ 〉

√
sin2(δ) + cos2(δ) cos2(ν)√
sin2(δ̃) + cos2(δ̃) cos2(ν)

The last two factors can be simplified. Using (38) and (41) we get that this product is equal to

√
1 +K ˜̀2

(1 +K ˜̀2 sin2(δ̃∗))(1 +K ˜̀2 cos2(β̃))

√
sin2(δ̃) 1+K ˜̀2

(1+K ˜̀2 sin2(δ̃))
+ cos2(ν) cos2(δ̃)

1+K ˜̀2 sin(δ̃)

sin2(δ̃) + cos2(δ̃) cos2(ν)

which after using (43) (recall δ̃∗ = δ̃′), and simplifying it yields√
1 +K ˜̀2

(1 +K ˜̀2 sin2(δ̃))(1 +K ˜̀2 cos2(β̃))
.

So finally we have

〈∇F (x), v〉
〈∇f(x̃), ṽ〉

=
‖∇F (x)‖
‖∇f(x̃)‖

‖v‖
‖ṽ‖

√
1 +K ˜̀2

(1 +K ˜̀2 sin2(δ̃))(1 +K ˜̀2 cos2(β̃))
.

We use now Lemma 2.1.a) and Lemma 2.1.c), and bound sin2(δ̃) and cos2(β̃) in order to bound the
previous expression. Recall that, by (30) we have 1/

√
1 +K ˜̀2 = CK(`), for ` = d(x, x0) ≤ R.

Let’s proceed. We obtain, for K = −1

cosh−3(R) ≤ 1

cosh2(`)
· 1 · 1

cosh(`)
≤ 〈∇F (x), v〉
〈∇f(x̃), ṽ〉

≤ 1

cosh(`)
· cosh2(`) · cosh(`) ≤ cosh2(R).

and for K = 1 it is

cos2(R) ≤ 1

cos(`)
· cos2(`) · cos(`) ≤ 〈∇F (x), v〉

〈∇f(x̃), ṽ〉
≤ 1

cos2(`)
· 1 · 1

cos(`)
≤ cos−3(R).

The first part of Lemma 2.2 follows, for γp = cosh−3(R) and γn = cosh−2(R) when K = −1, and
γp = cos2(R) and γn = cos3(R) when K = 1.
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The second part of Lemma 2.2 follows readily from the first one and g-convexity of F , as in the
following. It holds

f(x̃) +
1

γn
〈∇f(x̃), ỹ − x̃〉

1
≤ F (x) + 〈∇F (x), y − x〉

2
≤ F (y) = f(ỹ),

and

f(x̃) + γp〈∇f(x̃), ỹ − x̃〉
3
≤ F (x) + 〈∇F (x), y − x〉

4
≤ F (y) = f(ỹ),

where 1 and 3 hold if 〈∇f(x̃), ỹ − x̃〉 ≤ 0 and 〈∇f(x̃), ỹ − x̃〉 ≥ 0, respectively. Inequalities 2
and 4 hold by g-convexity of F .
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