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DREAMMAKEUP: FACE MAKEUP CUSTOMIZATION
USING LATENT DIFFUSION MODELS
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Figure 1: Representative usage of DreamMakeup. (a) Makeup transformation with RGB target
color. (b) Makeup transfer with reference image. (c) Text-guided makeup.

ABSTRACT

The exponential growth of the global makeup market has paralleled advancements
in virtual makeup simulation technology. Despite the progress led by GANs, their
application still encounters significant challenges, including training instability
and limited customization capabilities. Addressing these challenges, this paper
introduces DreamMakup: a novel Diffusion model based Makeup Customiza-
tion, leveraging the inherent advantages of diffusion models for superior con-
trollability and precise real-image editing. DreamMakeup employs early-stopped
DDIM inversion to preserve the facial structure and identity while enabling exten-
sive customization through various conditioning inputs such as reference images,
specific RGB colors, and textual descriptions. Our model demonstrates notable
improvements over existing GAN-based frameworks, improved customization,
color-matching capabilities, and compatibility with textual descriptions or LLMs
with affordable computational costs. Project page is available at here.

1 INTRODUCTION

The global makeup market size is valued at billions of dollars, and virtual makeup simulation tech-
nology is considered to be a rapidly growing sector within the beauty industry. This is driven by the
increasing adoption of AI or AR technologies for virtual try-on experiences by beauty brands and
consumers alike. Besides its industrial importance, face makeup customization is also an interesting
problem in terms of generative modeling and editing. Specifically, one may have to disentangle
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Figure 2: Overview of DreamMakeup pipeline. The key principle of our framework is to apply fine-
grained guidance in high-dimensional pixel-domain during reverse sampling. After local makeup
customization in pixel space, text prompts are leveraged to harmonize such local variations with a
consistent global style in cross-attention space.

and stylize each facial attirbute in their independent style, while its composition should be well
harmonized with a consistent aesthetic style.

So far, virtual face makeup modeling is mainly driven by generative adversarial networks (GANs)
(Li et al. (2018); Jiang et al. (2019); Deng et al. (2021); Liu et al. (2023); Yang et al. (2022)).
Despite its advancements, GAN-based frameworks face inherent instability in adversarial training,
leading to several limitations. For instance, GANs in real-world applications demands extensive
collections of non-makeup and makeup facial images with diverse poses, expressions, styles, and
complex backgrounds. Furthermore, existing GAN-based methods are not fully customizable and
lack controllability. Specifically, most of these frameworks only support makeup transfer tasks,
inherently requiring reference target images. In many business contexts, users may seek to simulate
facial makeup with a more degree of freedom, e.g. test with specific RGB colors of new cosmetic
products, or linguistic descriptions such as ‘‘Glam makeup style with glossy lips".

In response to these challenges, this paper explores the adoption of diffusion models, recognized
for their superior controllability and real-image editing capabilities. Diffusion models offer several
advantages for facial beauty simulation. For instance, we can control the reverse sampling process
using the enriched text-conditions. Moreover, it supports various style customization using LoRAs
(Hu et al. (2021)) supported by the vibrant user community. By employing techniques such as
DDIM inversion (Song et al. (2020); Mokady et al. (2023)), diffusion models well preserve the
overall structure and subject identity of given facial images, while retaining rich editing capabilities.

To this end, we introduce DreamMakeup, a novel diffusion-based makeup customization distin-
guished by its advanced sampling guidance. This model is fully compatible with a variety of con-
ditionings to steer the makeup process, ranging from reference images and specific RGB colors to
textual descriptions of desired makeup looks. As shown in Fig. 2, given pre-trained latent diffusion
models (LDM), we commence by inverting facial images x into latents zt through early-stopped
DDIM inversion. Subsequently, we approximate the denoised estimate Erz0 |zts and decode it back
into the pixel space, preserving the facial structure attributed to the inversion process. Then, we styl-
ize these facial representations in pixel space through transformations such as histogram matching,
RGB color matching, or warping, toward a targeted makeup style. Resuming the reverse sampling
process from these transformed representations with proper makeup prompts yields harmonized fa-
cial makeup outcomes. Our contributions are summarized as follows:

• We introduce DreamMakeup, a novel diffusion-based human face makeup framework that
customizes facial makeup with advanced pixel-space sampling guidance. To our knowl-
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edge, this is the first to offer a fully customizable facial makeup application catering to a
wide range of user preferences including text descriptions, colors, and reference images.

• DreamMakeup is computationally affordable as it does not fundamentally require fine-
tuning. Moreover, we early-stop DDIM inversion process to preserve the facial structures
which further saves the computational costs. This enables fast overall inference (ă 4 sec-
onds for color transfer w/ SD v1.5 (Rombach et al., 2022), NVIDIA GeForce RTX 4090).

• DreamMakeup outperforms real-world global AI makeup services in color maekup task,
and state-of-the-art GAN-based frameworks in makeup transfer tasks, setting a new bench-
mark for facial makeup simulation. Furthermore, we demonstrate that our framework can
be easily integrated with other foundational models, including Large Language Models
(LLMs) and classifier of facial structure, broadening the horizon for virtual makeup.

2 RELATED WORKS

Makeup transfer aims to modify a facial image to reflect a chosen makeup style, with numerous
approaches developed using Generative Adversarial Networks (GANs). Notably, BeautyGAN (Li
et al. (2018)) employed histogram matching to preserve color from the reference image. LADN (Gu
et al. (2019)) used local discriminators for heavy makeup. PSGAN (Jiang et al. (2019)) enhanced
style controllability through matrices and addressed pose misalignments with attention mechanisms.
SCGAN (Deng et al. (2021)) tackled pose issues with style codes. RamGAN (Xiang et al. (2022))
improved makeup transfer with regional attention, and EleGANt (Yang et al. (2022)) offered flexible
control over arbitrary regions using attention mechanisms, reducing computational demands.

However, GAN-based methods typically require large datasets of makeup and no-makeup images
for training and reference images for inference, limiting application diversity and customizability.
DreamMakeup overcomes these limitations by utilizing foundational diffusion models and open-
source LoRAs for image generation, enabling replication of makeup styles from references or mod-
ification via RGB values or textual prompts. This approach enhances controllability and versatility
without relying on extensive datasets.

3 PRELIMINARY

Diffusion models aim to generate samples from the Gaussian noise through iterative denoising pro-
cesses. Since pixel-space diffusion models are computationally heavy, the latent diffusion model
(LDM) (Rombach et al. (2022)) operates the diffusion process on latent space instead of pixel space.
Given a pixel-space clean sample x „ pdatapxq, Rombach et al. (2022) leverages an autoencoder

E : Rd Ñ Rk,D : Rk Ñ Rd,x » DpEpxqq,@x „ pdatapxq, (1)

where E is the encoder, D is the decoder, and the dimension of latent space k ă d. After training E
and D, one can define the forward and reverse diffusion process within the latent space z “ Epxq.

The forward process is defined as a Markov chain, characterized by forward conditional densities:

ppzt | zt´1q “ N pzt | βtzt´1, p1 ´ βtqIq

ptpzt | z0q “ N pzt |
?
ᾱz0, p1 ´ ᾱqIq,

(2)

with zt P Rk representing the noisy latent variable at a timestep t ď T that has the same dimension
as z0 “ Epx0q for x0 „ pdatapxq, and βt denotes an increasing sequence of noise schedule where
αt :“ 1 ´ βt and ᾱt :“ Πt

i“1αi. The goal of training LDM is to obtain a residual denoiser ϵθ˚ :

θ˚ “ argmin
θ

EEpx0q,t,ϵ„N p0,Iq

“

∥ϵθpzt, tq ´ ϵ∥
‰

. (3)

The reverse sampling from qpzt´1|zt, ϵθ˚ pzt, tqq is then achieved by

zt´1 “
1

?
αt

´

zt ´
1 ´ αt

?
1 ´ ᾱt

ϵθ˚ pzt, tq
¯

` β̃tϵ, (4)

where ϵ „ N p0, Iq and β̃t :“
1´ᾱt´1

1´ᾱt
βt. We will omit ˚ in θ˚ in the rest of the paper. After reverse

sampling, the generated latent z̃0 is decoded to the pixel space as x̃0 “ Dpz̃0q.
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To accelerate sampling, DDIM (Song et al. (2020)) proposes an alternative sampling method:

zt´1 “
?
ᾱt´1ẑ0ptq `

b

1 ´ ᾱt´1 ´ η2β̃t
2
ϵθpzt, tq ` ηβ̃tϵ, (5)

where η P r0, 1s is a stochasticity parameter, and ẑ0ptq is the denoised estimate which can be
equivalently derived using Tweedie’s formula (Efron (2011)):

ẑ0ptq :“
1

?
ᾱt

pzt ´
?
1 ´ ᾱtϵθpzt, tqq. (6)

For text-guided sampling, we train the diffusion model with textual embedding c. We will often
omit c from ϵθpxt, t, cq to avoid notational complexity.

4 DIFFUSION-BASED MAKEUP CUSTOMIZATION

Given an input non-makeup human facial image x0, our main goal is to (a) customize the makeup
style with coarse (e.g. RGB color) to fine (e.g. reference makeup image) level information, while
(b) preserving the overall facial structure and subject identity.

To achieve this, DreamMakeup leverages various user preferences for conditional guidance, e.g. tar-
get color, reference image, and textual make-up description. As shown in Fig. 2, the customization
process consists of three main phases: (1) early-stopped DDIM inversion to impose structural con-
sistency, (2) pixel-space optimization to guide the sampling process towards target makeup style,
and (3) reverse sampling with cross attention composition to accommodate various textual makeup
descriptions simultaneously.

One of our primary contributions is to integrate a pixel-space makeup customization during reverse
sampling process given the decoded intermediate estimates x̂0ptq “ Dpẑ0ptqq. While makeup
customization demands delicate control over low-level visual appearance, such features like color
and edges are often encoded nonlinearly in low-dimensional latents, making direct customization
challenging in latent space. To address this, we hijack the latents to the pixel-domain, where low-
level visual features can be fully identified and guided. This one-step fine-grained customization in
the pixel-domain is a significant departure from existing multi-step latent/attention-space guidance
(Hertz et al., 2023; Kwon & Ye, 2022; Mokady et al., 2023). Moreover, we empirically demon-
strate that DreamMakeup can be integrated with Large Language Models (LLM) or facial classi-
fiers, paving a new path for virtual makeup pipeline design. Additional experimental details and
pseudo-code are available in the appendix.

4.1 EARLY-STOPPED INVERSION

To maintain the identity of the original input face during the sampling process, we first leverage
DDIM inversion which is an iterative reverse simulation of the ODE flow in the limit of small steps.
By setting η “ 0 in Eq. (5), the DDIM inversion (Mokady et al. (2023); Song et al. (2020)) is defined
as follows:

zt “

?
ᾱt

?
ᾱt´1

zt´1 ´
?
ᾱt

˜
d

1

ᾱt´1
´ 1 ´

c

1

ᾱt
´ 1

¸

ϵθ
`

zt´1, t, c
˘

. (7)

Note that we fix the textual condition c, e.g. "a photography of a woman". While the con-
ventional process inverts z0 to zT , we terminate the inversion at t˚ ď T to reduce the computational
burdens and ensure structural consistency. Specifically, Figure 3 shows that the denoised estimate
ẑ0pt˚q from early-stopped zt˚ decodes faithfully to the original sample x0. This allows us to di-
rectly guide x̂0pt˚q “ Dpẑ0pt˚qq in a pixel space to enforce the target makeup style. While we
early-stop DDIM inversion at t˚ ă T , most of inversion-based frameworks (Tumanyan et al., 2023;
Parmar et al., 2023; Park et al., 2024) typically terminate at t˚ “ T “ 1000 which slows down
inference.

4.2 PIXEL-SPACE MAKEUP CUSTOMIZATION

Our next goal is to transform x̂0pt˚q in a manner that accurately emulates the desired makeup
appearance indicated by reference image or a target RGB color. To this end, we introduce a pixel-
space transformation T p¨, ¨q : RHˆWˆ3ˆX Ñ RHˆWˆ3, offering multiple variants of T to enable

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: RGB color-based makeup transformation. The mean RGB values within the masked
area are adjusted with a scale α to match the target RGB values. The final output image is generated
by reverse sampling from x̂new. We manipulate the eye mask to reproduce eyeshadow mask.

fine-grained makeup customization. Here X varies for different references, e.g. target RGB color,
reference image, etc.

4.2.1 MAKEUP TRANSFORMATION WITH RGB COLOR

We first delineate an intuitive color transfer function that imposes the color characteristics of the
reference makeup palette color on the source image. Let µsrcpx̂0pt˚qq, σsrcpx̂0pt˚qq represents the
RGB mean and standard deviation of x̂0pt˚q computed across spatial dimensions. Given a reference
color µtgt and respective standard deviation σtgt, the color transfer function TRGB is defined as

x̂newpt˚q “ TRGB

`

µsrcpx̂0pt˚qq, µtgt;α
˘

“
σsrcpx̂0pt˚qq

σtgt

´

x̂0pt˚q ´ α
“

µsrcpx̂0pt˚qq ´ µtgt

‰

¯

,

(8)
where 0 ď α ď 1 represents a transfer scale. For simplicity, we empirically set σsrcpx̂0pt˚qq “ σtgt.

Color makeup composition. The proposed color transfer supports various independent attribute
compositions. Specifically, we may eager to transfer different µtgt for each lips, eye shadow, skin
foundation, etc. For this, we segment each interested facial attribute using a segmentation model
(Yu et al., 2018) pre-trained in a pixel domain. We observed that the inverted image x̂0pt˚q is well
segmented by the pre-trained model, owing to its high similarity with the original image x0.

While lips and facial masks are readily available via Yu et al. (2018), eyeshadow masks require
additional processing. For this, we reconstruct the eyeshadow mask by manipulating the eye mask
through additional transformation such as dilation and shifting (Figure 3). To achieve a more seam-
less and natural makeup integration, we smooth the edges of the eyeshadow mask. Specifically, the
binary eyeshadow mask is multiplied by a gradient mask, with its weights progressively increasing
from the inner to the outer edge. This allows fine control, enabling users to adjust the gradient decay
rate for a more natural appearance. Any artifacts from this color transfer process are further refined
through reverse diffusion sampling (More details in Section 4.3).

4.2.2 MAKEUP TRANSFER WITH REFERENCE IMAGE

The transformation T can be varied depends on the downstream task. In context of conventional
makeup transfer tasks (Li et al., 2018), we simulate the makeup style of reference image through
warping and histogram matching transformations.

First, histogram matching aligns the color distributions of the lip, eye shadow, and skin with refer-
ence. Then, the eyes of the source face are aligned with the reference through a series of warping
transformations, including segmentation, dilation, affine, and diffeomorphic transformations, to en-
sure precise registration. This ensures that every pixel within the dilated mask area of the reference
image corresponds to the appropriate region on the source image. The eyeshadow mask is then
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Figure 4: The color-based makeup examples by DreamMakeup with SDXL. Each color chip repre-
sents the color of lips, skin and eyeshadow.

transferred from the reference to the source with additional smoothing for natural edge transitions.
These steps enable the seamless adoption of tones and styles of the reference image, ensuring a
natural and accurate makeup transfer.

4.3 MAKEUP HARMONIZATION IN CROSS-ATTENTION LAYERS

After pixel-space guidance, the output x̂new preserves facial structural consistency while coarsely
following the desired makeup style in the local facial attributes, e.g. lips, eye shadow, etc. Our next
goal is to stylize x̂new with text guidance to harmonize such local variations with a fine-grained
consistent global aesthetic style, e.g. “Korean K-Pop style”, “Nude makeup”, etc. Moreover, since
the local transfer is based on coarse masks, it contains some unnatural discontinuity (x̂new in Figure
3). Thus, the following refinement process aims to: (a) align x̂new with specified textual descriptions
and (b) enhance overall image quality.

Note that it is challenging to reflect the compositions of detailed linguistic conditions while preserv-
ing subject identity with conventional diffusion-based frameworks (Hertz et al., 2022; Tumanyan
et al., 2023; Brooks et al., 2023). To address this, we refine the image by integrating semantic
makeup features directly into the cross-attention layer, where the overall spatial structure is main-
tained. Specifically, let Qt,l P RP 2

l ˆdl represent the spatial query in l-th cross attention layer of
U-Net with resolution Pl and dimension dl at time t. We will often omit t and l for notational
simplicity. Given context vectors C P RNˆdc , let K,V P Rdcˆdl denote key and value matrices,
respectively, where N refers to number of tokens, K “ CWK,l and V “ CWV,l with linear maps
WK,l,WV,l P Rdcˆdl . Then, let Ks represents a s-th makeup concept key Ks, where Kmain

comes from the prompt used in inversion, i.e. “a photography of a woman”. Define Vs,Vmain

similarly. Then, we update the spatial query as follows:

Qnew “ softmax
`QKT

main?
d

˘

Vmain `
1

M

M
ÿ

s“1

αssoftmax
`QKT

s?
d

˘

Vs. (9)
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Figure 5: The makeup transfer by DreamMakeup from reference images with various poses and
makeup.

Note that the degree and direction of each s-th makeup concept can be controlled individually with
αs, where αs ă 0 for negative makeup prompts, e.g. ugly, blurry, low-res, etc. This lin-
ear combination incorporates detailed makeup descriptions independently, while preserving the main
ODE sampling path derived from inversion. We empirically observed that the proposed sampling
method works well even without external regional masks, which are commonly used in diffusion-
based customization frameworks (Gu et al., 2024; Kwon et al., 2024). This may be attributed to the
global nature of makeup prompts focusing on aesthetic style, and the distinct separation of facial
attributes within semantic features. Overall pipeline is summarized in Figure 2 and pseudo-code in
appendix.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETTINGS

During inference, we used the Makeup Transfer (MT) dataset (Li et al. (2018)) for both source
and reference images. Also, synthetic face dataset is used. Additionally, we employed artificially
generated images for Asian women as a non-makeup source image. We utilized Stable Diffusion
(SD) v1.5 and SDXL (Podell et al., 2023) as our base model, and further leveraged additional public
LoRA weights and pre-trained models released in CivitAI, an open-source generative AI community.
Specifically, Dreamshaper1, ArienMixXL 2, and BKG13 LoRA weights are mainly used. For facial
segmentation, we utilized BiSeNet (Yu et al. (2018)). For cross attention composition, we set the

1https://civitai.com/models/4384/dreamshaper
2https://civitai.com/models/118913/sdxl-10-arienmixxl-asian-portrait
3https://civitai.com/models/203947/beautiful-korean-girl-bkgv1

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: The virtual skin, lip, eye shadow makeup, and their combination by DreamMakeup.The
left images are generated using SD 1.5, and the right images are made using SDXL.

Figure 7: Text-guided makeup transformation. Top row: text-guided makeup transformation.
Bottom row: text + RGB color guided transformations.

scaling factor for each makeup concept αs ranging from 0.1 to 0.7. For comparison, we tested three
state-of-the-art GAN-based makeup transfer methods, PSGAN (Jiang et al. (2019)), SCGAN (Deng
et al. (2021)), and EleGANt (Yang et al. (2022)). More experimental details are in appendix.

Method LPIPS Ó CLIP-I Ò
Makeup Artists Non Artists

Detail Ò Quality Ò Detail Ò Quality Ò

PSGAN 0.1879 0.7421 1.49 1.74 2.64 2.82
SCGAN 0.0819 0.7253 2.00 2.11 3.03 2.95
EleGANt 0.1877 0.7662 3.04 3.12 3.67 3.72

Ours 0.0667 0.7694 3.42 3.42 3.95 4.00

(a) Quantitative results on makeup transfer tasks.

Method Beauty
score

Makeup Artists Non Artists

Detail Ò Quality Ò Detail Ò Quality Ò

Service A 2.90 4.08 1.97 3.69 2.77
Service B 3.27 3.75 2.61 3.14 2.83

Ours 3.38 4.22 4.19 3.93 4.27

(b) Comparisons with global AI makeup services.

Table 1: Quantitative comparisons on makeup transfer task and color-based makeup transformation.

5.2 RESULTS

5.2.1 QUALITATIVE RESULTS

Figure 6 illustrates the RGB color-based makeup transformations applied to both synthetic and natu-
ral images. First three rows reflect the application of the eye shadow, skin, and lip colors indicated in

8
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Figure 8: Comparisons of DreamMakeup with Other Global Mobile AI Makeup Services

Figure 9: Results on global and local makeup interpolation

the bottom right corner. Bottom row presents the combined results for each column’s corresponding
colors. DreamMakeup effectively applies the specified RGB colors to the respective facial regions.

Figure 5 compares the results with existing methods (PSGAN, SCGAN, and EleGANt). Our method
outperforms the others, with PSGAN and SCGAN displaying artifacts like identity loss and color
bleeding. While EleGANt generally performs well, it exhibits issues such as dark artifacts in the
hand-covered region (row 2), weaker eye makeup or changed spatial layout. In contrast, our ap-
proach produces cleaner, artifact-free results, accurately replicating the reference makeup.

5.2.2 QUANTITATIVE COMPARISON

We further evaluate DreamMakeup against other baselines using quantitative metrics for both color
makeup and makeup transfer tasks. For the makeup transfer task, we assess LPIPS and CLIP image
similarity to measure identity preservation. Additionally, we gathered user feedback from 10 expert
makeup artists and 24 non-expert participants, asking them to rank 10 randomly selected output
images generated by different models. The evaluation criteria focused on two key aspects: how
closely the makeup style in the output matched the target image (visual details) and the overall
makeup quality. Ratings were provided on a scale of 1 to 5. As shown in Table 1a, DreamMakeup
consistently outperformed other models.

For the color-based makeup task, we conducted comprehensive comparative studies with two global
AI makeup services, which are featured in mobile beauty applications with over 50M downloads.
To avoid potential conflicts and licensing issues, we do not disclose the specific service names.
Despite their widespread use, these services exhibit limitations in customization, such as restricted
color presets. We collected 100 images from each service, applying randomized makeup styles,
and assessed the beauty score (Xu et al., 2019). Additionally, we conducted a more extensive user
preference study using 300 images, evaluated by 10 makeup artists and 24 non-expert participants.
As summarized in Table 1b, DreamMakeup significantly outperformed the other methods.

5.2.3 TEXT-GUIDED MAKEUP TRANSFORMATION

To demonstrate the efficacy of text guidance, we apply makeup on the source image with (1) only
using text guidance with cross attention composition, and (2) using text guidance along with RGB
color transfer. Figure 7 illustrates that text guidance effectively facilitates makeup transformation,

9
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Figure 10: (a) DreamMakeup with integration with a classifier and an LLM. (b) From the source
image, we can apply makeup based on the solution provided by the classifier and LLM. The color
chips represent the color of lips, skin, and eye shadow from top to bottom.

and concisely stylizes the RGB-based makeup transformations. Specifically, the color transfer in the
second column establishes the overall color distribution, and linguistic conditioning further improves
the natural appearance.

5.2.4 MAKEUP INTERPOLATION

By adjusting a transfer scale α in equation 8, we can control the makeup intensity. As α converges
towards 0, the result increasingly resembles the source image. The intensity of the makeup can be
controlled independently for different makeup regions, such as lips and eyes (Figure 9).

5.3 INTEGRATION WITH LLM

DreamMakeup can demonstrate improved performance by integrating with Large Language Models
(LLMs) for personalized makeup recommendations. By harnessing the exceptional inference capa-
bilities of LLMs, DreamMakeup selects makeup colors that are harmonious with the characteristics
of the source image. We provide a pipeline in Fig. 10. This pipeline involves an initial extraction
of facial attributes such as skin tone and facial structure from the source image via a classifier. This
information is then conveyed to the LLM, which determines the most appropriate makeup colors for
various facial regions, including the skin, eyes, and lips. DreamMakeup subsequently utilizes these
recommendations to generate the final makeup-enhanced image.

These components (classifier, LLM, and DreamMakeup) operate sequentially during inference but
are trained independently. The classifier was trained using ResNet50 on a dataset of 1,000 artificially
generated images of Asian women, annotated with facial information. The LLM is trained on the
dolly-v2-3b model with a specialized QnA dataset from beauty professionals. As illustrated in Fig-
ure 10(b), the LLM adeptly matches skin, eye shadow, and lip colors to the source image, facilitating
the application of these colors by DreamMakeup. The process ensures that the selected colors are
well-suited to the source image, leading to an effectively applied makeup look. This demonstrates
the potential of integrating classifiers and LLMs in DreamMakeup to provide customized makeup
solutions based on in-depth analysis of facial features, thereby enhancing the personalization and
effectiveness of makeup applications.

6 CONCLUSION

In this paper, we introduced DreamMakeup, a novel approach to customizing facial makeup uti-
lizing the diffusion model. Our method leverages RGB colors or textual descriptions with pixel-
space sampling guidance, ensuring precise makeup customization. Additionally, we demonstrated
DreamMakeup’s effectiveness in makeup transfer tasks through the application of a facial structure
classifier and LLM. Notably, our approach is computationally efficient, paving the way for practical
makeup customization solutions.
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A PSEUDO CODE

We provide the pseudo-code of DreamMakeup for RGB and textual guidance in Algorithm 1.
Makeup transfer based on a reference image can be easily implemented using the same method,
substituting the transformation TRGB with Tref and employing warping and histogram matching
algorithms instead of RGB matching.

Algorithm 1 DreamMakeup with RGB and text guidance
Input: Source image x0, early-stop timestep t˚ ď T , RGB scaling coefficient 0 ď α ď 1, tar-
get RGB color µtgt, reference makeup image xref , textual prompts for (inversion, editing) Cinv ,
tCedit,suNs“1, degree of composition tαsuNs“1.
Output: Image with makeup transformation x̃0.

1: z0 “ Epx0q

2:
3: 1. Early-stopped DDIM inversion
4: for t “ 1 to t˚ do

5: zt “
?
ᾱt?

ᾱt´1
zt´1 ´

?
ᾱt

˜

b

1
ᾱt´1

´ 1 ´

b

1
ᾱt

´ 1

¸

ϵθ
`

zt´1, t, cq
˘

.

6: end for
7: ẑ0pt˚q “ 1?

ᾱt˚
pzt˚ ´

?
1 ´ ᾱt˚ϵθpzt˚ , t˚qq.

8: x̂0pt˚q “ Dpẑ0pt˚qq

9:
10: 2. Pixel-domain Diffusion Guidance
11: x̂new “ TRGB

`

µsrcpx̂0pt˚qq, µtgt;α
˘

12: z̃t˚ “ Epx̂newq

13:
14: 3. Reverse sampling with cross attention composition
15: for t “ t˚ to 1 do
16: z̃t´1 Ð ReverseDDIM

´

z̃t; t,Composition
`

tαsuNs“1, tCedit,suNs“1

˘

¯

17: end for
18: x̃0 “ Dpz̃0q

B ADDITIONAL ANALYSIS

B.1 ABLATION STUDIES

B.1.1 EFFECTS OF GRADATION SMOOTHING

In the generating process of eye mask, gradation smoothing is essential. Without gradation smooth-
ing, the edges of eye masks are accentuated, resulting in an unnatural outcome. Fig. 11 demonstrates
that graduation smoothing makes the edge of the eye shadow natural and realistic.

B.1.2 EFFECTS OF EARLY-STOPPED DDIM INVERSION

Figure 12 demonstrates that early-stopping inversion provides a valuable knob for adjusting RGB
makeup transformation fidelity and naturalness. Increasing t˚ improves target makeup representa-
tion at the affordable cost of higher computational demands, while decreasing t˚ preserves subject
identity and ensures accurate color representation. This approach, including adjustments with t˚

and other parameters like α, offers a remarkable customization capacity unavailable in conventional
frameworks.

B.2 LORA VARIATION

As mentioned in the main paper, the Dreamshaper pre-trained model and BKG1 LoRA weights
are mainly used in our experiments. Fig. 13 shows the experimental results of using other LoRA
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Figure 11: The effect of the gradation smoothing.

Figure 12: The effect of the early-stopped DDIM inversion step t˚.

weights. For comparison, asian beauty v24 , Korean Alike5, Asian Cute Face6, koreanDollLikeness
v157, PMN 28 are used. The results are made with only text guidance, where the prompts are
"deep red lip" and "heavy eye makeup". The results demonstrate how diverse makeup
styles can be achieved by varying LoRA weights. In this paper, we mainly leverage BKG1 LoRA
which shows better identity preservation and semantic alignment.

C EXPERIMENTAL DETAILS

We use DDIM scheduler and set the early-stop inversion step ranging from t˚ “ 200 to t˚ “ 400.
The number of reverse steps is set to 30. LoRA scale s is set to 0.2. To smooth eye shadow masks,
we employed a cross-shaped kernel with the size of p12, 7q and performed 2 iterations of mask
dilation. The textual prompts commonly used in cross attention composition are as follows:

• natural lips, natural makeup, fair skin, asian skin
• korean makeup, korean style, korean beauty, (A Classy and Cute Korean girl:1.3), cute,

(Korean idol), K-pop, skm misoo, beautiful
• 32K, high-res, (masterpiece:1.3), best quality, 8K.HDR, smooth face, 1 girl,close up face,

(photorealistic:1.6), [:(detailed face:1.2):0.3]
• (Glossy lips:1.6), Gleaming lips, (fair skin:1.4), sharp focus, blusher
• (Goddess smile:1.3)
• (worst quality:2.0) low quality, blur, deformed ugly, pixelated, cgi, illustration, cartoon,

deformed, distorted, disfigured, poorly drawn

4https://civitai.com/models/76883/2731-pretty-asian-face-asian-beauty-faces
5https://civitai.com/models/193777/korean-alike-by-noerman
6https://civitai.com/models/26914?modelVersionId=32215
7https://civitai.com/models/26124/koreandolllikeness-v20
8https://civitai.com/models/106028/korean-beauty
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Figure 13: Results of using various LoRA weights.

The directional degree of s-th composition, αs ď 0, is assigned 0.1, 0.1, 0.3, 0.7, 0.1,´0.1 for each
prompt.

C.1 LLM

To train the language model, we constructed a QnA dataset containing information matching makeup
and facial attributes. The dataset consists of 460, 000 pairs of questions and answers. Below is an
example of the makeup dataset.

### Instruction: Which lip colors are suitable for women with
the
following condition? \nbronze skin, square face, angular jaw
### Response: deep red or vivid red or dark red.

As a base model, we utilized dolly-v2-3b9 and fine-tuned the model for 3 epochs using the makeup
dataset. To prevent the model from forgetting language proficiency during fine-tuning, we also incor-
porated the natural language dataset used to train this base language model. The training objective is
to generate the subsequent tokens based on the tokenized instructions in an autoregressive manner.

9Databricks, Free dolly: Introducing the world’s first truly open instruction-tuned llm,
https://github.com/databrickslabs/dolly, 2023.
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Figure 14: DreamMakeup results on RGB matching for eyebrows, pupils, and hair.
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Figure 15: The skin, lip, eye shadow makeup, and their combination.

Figure 16: The results on hair coloring.
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