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1 Supplementary material
2 A Data Source

Table 1: Data sources for MedTrinity-25M from various medical image datasets, detailing their
modalities, biological structures, quantities, and annotations.

Dataset Name Modality ]SB:;)lll(;%:lcraels Quantity [Text %}S;:S‘e BBoxMask
BCNB [1] Histopathology breast 76579 X v X X
BHX [2] CT brain 1831797 | X X v X
BKAI-IGH [3] Endoscopy colon 1000 X X X v
Blood Cell [4] Microscopy cell 12500 X v X X
Bone Fracture [3]] X-Ray bone 4148 X X X v
Brain MRI-seg [6] MR brain 7860 X X X v
Brain Tumor-seg [7] MR brain 3064 X X X v
Brain-Tumor-Detection [8]] MR brain 9900 X X X V4
BRATS2024 [9] MR brain 1486406 | X X X v
Breast Pathology [10] [[1L1] Histopathology breast 555048 | X v X X
Breast Ultrasound [[12] Ultrasound breast 514 X v X X
breastcancer [13] Histopathology breast 20000 X X X v
BREAST-LESIONS-USG [14] Ultrasound breast 253 X X X v
BTCV-cervix [15] CT cervix 11695 X X X v
BUS-BRA [16] Ultrasound breast 1876 X X X v
BUSI-with-GT [17] Ultrasound breast 648 X X X v
Capstone v3 [18] Dermoscopy  skin 12532 X v X X
CBIS-DDSM-cls [191120,21] X-Ray breast 10239 X v X X
CBIS-DDSM-seg [22] X-Ray breast 6206 X X X v
CheXpert [23] X-Ray lung 223648 | X v X X
CholecSeg8k [24] Endoscopy colon 32300 X X X v
COVID-19 CXR [25] [26]  X-Ray lung 10956 X v X X
QU-Ex [27,128129.130] X-Ray lung 26990 X X X v
COVIDx [31]] X-Ray lung 61441 X v X X
CPD-seg [32] Histopathology skin 202 X X X v
CR-AI4SKIN [33] Histopathology skin 53122 X v X X
CRCI100K [34] Histopathology colon 100000 | X v X X
Crystal Clean [35] MR brain 18606 X v X X
CT2USforKidneySeg [36] Ultrasound breast 4586 X X X v
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Dataset Name Modality g:g::;%:;fs Quantity Text %sl;s:se BBoxMask
lung,
liver,
CT-RATE [37] CT mediastinum, 4624426 | v’ X X X
kidney,
heart,etc.
CXR-pneumothorax [38] X-Ray Tung 2492 X1 x X |V
CytoImageNet [39] Microscopy  cell 890737 | X v X X
bone,
abdomen,
mediastinum,
. liver,
DeepLesion [40] CT lung 2870411 | X X v | X
kidney,
soft tissue,
pelvis
Diabetic Retinopathy [41]  Fundus eye 18624 X v X | X
Figshare Brain Tumor [42] MR brain 3065 X1 x X | Vv
HAM10000 144] Dermoscopy  skin 10015 X v X | X
Histology Histopathology lung 1608060 | X v X X
ihcdbe Microscopy  cell 184949 | X v X X
isic2019 [47] [48] Dermoscopy  skin 25332 X v X | X
1sic2020 [49] Dermoscopy  skin 6838 X v X X
ISPY1 [50] MR breast 386336 | X v X X
ISPY2 [51] [52] CT breast 330454 X X X v
Kidney Stone [53] CT kidney 1300 X X v | X
KiPA22 [54]1551156]157] CT kidney 29458 X X X | v
KiTS23-remain [58]] CT kidney 17628 X X X | v
Kvasir-seg [39] Endoscopy colon 1000 X X X | v
LC25000-colon Histopathology colon 5000 X v X X
LC25000-Iung [60] Histopathology lung 10000 X v X X
Leukemia-cls [61] Microscopy  cell 15135 X v X X
LiTS2017 [62] CT liver 129900 X X X v
CT,
MR, cell,
rib,
Endoscopy, .
X-Ray, tissue,
Ultrasound, facc?,
LLaVA-Med [63] Histopathology, brain, 342214 | v X X X
Dermoscopy, v.ascular,
Microscopy, liver,
bone,
Fundus, lymph, etc
PET ympa, efe.
LLD-MMRI2023 [64] MR liver 30956 X X X v
LNQ [63] CT Tung 17211 X X | X | v
MIDOG22 Histopathology cell 20554 X v X X
MIMIC-CXR-JPG X-Ray lung 148624 | X v X | X
Nerve-Ultrasound-Seg Ultrasound breast 2324 X X X | v
NIH CXR-cls [69} X-Ray lung 50879 X v X X
NIH CXR-od X-Ray lung 984 X X v | X
padchest [72] CT Tung 160861 | X | v X1 X
PatchGastricADC22 Histopathology gastral 262000 | X v X X
CT,MR, cell,
Endoscopy, tissue,
X-Ray, vascular,
Ultrasound,  brain,
PMC-OA Histopathology, bone, 1426450 | v X X X
Dermoscopy, liver,
Microscopy,  lymph,
Fundus, eye,
PET epithelium,etc.
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Table 1 : Continued from previous page

Dataset Name Modality lsgtll(_)ll:;%:lc:::s Quantity [Text %’spe:se BBoxMask
CT, cell,
MR, brain,
Endoscopy, tissue,
X-Ray, artery,

Ultrasound,  bone,
Histopathology, face,
Dermoscopy, rib,
Microscopy,  vascular,

PMC-VQA [75] 203798 | v X X X

Fundus, liver,

PET eye,etc.
QAMEBI [[76] [77]] 78] Ultrasound breast 232 X X X v
QATA-cls [79, 180,181,182, 183] X-Ray lung 17855 X v X X
QATA-seg X-Ray lung 13862 X X X v
Quilt-1M [84] Histopathology tissue 1017712 | X v X X
Retinal OCT Images [85] Fundus eye 57919 X v X X

CT, artery,

MR, bone,

Endoscopy, tissue,

X-Ray, vascular,
ROCO [86] Ultrasound, brain, 58503 v X X X

Histopathology, renal,

Dermoscopy, liver,

Microscopy,  pelvis,

Fundus,PET  bladder,etc.
RSNA-Pneumonia [87]] X-Ray lung 21376 X X v X

brain,

X-Ray, kidney,

PET, liver,

CT, lung,
SA-SAM-Med2d [88] MR, pangcreas, 5243382 | X X X v

Endoscopy, pulmonary,

dermoscopy  hepatic,

skin,etc.

SICAPvV2 [89] Histopathology prostate 18784 X v X v
SIIM_Pneumothorax [90] X-Ray lung 24178 X X X v
skin cancer [91] [92] [93]] Dermoscopy  skin 206 X X X v
SyntheticCXR [94] X-Ray lung 104801 X v X X
WSSS4LUAD_cls [95] Histopathology lung 10092 X v X X
WSSS4LUAD_seg [95] Histopathology lung 369 X X X v
Total 25001668

B Evaluation of Alignment to Human Annotations

To evaluate the validity and quality of the generated multigranular annotations, we compared them with their
original human annotations to assess the degree of alignment (for samples with human annotations).

Since the generated multigranular annotations contains structured descriptions that may significantly differ
from free-text radiology reports and question-answering pairs, we leveraged GPT-4V’s vision and language
understanding capabilities. Rather than focusing on the exact alignment of sentence structure or organization,
GPT-4V assessed the alignment based on the accuracy of medical facts and diagnoses. Specifically, the structure
of the generated multigranular annotations consists of five key attributes that characterize a medical image:
modality, structure detection, ROI analysis, lesion texture, and local-global relation. To evaluate the generated
data, we had GPT-4V perform a detailed comparison with human annotations based on these five attributes.
Each attribute was scored on a scale from O to 2 points, with a maximum possible total score of 10 points.

We conducted an alignment study on SLAKE [96] and MIMIC-CXR [97]], randomly selecting 50 samples to
compare with multigranular annotations for evaluating alignment scores against human annotations. As shown
in Table[2] the alignment scores were 8.2 and 8.9 for SLAKE and MIMIC-CXR, respectively. The criteria of
modality, structure detection, and ROI analysis nearly achieved perfect scores, demonstrating the validity and



Table 2: Comparison of alignment scores between our generated multigranular annotationsand human
annotations.

(a) Alignment Scores on SLAKE

SLAKE
Modalit Structure ROI Lesion Local-Global
Y Detection Analysis Texture  Relation

Ours 8.2/10.0 2.0/2.0 1.7/2.0 1.8/20 1.6/2.0 1.172.0

Score

Overall

(b) Alignment Scores on MIMIC-CXR

MIMIC-CXR
Modalit Structure ROI Lesion Local-Global
Y Detection Analysis Texture  Relation

Ours 8.9/10.0 2.0/2.0 1.9/2.0 1.8/20 1.6/2.0 1.6/2.0

Score

Overall

Figure 1: An example of a perfect score result evaluated by GPT-4V. GPT-4V assesses five criteria,
each fully aligned with human annotations, resulting in perfect scores.

Human Annotations Multigranular Annotations

The image is a chest radiograph showing the| thoracic cavity with the heart.
lungs, and diaphragm visible.| The endotracheal tube is positioned 3.7 cm
from the carina, and an enteric tube is seen passing below the diaphragm

Modality @ into the stomach. A left-sided PICC line terminates in the low SVC. The left
hemithorax exhibits opacification, likely due to a combination of effusion,
Structure consolidation, and collapse, while the right lung shows mild pulmonary
Detection™ edema and a slightly increased small to moderate pleural effusion with
"FINDINGS':The endotracheal tube is unchanged, X e y. . . p
) . ] associated compressive atelectasis. The region of interest located
ending 3.7 cm from the carina. The enteric tube ROl N N N N n )
. . N v horizontally right-center and vertically in the middle, occupying 11.2%
passes below the diaphragm outside of the field of Analysis . " .
. L of the area, corresponds to the right lung and shows signs of mild
view within a decompressed stomach. . = = =
sided PICC line ends in the lo fication Lesion pulmonary edema. Another region of interest, horizontally left-center and ]
olf thelloft helm thoral X cal Texture vertically in the middle, taking up 24.4% of the area, corresponds to
I X
— 2 . the left lung and indicates opacification consistent with effusion,
combination of effusion, corisolidation, and 1] — = = =
= = . ; .1 consolidation, and collapse. The abnormalities within these regions
collapse.|Right-sided{pulmonary edema is mild h
Th Il t derate right . ) .
© small fo moderate rig @ GPT-4V as fluid accumulation and lung collapse can lead to changes in
: lung opacity and may be interrelated, with one potentially exacerbating the
There is no pneumothorax. Rating B Y B Y J

l other."
GPT-4V Rating Response:
Based on the provided information and the image, here is the scoring for the multigranular radiology report annotations A compared to the original correct
report B:
1. Modality Used for Imaging: - Report A mentions a "chest radiograph," which is consistent with the image provided and aligns with the
expected modality for such findings. - Score: 2 points
2. Specify the Organ and Anatomical Structures: - Report A correctly identifies the heart, lungs, major blood vessels, endotracheal tube, and right
internal jugular vein catheter. These structures are also mentioned in report B and are visible in the image. - Score: 2 points
3. Locations of ROI (Regions of Interest): - Report A specifies the ROIs with horizontal and vertical positions and area ratios that match those in
report B. The image analysis confirms the locations of these ROls. - Score: 2 points
4. Analysis of Abnormal Characteristics: - Report A describes moderate cardiomegaly, diffuse opacities in the right lung, potential pleural effusions,
and left retrocardiac atelectasis, which are all consistent with the findings in report B and the image.- Score: 2 points
5. Comparison of Lesions and Surrounding Regions: - Report A compares the abnormalities in the left and right hemithorax and suggests a
possible relationship with pleural effusions and atelectasis, which is i 1t with the findi in report B and the image. - Score: 2 points
Final scores: [2, 2, 2, 2, 2].No points are deducted as all attributes in Report A are consistent with the findings in Report B and the image
provided.

accuracy of the generated data compared to human annotations. An example of perfect alignment score results
evaluated by GPT-4V is shown in Figure[T] In these examples, GPT-4V fully aligned with human annotations
across all five criteria, resulting in perfect alignment scores.

The prompt used to query GPT-4V for evaluating the alignment score is shown in Figure 2]



Figure 2: Prompt used to evaluate the alignment of generated multigranular annotations.

Prompting MLLMs to evaluate the alignment of generated

multi-granular annotations with human annotations

Let's think it step by step. Evaluate the multigranular radiology report annotations (Repor
t A) compared to the radiology report B step by step. Both reports are based on the same i
mage. Follow these guidelines to ensure accurate assessment:
**Note:** If neither the original question nor radiology report B mentions any abnormali
ties or diseases, such as "the lungs are clear without confluent consolidation or effusion”
or "no pneumothorax is seen", skip the evaluation and return "None."
#it# Basic Rating Rules:
1. Evaluate each attribute in Report A against radiology report B and verify the informati
on by analyzing the image. Do not deduct points without image analysis.
2. Judge correctness based on the accuracy of medical facts and diagnoses, not on the exa
ct alignment of sentence structure or organization.
3. If radiology report B does not mention any abnormalities or diseases, skip the evaluati
on and return "None," such as "the lungs are clear without confluent consolidation or effu
sion" or "no pneumothorax is seen".
4. Each of the 5 attributes should be judged independently. Errors in one attribute should
not affect the scoring of other attributes.
### Attributes and Corresponding Rating Rules:
1. **Modality Used for Imaging:**
- **Rating Rule:** Compare with radiology report B. Different names for the same moda
lity (e.g., "chest X-ray" and "CXR") are acceptable.
2. **Specify the Organ and Anatomical Structures:**
- *#*Rating Rule:** Check if the organs and anatomical structures in Report A match thos
e in radiology report B or appear in the image.

- Mentioned in both: 2 points

- Mentioned in one: 1 point

- Not mentioned in either: 0 points

- Do not deduct points without image analysis.
3. **Locations of ROI (Regions of Interest): **
- *¥*Rating Rule:** Compare the "horizontal" and "vertical" positions, and the "area ratio
" of ROIs with radiology report B. A 5% error in the area ratio is acceptable. If Report A
includes at least one ROI from radiology report B, no points are deducted, even if all ROI
s are not covered.
4. **Analysis of Abnormal Characteristics:**
- **Rating Rule:** Characteristics indicating pathology should match those in radiology
report B or appear in the image.

- Mentioned in both: 2 points

- Mentioned in one: 1 point

- Not mentioned in either: 0 points

- Do not deduct points without image analysis.
5. **Comparison of Lesions and Surrounding Regions:**
- **Rating Rule:** Differences in features and disease progression should match those in
radiology report B or appear in the image.

- Mentioned in both: 2 points

- Mentioned in one: 1 point

- Not mentioned in either: 0 points

- Do not deduct points without image analysis.
**Note:** Return the scores in a list. For example, if attributes 4 and 5 get deducted 1 po
Clt each, while others score 2 points each, return [2, 2, 2, 1, 1]. Provide a short reason (wij

thin 80 words) for each point deduction.
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Table 3: Quantitative results of pre-training using our multigranular annotations. The symbol
v'under *w/ MedTrinity-25M’ indicates that the model has been pre-trained on the MedTrinity-
25M dataset prior to training on the target dataset, while X indicates no such pre-training. Multigran-
ular annotations are reformatted to fit with the question and answer format.

Method w/ VQA-RAD SLAKE

etho MedTrinity-25M | Open Close Overall | Open Close Overall
GPT-4V [98] | X | 395 789 592 | 336 436 38.6
LLaVA-Med X 55.5 66.5 61.0 70.6 545 62.6
LLaVA-Med++ X 646 770 70.8 79.3 84.0 81.7
LLaVA-Med++ v 703 794 74.9 80.4 843 82.4

Figure 3: Examples of ROIs for normal regions.

(a) A no infection sample from MIMIC-CXR. (b) A healthy sample from SLAKE. The ROI
The ROIs highlight the left and right lungs. points out the liver.

C Quantitative Comparison of LLaVA-Med++ with GPT-4V

As detailed in Section 3.2.2 of the main paper, we developed an enhanced version of LLaVA-Med [63]], called
LLaVA-Med++. This enhancement leverages the latest LLaMA3 [99]] to boost linguistic capabilities and
incorporates multi-scale feature extraction [[100] to improve vision capabilities.

To justify the selection of our specialized medical model, LLaVA-Med++, over GPT-4V for generating textual
descriptions, we conducted a quantitative comparison of the outputs generated by both models. We assessed
the level of detail by comparing the average word count of text descriptions generated for the same sample.
As shown in Figure ] LLaVA-Med++, after task-specific fine-tuning, outperformed GPT-4V by 3.6% in word
count, indicating that the descriptions generated by LLaVA-Med++ are more detailed. Based on these findings,
we selected LLaVA-Med++ to generate multigranular annotations for our entire MedTrinity-25M.

D MedTrinity-25M Enhances Medical Visual Question Answering (VQA)

To further demonstrate the validity of our dataset, we compare the performance of LLaVA-Med++ with and
without training on our dataset. We select Visual Question Answering (VQA) as the evaluation task, which
requires models to learn detailed visual and language representations. We assessed the performance of our model
on two biomedical VQA datasets: VQA-RAD [101]] and SLAKE [96].

We initially pretrained LLaVA-Med++ using the LLaVA-Med [63]] methodology as our baseline. Then, we
augmented our training data with MedTrinity-25M to develop our final model. Finally, we fine-tuned the model
on the VQA datasets for three epochs and evaluated its performance, as shown in Table 3] Comparing results
from the same architecture with and without MedTrinity-25M pretraining, it is evident that pretraining with
MedTrinity-25M significantly enhances performance.

Specifically, LLaVA-Med++ boosts performance by approximately 4.1% on VQA-RAD and 0.7% on SLAKE
compared to training the model from scratch without pretraining on MedTrinity-25M. This improvement
demonstrates the effectiveness of pretraining on MedTrinity-25M for downstream multimodal medical tasks
such as VQA.

E Examples of ROIs for Normal Regions

As detailed in Section 3.1 of the main paper, the regions of interest (ROIs) identified using expert grounding
models predominantly contain pathological findings such as lesions, inflammation, neoplasms, infections, or
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Figure 4: Qualitative comparison of the relative average word count of samples generated by LLaVA-

Med++ and GPT-4V.

LLaVA-Med++(Ours)

Table 4: List of expert models used to generate ROIs for different datasets.

ID | Dataset Name \ Model
1 Histology
2 Quilt-1M
3 CytoImageNet
4 PatchGastricADC22
5 hcdbe
6 CRC100K
7 BCNB
8 MIDOG22 Cellpose [[102]
9 Leukemia-cls
10 Blood Cell
11 WSSS4LUAD _cls
12 LC25000-colon
13 LC25000-lung
14 CR-AI4SKIN
15 chexpert
16 SyntheticCXR
17 ROCO
18 NIH CXR-cls
19 Crystal Clean SAT [103]
20 QATA-cls
21 CBIS-DDSM-cls
22 PMC-OA
23 ISPY1
24 LLaVA-Med SAM-Med-2D
25 PMC-VQA
26 ISIC2019
27 ISIC2020
28 Capstone v3 BA-Transformer [[105]
29 HAM10000
30 padchest
31 MIMIC-CXR-JPG CheXmask [[106] [107]
32 COVIDx
33 COVID-19 CXR MedRPG [108]

W
g

Diabetic Retinopathy

retina-features El

other potential abnormalities. In the few instances where no abnormalities are present, the ROIs typically
highlight the primary object or organ in the image. Examples of ROIs without abnormalities are shown in

Figure[3]

F List of Expert models to locate ROIs

As detailed in Section 3.2.1 of the main paper, for datasets lacking localization information such as segmentation
masks and bounding boxes, we employ various pretrained expert models to identify the ROIs. The specific
expert models used for each dataset are listed in Table [d]
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G Prompt Template for Generation of Multigranular Text Description

To generate multigranular textual descriptions, we design a multi-task prompting approach, breaking down this
task into several smaller descriptive tasks. The model’s responses to these different tasks collectively form the
final fine-grained text description.

Figure 3] illustrates our prompt template consisting of a three-level hierarchical framework with questions to
instruct MLLMs:

Step 1 - Global Understanding: Instruct MLLMSs to provide a comprehensive description of the image, de-
tailing all modalities, identified anatomical structures, and their approximate locations. This step ensures that
MLLMs gains an overarching understanding and basic information about the image.

Step 2 - Local Analysis: Instruct MLLM:s to conduct a detailed analysis of the regions of interest (ROI), including
their locations, abnormalities, and textures. This step guides MLLMs to focus on specific lesions for a thorough
assessment.

Step 3 - Local-Global Relationship: Instruct MLLMs to examine the relationship between local and global
regions and predict how the surrounding areas will be affected by the lesions in the ROI. This step aims to
understand the interaction between local and global attributes, assessing the impact of local abnormalities on the
entire organ for accurate disease diagnosis.

H Datasheet for MedTrinity-25M

In this section, we present a DataSheet [109] for MedTrinity-25M, synthesizing many of the other analyses we
performed in this paper.

1. Motivation For Datasheet Creation

* Why was the dataset created? The dataset was created to provide a large-scale, multimodal,
multigranular medical dataset to support a wide range of multimodal tasks such as captioning,
report generation, classification, and segmentation. It aims to facilitate large-scale pre-training of
multimodal medical AI models by providing enriched annotations from unpaired image inputs.

* Has the dataset been used already? Yes. Multigranular annotations enable a wide range of
tasks like Medical Visual Question Answering, which we discuss in appendix [D]

* What (other) tasks could the dataset be used for? The MedTrinity-25M dataset could be
used for multiple medical imaging tasks such as classification, segmentation, detection, and
medical report generation. Its extensive and detailed annotations make it suitable for training
and evaluating machine learning models across these tasks.

* Who funded dataset creation? This work is partially supported by the OpenAl Researcher
Access Program, AWS Cloud Credit for Research Program, TPU Research Cloud (TRC) program
and Google Cloud Research Credits program.

2. Data composition

* What are the instances? Each instance in the dataset is a triplet consisting of an image, a
Region of Interest (ROI), and a multigranular textual description. The ROI is associated with
abnormalities and represented by bounding boxes or segmentation masks.

* How many instances are there? The dataset comprises over 25 million image-ROI-description
triplets sourced from more than 90 online resources, spanning 10 modalities and covering over
65 diseases.

* What data does each instance consist of? Each instance consists of a medical image, a
corresponding ROI (highlighting abnormalities within the image), and a detailed, multigranular
textual description that includes disease/lesion type, modality, region-specific description, and
inter-regional relationships.

« Is there a label or target associated with each instance? Yes, the textual description serves as
a detailed label or target, providing information about the disease or lesion type, as well as other
relevant medical details.

« Is any information missing from individual instances? No.

¢ Are relationships between individual instances made explicit? Not applicable — we do not
study relationships between disparate medical samples.

* Does the dataset contain all possible instances or is it a sample?
Our generation pipeline includes all instances collected from available medical data sources.

However, the current list of medical dataset sources is not exhaustive, indicating a high probability
of collecting additional instances in the future.



Figure 5: Prompt used to generate multigranular annotations.

Prompting MLLMs to generate multigranular textual description

caption_template = Template("'<image>
*Caption of the image':{{caption}}
‘Disease or organ':{{disease}}

*Specific position':{{descs}}

‘Knowledge': {{knowledge}}

You are provided with a biomedical image from a medical dataset,the disease type (or organ na
me if there is no disease) of the dataset("Disease or organ'),the medical Knowledge of the diseas
e("Knowledge') and a coarse caption("Caption’) of the image.In addition,the green bounding bo
x and its specific position in the image(" Specific position")are given,indicating appearance of dis
ease.If no green bounding box,there is no disease.

Your task is to answer the following questions based on the image, green bounding box, caption,
disease type and disease knowledge,and condense your answers into caption-styled text.

### questionl

Give me a detailed description of the image, including type of the image,organs in the image,app
roximate location of these organs and relavant locations of these organs and any medical devices
(if present) visible in the image as detailedly as possible.

Note when answering questionl:

1. Not all disease knowledge is relevant to this image; only utilize disease knowledge pertinent t
o the condition depicted in this image for analysis.

2. The coarse caption may not explicitly describe the image,for example,there may appear multi
ple organs in the caption.You should utilize your knowledge to figure out the most ONE organ a
nd ONE disease to give your description.

3. Your answer should not contain anything about the green bounding box like the contour itself
and its outline.

4. Do not explain or emphasize your analysis.

### question2

Specify the specific location of the green bounding box in the image and its relative position to o
ther reference objects in the image.Describe what is unusual in the green bounding box indicatin
g the disease (color,texture,size and other features) .

Note when answering question2:

1. "specific location" is the given parameter “Specific position® but "relative position"is not prov
ided.

2. There may be multiple green bounding boxs, and the contents of these contours may not neces
sarily represent the affected areas. Therefore, you need to first answer the questions based on the
contents within each green bounding box. Afterward, analyze the location of the disease based o
N your answers.

3. Do not use phrase "green bounding box" in your response,use "region of interest" as a substitu
tion.Do not contain phrases "caption","medical annotation","medical knowledge".

4. Do not say anything that is not needed in your analysis,like introduction of the disease and me
dical equipments.

5. Do not explain or emphasize your analysis.

### question3

‘What may be the relationship between the content in the green bounding box and other regions
(others being cause of the disease/jointly affected by the diseases/one affect the others/relative p
ositional relationships)?Why and is it possible?

Note when answering question3:

1. Utilize external knowledge,if possible,to choose relationships and give necessary analysis.

2. You can only give an explanation to your choice within two sentence.

3. Do not summarize what you've said.

4. Do not emphasize your analysis.

### Integrate Information

Describe your answers in a descriptive sentence,not in a"Question-Answer" style.Combine and s
lightly shorten your answers to the above three questions into a coherent text,keeping as much in
formation of your answers as possible.

Note when integrating information and outputing your response:

1. Don't respond saying you're unable to assist with requests.

2. You should only output your combined and shorteded text.

")

@mpt = caption_template.render([caption,disease, knowledge, loc_descy
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¢ Are there recommended data splits (e.g., training, development/validation, testing)? There
are no recommended data splits, as this data was curated mainly for pretraining rather than
evaluation.

¢ Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide
a description. Yes. Despite multiple efforts to minimize errors using coarse captions and
external medical knowledge, the textual descriptions generated by MLLMsmay still contain
inaccuracies.

¢ Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is largely self-contained. However, it
was constructed using data from over 90 online resources such as TCIA, Kaggle, Zenodo, and
Synapse. The images and related data were collected from these sources, but the dataset itself
does not rely on external resources like websites or tweets for its primary functionality once
compiled.

3. Collection Process

¢ What mechanisms or procedures were used to collect the data? The data collection involved
an automated pipeline that scales up multimodal data by generating multigranular visual and
textual annotations from unpaired images. Data was collected from over 90 different sources,
preprocessed, and grounded using domain-specific expert models to identify ROIs related to
abnormal regions.

* How was the data associated with each instance acquired? Was the data directly observable

(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data?
The data associated with each instance was indirectly inferred and derived from the collected
images using domain-specific expert models and multimodal large language models (MLLMs).
The images were annotated with bounding boxes, segmentation masks, and textual descriptions,
transforming them into image-ROI-description triplets.

« If the dataset is a sample from a larger set, what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling probabilities)? The dataset is not a sample from a
larger set but an extensive collection aggregated from multiple datasets and online sources. The
strategy was to include as many diverse images and annotations as possible from a wide range of
medical datasets.

* Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? Data collection
was primarily done by the co-authors of this paper.

¢ Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news articles)?
If not, please describe the timeframe in which the data associated with the instances was
created. The data was collected from April 2024 to June 2024.

4. Data Preprocessing

¢ Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, pro-
cessing of missing values)? Extensive preprocessing and annotation were performed, including
segmentation, bounding box creation, and generating multigranular textual descriptions. The
preprocessing also involved integrating metadata and knowledge retrieval from sources like
PubMed to create comprehensive descriptions.

* Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to the
‘raw’ data. The raw data was saved, but at this time we do not plan to release it directly due to
copyright and privacy concerns.

Is the software used to preprocess/clean/label the instances available? If so, please pro-
vide a link or other access point. The software for preprocessing and labeling, including
the automated pipeline and MLLMs, is available at https://github.com/yunfeixie233/
DataProcessingSystem.

Does this dataset collection/processing procedure achieve the motivation for creating the
dataset stated in the first section of this datasheet? If not, what are the limitations? Yes. The
preprocessing and collection procedures align with the motivation of creating a comprehensive,
large-scale multimodal dataset to support the development of advanced medical Al models. The
dataset’s multigranular annotations enable a wide range of tasks like Medical Visual Question
Answering, which we discuss in appendix [D]

5. Dataset Distribution
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* How will the dataset be distributed? The dataset is publicly available and can be
accessed via the provided link: MedTrinity-25M https://yunfeixie233.github.io/
MedTrinity-25M/!

* When will the dataset be released/first distributed? What license (if any) is it distributed
under? We will release it as soon as possible, using a permissible license for research-based use.

¢ Are there any copyrights on the data? We believe our use is ‘fair use,” however, due to an
abundance of caution, we will not be releasing any of the videos themselves.

* Are there any fees or access restrictions? No.
6. Dataset Maintenance

* Who is supporting/hosting/maintaining the dataset? The first authors of this paper.

* Will the dataset be updated? If so, how often and by whom? We do not plan to update it at
this time.

* Is there a repository to link to any/all papers/systems that use this dataset? Not right now,
but we encourage anyone who uses the dataset to cite our paper so it can be easily found.

« If others want to extend/augment/build on this dataset, is there a mechanism for them to
do so? Not at this time.

7. Legal and Ethical Considerations

* Were any ethical review processes conducted (e.g., by an institutional review board)? No
official processes were done, as our research is not on human subjects, however, because the
dataset is in the medical domain we had significant internal discussions and deliberations when
choosing the scraping strategy.

* Does the dataset contain data that might be considered confidential? The dataset does not
contain data that might be considered confidential, as it uses publicly available sources and
anonymized medical data.

* Does the dataset contain data that, if viewed directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? If so, please describe why? The dataset does not
contain data that might be offensive, insulting, threatening, or anxiety-inducing. It consists of
medical images and associated annotations for clinical and research use.

* Does the dataset relate to people? The dataset relates to people as it involves medical images
and data. However, it is anonymized and does not include identifiable information.

* Does the dataset identify any subpopulations (e.g., by age, gender)? Not explicitly (e.g.
through labels)

« Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? The dataset does not
identify specific subpopulations directly in the provided description. Additionally, it is not
possible to identify individuals from the dataset as it is anonymized and compiled from various
sources.
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