
A Detailed Description of Experiments, Architectures and Hyperparameter
Optimization

For each combination of dataset (CIFAR10, CIFAR100, Fashion MNIST, SVHN) and architecture
(ResNet18, VGG16, MLP) we train 250 models with a 10% validation split selected at random each
time, and an additional 25 models on the full training set.

A.1 Datasets
CIFAR10 / CIFAR100:
Reference: (Krizhevsky et al., 2009). License: MIT.
URL: https://www.cs.toronto.edu/~kriz/cifar.html

Fashion MNIST:
Reference: (Xiao et al., 2017). License: MIT.
URL: https://github.com/zalandoresearch/fashion-mnist

Street View House Numbers (Cropped Digits):
Reference: (Netzer et al., 2011). License: CC0.
URLs: http://ufldl.stanford.edu/housenumbers/
https://www.kaggle.com/stanfordu/street-view-house-numbers

A.2 Architectures
A.2.1 ResNet18
We implemented the standard ResNet18 architecture for CIFAR10 (He et al., 2016), except that we
replaced Batch Norm with Group Norm and applied Weight Standardization, following recent state
of the art (Kolesnikov et al., 2020).

A.2.2 VGG16
We used VGG16 (Simonyan and Zisserman, 2015), except that we removed the final three dense
layers: a standard modification for datasets smaller than ImageNet. We also did not use batch-norm
or dropout: our focus is on understanding trends in example difficulty and we do not expect the
results to be dependent on these devices.

A.2.3 MLP
Our MLP architecture comprises seven hidden layers with ReLU activations. We chose seven layers
after performing the experiments shown in Figure A.9. There we show the accuracies of k-NN
probes placed after each operation of two MLP architectures, depths 15 layers and 7 layers, both of
width 2048. We used CIFAR10 with 40% fixed random label noise as a reasonably difficult model
classification task, to choose the depth.

A.2.4 Data augmentation
We did not apply data augmentation: different data augmentation schemes could be expected to have
disparate effects on different examples, but we do not expect them to change the overall phenomena
that we report here. We leave the use of data augmentation to subsequent studies.

A.3 Hyperparameter optimization
For each architecture and dataset we initially performed 104 steps of SGD with momentum, using all
combinations of the following hyperparameters: learning rate ∈ [4× 101, 1× 10−1, 4× 10−2, 1×
10−2, 4 × 10−3, 1 × 10−3, 4 × 10−4, 1 × 10−4] ; momentum ∈ [0.0, 0.5, 0.9, 0.95]; weight decay
∈ [0, 5 × 10−4]. In CIFAR10, we additionally considered a learning rate of 2 × 10−2. For each
dataset and architecture we selected the 7 most accurate and stable training curves, extended the
number of training steps and added a learning rate schedule, reducing the learning rate in steps of
1
5 . At least two rounds of optimization were performed to adapt the learning rate schedule for each
combination of architecture and dataset. In each case a mini-batch size of 256 was used. The final
parameters obtained are shown in Table 1, which also gives the hyperparameters used in Sec. 3.3 and
Appendix A.2.3 for CIFAR10 with 40% label noise. Final accuracies of the trained models are given
in Table 2.
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Figure A.9: Seven layers are sufficient in MLP for CIFAR10 with 40% random label noise. CIFAR10
with 40% random label noise. For this plot, k-NN probes were placed after every operation in two
MLP architectures of the same width (2048) but different depths. Left: 15 dense layers; Right: 7
dense layers. Separate accuracies are reported for the test split, those data points in the training split
with unchanged labels and the randomly mislabeled data in the training split.

Learning Rate Momentum Weight Decay Schedule / steps
SVHN

ResNet18 4× 10−2 0.95 0.0 [7000]
VGG16 4× 10−2 0.9 0.0 [3000, 6000, 1000]
MLP 4× 10−2 0.9 0.0 [2500, 5500, 2000]

Fashion MNIST
ResNet18 1× 10−2 0.95 0.0 [4000, 3000]
VGG16 1× 10−2 0.95 0.0 [3000, 6000, 1000]
MLP 4× 10−2 0.5 0.0 [10000, 2500]

CIFAR10
ResNet18 4× 10−2 0.95 0.0 [7000]
VGG16 4× 10−2 0.9 0.0 [5000, 1000]
MLP 2× 10−2 0.9 0.0 [5000, 1250, 1000]

CIFAR10 w/ 40% (Fixed) Randomized Labels
VGG16 4× 10−2 0.9 0.0 [5000, 10000]
MLP 2× 10−2 0.9 0.0 [12000, 1250, 4000

CIFAR100
ResNet18 1× 10−1 0.95 0.0 [6000]
VGG16 4× 10−2 0.9 0.0 [2500, 7500]
MLP 1× 10−1 0.95 0.0 [2500, 6000, 1500]

Table 1: Training parameters for each model and dataset.

A.4 Convergence and consistency of k-NN probe accuracies
We tested the convergence of k in k-NN for VGG16 on CIFAR10. Figure A.10 shows the accuracies
of k-NN probes after every operation of the network for k ∈ [3, 10, 30]. We see that these k-NN
probe accuracies are insensitive to k for k = 30.
Figure A.9 shows separate results for five independent training runs. Similarly, Figure 5 (right)
and Figure 6 (right) each show the mean and uncertainty on the k-NN probe accuracies from 5
independent runs. The spread of results in these figures is tight, demonstrating consistency of the
results.

A.5 Placement of k-NN probes
For prediction depth, in MLP we constructed k-NN probes after the dense operations and the softmax,
in VGG16 after the convolutions and softmax, and in ResNet18 we constructed the probes after the
initial Group Norm operation, the sum operations at the end of each block and after the softmax
operation.
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SVHN Fashion MNIST CIFAR10 CIFAR100
ResNet18 95% 93% 83% 56%
VGG16 95% 93% 83% 45%
MLP 85% 90% 59% 29%

Table 2: Final accuracies of the trained models.
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Figure A.10: CIFAR10, VGG16. k-NN probe accuracies after each operation for k ∈ [3, 10, 30].
Solid lines: training set. Dotted lines: test set. Differences in these results are comparable to the
scatter observed for networks trained with different random seeds at k = 30.

From figures A.9 and A.10 it is clear that there are upper and lower envelopes that bound the k-NN
probe accuracies: the lower envelope corresponds to the ReLU activations and the upper envelope
to the operations immediately preceding them. We chose the preceding operations which, in effect,
conceptually shifts the ReLU activations to the “start” of a layer rather than the “end” of the preceding
layer.

A.6 Notes on definitions
A.6.1 Consistency of the model’s prediction with the k-NN probe after the softmax layer
Deep classifier models are trained to create linear separation of the classes in the softmax layer. There
is nearly perfect agreement between the k-NN probe after the softmax layer and predictions of the
full model. In the rare case that the k-NN probe after the softmax predicts a different class from the
full network we do not assign a prediction depth. Such data points are extremely rare: we found zero
such data points in the large majority of models and always fewer than 1 in 104.

A.6.2 Tiebreaks in the consensus class
When obtaining the consensus class, if predictions are tied between more than one class and the
ground truth is in the tiebreak, then we break the tie in favor of the ground truth class. If the ground
truth is not in the tiebreak then we report the tied class with the lowest integer index. This choice
was motivated by ease of implementation. We are confident that the overall results we report are
unaffected by this choice.

A.6.3 Estimating the consensus-consistency
We used the same ensemble to obtain both the consensus class ŷA (x) and the consensus-consistency
score. Thus we are reporting relationships between observables for a given ensemble. This is a biased
estimator of (2): an unbiased estimator could have been constructed by training an additional set of
models to obtain the consensus class, but at greater cost. We are confident that this does not affect the
conclusions of this study.

A.7 Justification and hyperparameters for the output margin intervention
A number of published works informed the design of our intervention. Firstly, Soudry et al. (2018)
demonstrate that the cross-entropy (CE) loss leads to large margins. In contrast to the cross-entropy,
the 0-Hinge loss has zero gradient if the prediction is correct, so it does not push the model to
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Figure A.11: Training curves for Cross-Entropy and 0-Hinge Losses, with either SGD with momentum and
large initial learning rate, or GD with momentum and a small learning rate. The initial learning rates and
schedules are set to obtain nearly smooth learning curves for GD and noisy learning curves for SGD. Each plot
shows five separate learning curves. Solid lines show training accuracies and dotted lines show test accuracies.

become arbitrarily confident. Secondly, Keskar et al. (2017) show that smaller batch sizes lead to
the discovery of flatter minima, which also corresponds to a wider margin (Neyshabur et al., 2017).
Thirdly, Keskar et al. (2017), Smith and Le (2018) and Smith et al. (2018) show that the gradient
noise level in stochastic gradient descent is proportional to Learning Rate

Batch Size . Having an appreciable noise
level early in training plays an important role in finding the flatter minima with larger output margins
reported in Keskar et al. (2017). Our intervention to minimize the margin therefore combines both of
the following changes:

1. Changing the loss from cross-entropy to the 0-Hinge loss
2. Minimizing the learning rate and making the batch size as large as possible

To test whether both or only one of these changes is required to obtain small output margins, we
performed separate runs, without any intervention, applying the changes individually and applying
them together. The starting point (the control) is training with cross-entropy loss and SGD with
momentum and large initial learning rate.
We trained VGG16 on CIFAR10. The hyperparameters, presented in Table 3, were set for each loss,
to obtain nearly smooth learning curves for full-batch gradient descent and very noisy learning curves
for SGD. In Figure A.11 we show the learning curves for these models. Since full-batch gradients are
expensive to compute we restricted the experiments to separating two classes (“Horse” and “Deer”)
with 4096 training images in total (evenly split).

Name Batch Size Initial Learning Rate Schedule / Steps Momentum
CE, SGD 256 4× 10−3 [3200] 0.9
CE, GD 4096 6.4× 10−6 [1.2× 106] 0.9
0-Hinge, SGD 256 4× 10−2 [5000, 2500] 0.9
0-Hinge, GD 4096 6.4× 10−5 [8× 105] 0.95

Table 3: Hyperparameters for all combinations of CE vs. 0-Hinge loss and SGD with momentum
and large initial learning rate vs. GD with momentum and small learning rate. In the learning rate
schedules we reduced the learning rate by a factor of 1

5 for each new set of training steps. Weight
decay was not employed in these calculations since we do not expect typical, modest amounts of
weight decay to qualitatively affect the results.

Table 4 lists the mean accuracy and output margin for all four combinations of loss function and
optimizer. We can see that the combination of both changes yields the smallest mean output margin,
102 times smaller than the next smallest margin. Figure A.12 presents the k-NN probe accuracies in
the hidden layers for all four combinations of loss and optimizer. The combined intervention, which
has the smallest margin, leads to the data being accurately clustered in the very latest layers.

B Further Related Work
Previous studies of deep learning on the level of individual data points have: sought to explain its
accuracy by focusing on the interference of per-example gradients during training (Chatterjee, 2019;
Zielinski et al., 2020); improved our understanding of deep learning by studying its performance
on datasets with partially randomized labels, which corresponds to a specific binary partitioning of
example difficulty Arpit et al. (2017); quantified example difficulty using 5 different observables:
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Name Mean Accuracy Mean Output Margin
CE, SGD 87.6% 1.6× 101

CE, GD 86.7% 1.1× 101

0-Hinge, SGD 83.9% 6× 10−2

0-Hinge, GD 69.5% 2.0× 10−4

Table 4: Mean accuracy and output margin for CE vs. 0-Hinge losses and SGD with momentum and
large initial learning rate vs. GD with momentum and small learning rate.
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Figure A.12: Accuracies of k-NN probes in the hidden layers of VGG16, resulting from each combination of
Cross-Entropy vs. 0-Hinge loss and SGD with momentum and large initial learning rate vs. GD with momentum
and small learning rate. In each case we compare to the probes for untrained (freshly initialized) networks. Only
the 0-Hinge with gradient descent using momentum and small learning rate (“0-Hinge, GD”) leads to clustering
in the latest layers.

1) the change in a network’s output for elements of the training set after subsequent fine-tuning on
a disjoint dataset, 2) the adversarial input margin of an example, 3) the agreement of models in
an ensemble, 4) the average confidence of models in an ensemble, and 5) the disparate impact of
differential privacy Carlini et al. (2019); identified difficult examples with those disproportionately
impacted by pruning and compression Hooker et al. (2019), with those whose classifications are
more often forgotten during training Toneva et al. (2019), and with those that are least likely to be
correctly classified in the validation set Jiang et al. (2021); demonstrated a correspondence between
those examples that a human finds difficult and examples a machine finds difficult Lalor et al. (2018).
In contrast to these works, we study the computational difficulty of inferring the class of an input:
the amount of computation used to connect that input with its class label inside the network. Our
definition of example difficulty is precisely described in Section 2.
In Hacohen et al. (2020) the authors report that the order during training in which data points are
learned is common between different architectures and random seeds in deep learning. In light of the
correlation between prediction depth and the order of learning data points (as reported in Section 3.2),
their result reflects the sanity checks performed in Section 2.2: that prediction depth is consistent
between architectures and random seeds.
Distinct from the forms of example difficulty we describe in Section 4, Hooker et al. (2019) propose
four different forms of example difficulty: “ground truth label incorrect or inadequate”, “multiple-
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Figure C.13: Consistency of prediction depth between architectures for SVHN. Histograms comparing
the mean value of prediction depth obtained for each data point, across the ensemble of trained models.
Left pair: training split. Right pair: validation split. Spearman’s Correlation Coefficient is given
beneath each plot. See Appendix C.2 for details.

object image”, “corrupted image”, “fine-grained classification”. The forms of difficulty we describe
in this paper follow directly from the computational difficulty of the examples, derived from the
model’s behavior. In contrast, Hooker et al. (2019) employ intuitive notions of difficulty to define
their four forms and ask humans to assign difficult examples to these categories.
The Deep k-Nearest Neighbors method Papernot and McDaniel (2018) builds a series of k-NN
probes in the hidden spaces of the network. When a test example is processed by the network, Deep
k-NN identifies the nearest neighbors of the example in every layer, and then classifies the example
according to the class labels of the aggregated nearest neighbors. By comparing the number of
neighbors the example has of the predicted class to the number of similarly labeled nearest neighbors
that were recorded (across all layers) for examples in a hold-out test set, Deep k-NN is able to quantify
the probability that the prediction is correct and to identify OOD examples. However, the authors do
not report the phenomena reported here. Our results may yet enable the development of new Deep
k-NN methods. Another algorithm Bahri et al. (2020) constructs a k-NN probe in the logit space of a
network, and demonstrates that this enables improved detection of mislabeled data.

C Consistency of the Main Results Reported in the Paper

C.1 Prediction depth corresponds to an intuitive notion of example difficulty
Table 5 presents representative examples with either extremely high or extremely low prediction
depths in ResNet18. Examples are taken from two randomly chosen classes of each dataset. The
images shown provide further evidence for our claim in Figure 1 that examples predicted in the input
are visually typical (“easy”), while those predicted in the softmax are mislabeled and/or visually
confusing (“hard” examples).

C.2 Consistency of prediction depth between architectures
To visually reinforce the correlations reported in Figure 2 (right), Figures C.13 to C.16 reproduce the
result from Figure 2 (right) for all datasets in both the training and validation splits. For each combi-
nation of dataset and architecture we trained 250 models with random 90:10% training:validation
splits as described in Appendix A. These histograms compare the mean prediction depths of the
data points between different architectures. Separate plots are shown for the training and validation
splits. In each case we’ve rescaled prediction depth to the interval [0, 1] for visual ease of comparison
between datasets. Each histogram is accompanied by the corresponding Spearman’s Correlation
Coefficient.

C.3 Relationship between prediction depth and prediction consistency
Figures C.17 and C.18 reproduce the results of Figure 3 and Figure 4 (left) for every dataset and
architecture. The gradients of the linear bounds reported in the paper depend on the difficulty of the
classification task: easier tasks are solved after fewer layers.
Figure C.19 reproduces Figure 4 (middle) for every dataset and architecture. Similarly, Figure C.20
reproduces Figure 4 (right) for all datasets and architectures. Related to Figure C.19, in Figure C.21
we show that the prediction depth in one model can be used to estimate the prediction entropy of

20



Dataset / Class Low PD Examples High PD Examples

CIFAR100 / BICYCLE

CIFAR100 / TROUT

CIFAR10 / AIRPLANE

CIFAR10 / TRUCK

Fashion MNIST / DRESS

Fashion MNIST / SANDAL

SVHN / 5

SVHN / 8

Table 5: This table presents additional examples to support the claim made in Figure 1, that examples
predicted in the input are visually typical (“easy”), while those predicted in the softmax are mislabeled
and/or visually confusing (“hard” examples). We report training inputs for two random classes from
each of the CIFAR100, CIFAR10, Fashion MNIST, and SVHN datasets. The middle column shows
training examples with very low prediction depths in ResNet18. The right-hand column shows
training examples with very high prediction depths in ResNet18.

an ensemble of models, where members of the ensemble have the same architecture and are trained
using the same hyperparameters but with different random seeds.

Prediction entropy: The entropy of predictions in an ensemble for an unseen input x. Consider an
ensemble of models trained on r random subsets of the complete dataset S̃∼S\{(x, y)}
(which explicitly do not include (x, y)). We obtain the normalized histogram of the one-hot
predictions of this ensemble for the input x. The prediction entropy is the entropy of that
histogram. For N classes the entropy of the prediction histogram is given by

S(x) = −
N∑
i=1

pi(x) log pi(x) (3)

where pi(x) represents the fraction of models that predicted the class i for input x.

Figure C.22 shows the histogram of average prediction depth (validation set) vs. prediction entropy
for each dataset and architecture. We remark that the mean prediction depth defines a linear upper
bound on the prediction entropy similar to the corresponding linear lower bound on the consensus-
consistency score (Figures C.17 and C.18).
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Figure C.14: Consistency of prediction depth between architectures for Fashion MNIST. Histograms
comparing the mean value of prediction depth obtained for each data point, across the ensemble
of trained models. Left pair: training split. Right pair: validation split. Spearman’s Correlation
Coefficient is given beneath each plot. See Appendix C.2 for details.
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Figure C.15: Consistency of prediction depth between architectures for CIFAR100. Histograms
comparing the mean value of prediction depth obtained for each data point, across the ensemble
of trained models. Left pair: training split. Right pair: validation split. Spearman’s Correlation
Coefficient is given beneath each plot. See Appendix C.2 for details.

C.4 Comparison of prediction depth and iteration learned

Figure C.23 reproduces the result shown in Figure 5 (left) for every architecture and dataset. To give
a more complete picture of the relationship between the prediction depth and the iteration learned,
Figures C.24 to C.27 show histograms of the mean prediction depth and iteration learned for each
data point when it occurs in both the training and validation splits. As described in Appendix A,
for each dataset and architecture we trained 250 models with random 90:10% validation:train splits.
Each time a data point appears in either split we record the prediction depth and the iteration learned.
These histograms compare the mean prediction depth to the mean iteration learned for all data points
in both the train and validation splits. The Spearman’s Correlation Coefficient is given beneath each
plot.

C.5 Consistency of margin results

Figures C.28 to C.31 reproduce Figure 6 (left and middle) for all datasets and architectures in both
the training and test splits.

C.6 Consistent two-dimensional relationship between prediction depths in the training and
validation splits

Figures C.32 to C.35 demonstrate consistency of the histograms shown in Figure 7 for all datasets
and architectures. As described in Appendix A, for each dataset and architecture we trained 250
models with random 90:10% validation:train splits. Each time a data point appears in either split we
record the prediction depth. These histograms compare the mean prediction depths in the two splits
for all data points which can be very different from each other, depending on whether the consensus
class matches or differs from the ground truth class.
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Figure C.16: Consistency of prediction depth between architectures for CIFAR10. Histograms
comparing the mean value of prediction depth obtained for each data point, across the ensemble
of trained models. Left pair: training split. Right pair: validation split. Spearman’s Correlation
Coefficient is given beneath each plot. See Appendix C.2 for details.

C.7 Evolution of clustering in the hidden layers for the different forms of example difficulty
Figures C.36 to C.47 reproduce similar behavior to that shown in Figure 8 for all datasets and
architectures. Please see Figure 8 for a detailed description.

D Pertinence of example difficulty to topics in machine learning
We will describe the relevance of our work to distribution shift and robustness; algorithmic fairness,
curriculum learning and models that explicitly address heteroscedastic uncertainty.

Distribution Shift and Robustness: Recent work has hypothesized that the linear relationship be-
tween the performance of a model before and after distribution shift could potentially be
explained in a theory based on the difficulty of examples (Recht et al., 2019). Recent work
has additionally discussed how examples that belong to a minority group might appear
difficult to classify correctly under distribution shift (Nagarajan et al., 2021). Therefore it
seems natural to suppose that the richer picture of example difficulty we introduce could
lead to a deeper understanding of distribution shift and aid with the development of more
robust algorithms.

Curriculum Learning: This class of training algorithms exploits additional information about a
dataset (obtained in advance) to present easier examples earlier in the training process (El-
man, 1993; Sanger, 1994; Bengio et al., 2009). Different notions of difficulty have been
the subject of several related studies (Bengio et al., 2009; Toneva et al., 2019; Hacohen and
Weinshall, 2019) and it has been shown that (neglecting the cost of obtaining the curriculum)
following a curriculum can improve training time significantly, particularly for large training
data (Wu et al., 2021). We envisage that richer, more effective curricula could be designed
by distinguishing different forms of example difficulty. This could, for example, be achieved
setting the curriculum according to a each data point’s location in Figure 7.

Algorithmic Fairness: We have seen that mislabeled data is processed similarly to data that simply
looks mislabeled to the algorithm (both “look like a different class”). This presents a fairness
challenge when filtering “noisy labels”. Similarly, we have seen that examples of rare
subgroups (which are essential to include in the training set for robustness (Feldman and
Zhang, 2020) and fairness (Hooker et al., 2020) are processed similarly to truly “ambiguous”
inputs. Finding ways to deal with “label noise” without biasing against these subgroups
remains an open challenge. In further work, we anticipate that examining datasets in an
enlarged space of different example difficulty measures (Jiang et al., 2021; Toneva et al.,
2019; Carlini et al., 2019; Hooker et al., 2019; Lalor et al., 2018; Agarwal and Hooker,
2020) may allow algorithms that distinguish between these different sources of label noise
to reach higher accuracy and to be fairer.

Heteroscedastic Uncertainty: There are a class of models with two heads, one to model the mean
and the other the uncertainty of the prediction (E.g. Kendall and Gal (2017); Kendall et al.
(2018)). These models learn to become uncertain on difficult inputs and treat example
difficulty as a one-dimensional quantity. It seems highly likely that this uncertainty will
lead to the model down-weighting examples of rare subgroups in the data. We suggest
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Figure C.17: This figure demonstrates the consistency of the behavior shown in Figure 3 and Figure 4
(left) for all architectures with CIFAR10 and CIFAR100.

that methods for modeling uncertainty could additionally be tasked with estimating the
location of a training point in Figure 7. It seems plausible to suppose that new models able
to distinguish the form of an example’s difficulty could later be refined to be fairer, more
accurate and better calibrated.

E Alternative Definitions for Prediction Depth
Instead of using the network’s final prediction on a data point to assign the prediction depth, one
could instead use the ground truth label. This would require a different rule for assigning a prediction
depth to validation data points that are incorrectly classified as compared to data points that are
correctly classified. We consider our definition to be simpler than combining two separate rules.
One could alternatively have defined the prediction depth for each example by first leaving it out
of the training set, and then training networks of different depths to identify the number of layers
required to classify it correctly. In fact, architectures of different depths have different inductive
biases, so the relative difficulty of inputs can become inverted with changing depth (Mangalam and
Prabhu, 2019). Such an approach would be expensive but could lead to a rich picture of how example
difficulty changes with architecture.
Another potential approach would have been to use a linear classifier such as Logistic Regression in
the embedding spaces. Indeed linear probes, logistic regression and SVM probes have been previously
applied to the hidden spaces of DNNs (E.g. Cohen et al. (2018); Alain and Bengio (2017)).
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Figure C.18: This figure demonstrates the consistency of the behavior shown in Figure 3 and Figure 4
(left) for all architectures with Fashion MNIST and SVHN.

On advantage of linear, logistic regression and SVM probes, is that they have a fixed inference
cost independent of the size of the training set. This is not the case for k-NN in high dimensional
embedding spaces. For a sufficiently large training split, one could select a fixed random subset of the
training split to use as the support set for the k-NN probes. This would reduce the cost of evaluating
the k-NN probes. Doing so would affect the value of the prediction depth in individual data points
but should not affect the broad conclusions of this paper.
Figure E.48 compares the behavior of k-NN probes and Logistic Regression (LR) probes after the
convolution operations of VGG16 with CIFAR10. LR is able to completely separate the training set
after the first convolution operation. We also show the behavior when training LR on a random 50%
of the dataset and predicting on the other half. k-NN shows lower accuracy until the classes become
entirely clustered. We chose k-NN probes for this investigation.
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Figure C.19: This figure demonstrates the consistency of the result shown in Figure 4 (middle) for all
datasets and architectures.
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Figure C.20: This figure demonstrates the consistency of the result shown in Figure 4 (right) for all
datasets and architectures.
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Figure C.21: The prediction depth in one model can be used to estimate the prediction entropy
of an ensemble. The size of the marker indicates the fraction of data points with each prediction
depth. We trained 25 models on each dataset and architecture with different random seeds. We
take the prediction depth from one trained model and report the average prediction entropy of the
corresponding data points, where the prediction entropy is determined from the remaining 24 models.
As in Figure C.19, predictions for data points with smaller prediction depths have lower mean entropy
(are more consistent) than those of data points with larger prediction depths.
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Figure C.22: First (Top) Row: CIFAR10. Second Row: CIFAR100. Third Row: Fashion MNIST.
Fourth (Bottom) Row: SVHN. Left Column: ResNet18. Middle Column: VGG16. Right Column:
MLP. Histograms showing consistency of the relationship between prediction depth in the validation
set and prediction entropy of an ensemble. As described in Appendix A, for each dataset and
architecture we trained 250 models with random 90:10% validation:train splits. Each time a data
point appears in the validation split we record the prediction depth and the prediction. These
histograms compare the average prediction depth for each data point to its prediction entropy. We
observe that the prediction depth gives linear upper bounds for the prediction entropy as it does linear
lower bounds for the consensus-consistency (Figures C.17 and C.18).
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Figure C.23: This figure demonstrates the consistency of the result shown in Figure 5 (left) for all
datasets and architectures.
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Figure C.24: CIFAR10. Top row: ResNet18. Middle row: VGG16. Bottom row: MLP. Histogram
comparing the mean prediction depth to the mean iteration learned when each data point occurs in
either the training split (left column) or the validation split (right column). See Appendix C.4 for a
description of the experiments performed.
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Figure C.25: CIFAR100. Top row: ResNet18. Middle row: VGG16. Bottom row: MLP. Histogram
comparing the mean prediction depth to the mean iteration learned when each data point occurs in
either the training split (left column) or the validation split (right column). See Appendix C.4 for a
description of the experiments performed.
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Figure C.26: Fashion MNIST. Top row: ResNet18. Middle row: VGG16. Bottom row: MLP.
Histogram comparing the mean prediction depth to the mean iteration learned when each data point
occurs in either the training split (left column) or the validation split (right column). In this case, the
large majority of the data is already learned in the input layer. See Appendix C.4 for a description of
the experiments performed.
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Figure C.27: SVHN. Top row: ResNet18. Middle row: VGG16. Bottom row: MLP. Histogram
comparing the mean prediction depth to the mean iteration learned when each data point occurs in
either the training split (left column) or the validation split (right column). See Appendix C.4 for a
description of the experiments performed.
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Figure C.28: Consistency of Figure 6, showing the correlation between prediction depth, and the
input and output margins (log scale) for both the test and training splits of SVHN. The correlation
coefficient between the prediction depth and the logarithm of the margin is given in each plot. For
each architecture, we train 25 models with different random seeds on the full training split. We record
the input and output margins together with the prediction depth for every data point in both the train
and test splits. These histograms compare the mean values of each margin to the mean prediction
depth for all data points.
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Figure C.29: Consistency of Figure 6, showing the correlation between prediction depth, and the
input and output margins (log scale) for both the test and training splits of Fashion MNIST. The
correlation coefficient between the prediction depth and the logarithm of the margin is given in each
plot. For each architecture, we train 25 models with different random seeds on the full training split.
We record the input and output margins together with the prediction depth for every data point in
both the train and test splits. These histograms compare the mean values of each margin to the mean
prediction depth for all data points.
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Figure C.30: Consistency of Figure 6, showing the correlation between prediction depth, and the
input and output margins (log scale) for both the test and training splits of CIFAR10. The correlation
coefficient between the prediction depth and the logarithm of the margin is given in each plot. For
each architecture, we train 25 models with different random seeds on the full training split. We record
the input and output margins together with the prediction depth for every data point in both the train
and test splits. These histograms compare the mean values of each margin to the mean prediction
depth for all data points.
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Figure C.31: Consistency of Figure 6, showing the correlation between prediction depth, and the
input and output margins (log scale) for both the test and training splits of CIFAR100. The correlation
coefficient between the prediction depth and the logarithm of the margin is given in each plot. For
each architecture, we train 25 models with different random seeds on the full training split. We record
the input and output margins together with the prediction depth for every data point in both the train
and test splits. These histograms compare the mean values of each margin to the mean prediction
depth for all data points.
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Figure C.32: Demonstrating consistency of the histograms shown in Figure 7 for all architectures
on CIFAR10. These histograms compare the mean prediction depth when each data point occurs in
either the validation split or the training split. Results are shown separately for data points where
the consensus class is the same as or different from the ground truth label. See Appendix C.6 for a
description.
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Figure C.33: Demonstrating consistency of the histograms shown in Figure 7 for all architectures on
CIFAR100. These histograms compare the mean prediction depth when each data point occurs in
either the validation split or the training split. Results are shown separately for data points where
the consensus class is the same as or different from the ground truth label. See Appendix C.6 for a
description.
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Figure C.34: Demonstrating consistency of the histograms shown in Figure 7 for all architectures on
Fashion MNIST. These histograms compare the mean prediction depth when each data point occurs
in either the validation split or the training split. Results are shown separately for data points where
the consensus class is the same as or different from the ground truth label. See Appendix C.6 for a
description.
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Figure C.35: Demonstrating consistency of the histograms shown in Figure 7 for all architectures
on SVHN. These histograms compare the mean prediction depth when each data point occurs in
either the validation split or the training split. Results are shown separately for data points where
the consensus class is the same as or different from the ground truth label. See Appendix C.6 for a
description.
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Figure C.36: Reproducing Figure 8 for ResNet18 on CIFAR10.
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Figure C.37: Reproducing Figure 8 for VGG16 on CIFAR10.
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Figure C.38: Reproducing Figure 8 for MLP on CIFAR10.
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Figure C.39: Reproducing Figure 8 for ResNet18 on CIFAR100.
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Figure C.40: Reproducing Figure 8 for VGG16 on CIFAR100.
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Figure C.41: Reproducing Figure 8 for MLP on CIFAR100.
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Figure C.42: Reproducing Figure 8 for ResNet18 on SVHN.
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Figure C.43: Reproducing Figure 8 for VGG16 on SVHN.
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Figure C.44: Reproducing Figure 8 for MLP on SVHN.
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Figure C.45: Reproducing Figure 8 for ResNet18 on Fashion MNIST.

0 2 4 6 8 10 12 14
Layer

0.0
0.2
0.4
0.6
0.8
1.0

k-
NN

: G
ro

un
d 

Tr
ut

h

0 2 4 6 8 10 12 14
Layer

0.0
0.2
0.4
0.6
0.8
1.0

k-
NN

: C
on

se
ns

us
 C

la
ss

Easy
Ambiguous
Ambiguous w/o its label
Looks like a different class

Figure C.46: Reproducing Figure 8 for VGG16 on Fashion MNIST.
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Figure C.47: Reproducing Figure 8 for MLP on Fashion MNIST.
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Figure E.48: Comparison of k-NN probe and Logistic Regression (LR) probe accuracies for VGG16
trained on CIFAR10. LR is already able to divide the training set into linearly separated classes
after the first convolutional operation. In red we show the accuracy of LR probes trained on a
random subset (half) of the data and predicting on the other half. These results are converged (closely
repeatable between different trained VGG16 models).
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
[Yes] To the best of our knowledge the contributions section is accurate and in our view
corresponds to both the abstract and the paper.

(b) Did you describe the limitations of your work?
[Yes] See Sec. 5

(c) Did you discuss any potential negative societal impacts of your work?
[No] The aim of this paper is fundamental insight into the workings of Neural Networks.
Although in the long run this may lead to further insights that translate into advances in
practical algorithms (see Appendix D for some possible directions), even they are quite
general and there would be little basis now to speculate about their potential negative
societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results?

[N/A] We do not use theoretical results in a mathematical proof. We only use a
published method of approximating the adversarial input margin in section 3.3 as a
motivation for our definition of “margin”.

(b) Did you include complete proofs of all theoretical results?
[N/A] No new theoretical results are claimed.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We use standard
data sets and network architectures, and do not propose new algorithms.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
[Yes] See Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
[No] Most plots (Figures 2,3,4,6,7) contain this information in another form, since they
plot the point cloud corresponding to all measurements. Figure 5 is already an average
over 250 models, any error bar of the mean (standard deviation /

√
250) would be too

small to be noticed.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)?
[No] We used CPUs and cloud compute; most of the energy consumption came from
renewable sources, the rest was offset by the cloud provider. We did not track the total
amount of compute used for this paper, but it should be modest since we demonstrate
fundamental deep learning phenomena on data sets that are “small” by today’s standards
(“only” CIFAR10, CIAR100, SVHN, FMNIST, and not ImageNet and larger.)

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators?

[Yes] See Appendix A.1 for the data sets we use.
(b) Did you mention the license of the assets?

[Yes] See Appendix A.1 for the data sets we use.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating?
[N/A] Only the above common data sets were used.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?
[N/A] Only the above common data sets were used.
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5. If you used crowdsourcing or conducted research with human subjects...
[N/A] No crowdsourcing or research with human subjects was used.
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