
Outline of Appendices Appendix A describes Chroma-VAE’s model and training procedure in
detail. Appendix B describes the experimental details in Sections 3 and 5. Appendix C contains
further results referenced in the paper. Appendix D is a statement on the societal impact of our work.

A Chroma-VAE: Model Implementation

Figure 6 depicts Chroma-VAE and its training procedure. In the diagrams below, the forward-
facing solid arrows represent the forward pass and the backwards-facing dotted arrows represent the
backpropagation of gradients.

(a) In the first stage of the training procedure, the encoder, decoder, and classifier are
all trained. The loss function consists of two terms: the cross-entropy loss and the
reconstruction loss.

(b) The classifier head is attached to z1 only (not the entire latent embedding z). As such,
the cross-entropy loss term is only backpropagated through z1.

(c) The decoder is attached to the entire latent embedding z. As such, the reconstruction
loss term is backpropagated through both z1 and z2. Consequently, putting both terms
of the loss function together, z1 learns to encode shortcut features whereas z2 encodes
salient non-shortcut features of the input image.
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(d) In the second stage of the training procedure, we discard the original classifier head
(attached to z1) and attach a new one to z2 only instead. We train this classifier using
the same cross-entropy loss, except that gradients are now being backpropagated to z2.
Note that the encoder and decoder are fixed at this stage, and so z itself is fixed. Only the
parameters of the new classifier head are being updated. Since z2 was trained to encode
non-shortcut representations, the classifier learns to predict the label using non-shortcut
features only.

Figure 6: Diagram of Chroma-VAE’s training procedure, showing loss terms and backpropagated
gradients.

B Experimental Details

Section 3: CelebA (Synthetic Patch) We use standard CNN architecture. The encoder contains
4 convolutional layers, followed by fully-connected layers to µϕ and σ2

ϕ. The decoder contains a
fully-connected layer, followed by 4 deconvolutional layers. The Adam optimizer [22] is used with a
learning rate of 0.0005. The hyperparameters are dim(z) = 128 and zp = 0.5.

Section 5: ColouredMNIST We use standard CNN architecture. The encoder contains 2 convolu-
tional layers, followed by fully-connected layers to µϕ and σ2

ϕ. The decoder contains a fully-connected
layer, followed by 2 deconvolutional layers. The Adam optimizer is used with a learning rate of 0.001.
The hyperparameters are dim(z) = 32 and zp = 0.25. We performed a hyperparameter sweep for
JTT with T ∈ {1, 3, 5, 10} and α ∈ {2, 5, 50, 100}.

Section 5: CelebA and MF-Dominoes We use standard CNN architecture. The encoder contains
4 convolutional layers, followed by fully-connected layers to µϕ and σ2

ϕ. The decoder contains a
fully-connected layer, followed by 4 deconvolutional layers. The Adam optimizer is used with a
learning rate of 0.0005. For CelebA, the hyperparameters are dim(z) = 128 and zp = 0.5. For
MF-Dominoes, the hyperparameters are dim(z) = 8 and zp = 0.5. We performed a hyperparameter
sweep for JTT with T ∈ {1, 3, 5, 10} and α ∈ {2, 5, 50, 100}.

Section 5: Chest X-rays Following prior work [52], we use a Densenet (pretrained on ImageNet)
[17] for the encoder, along with a standard CNN decoder (containing a fully-connected layer,
followed by 4 deconvolutional layers). The Adam optimizer is used with a learning rate of 0.0001.
The hyperparameters are dim(z) = 128 and zp = 0.5.
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C Additional Results

Method Dtr Dneut Danti

Invariant 95.58 94.57 92.07

Naive-Class 99.83 90.90 4.45

Naive-VAE-Class 99.65 89.47 4.69

Naive-Independent 99.64 91.49 9.86

Class-Conditional 93.52 61.19 3.95

JTT 99.62 92.76 6.52

Chroma-VAE (z1-clf) 99.64 92.33 6.03

Chroma-VAE (z2-clf) 95.57 91.82 87.24

Table 6: Predictive accuracy on the various test distributions. On Danti, Chroma-VAE improves on
the naive discriminative classifier by a factor of 20.

Figure 7: For each row, left to right: (a) original image, (b) samples of partial reconstructions x̃1,
(c) samples of partial reconstructions x̃2.

C.1 Synthetic Patch on CelebA

We consider the same task as in Section 3.1, where we predict blond hair, with a synthetic shortcut
(blue patch superimposed onto the positive class with probability 0.9). We evaluate performance on
three test environments:

• Training Distribution (Dtr): the patch is added to all members of the positive class
• Neutral Distribution (Dneut): no patches are added
• Adversarial Distribution (Danti): the patch is added to all members of the negative class

Table 6 summarizes the results. Chroma-VAE vastly outperforms all other methods under the
adversarial distribution. The z2-classifier has the same performance as the invariant classifier on
the in-distribution Dtr, implying that it did not benefit (unfairly) from shortcut representations, unlike
the naive baselines. However, the fact that the z2-classifier is still outperformed by the invariant
classifier on Danti and Dneut suggests that not all desired features were captured by z2. This implies
that the maximally-useful compression of the data in z1 primarily encodes the shortcut, but also other
useful correlations.

Partial reconstructions in Figure 7 support the quantitative results. The first image represents an
example of the negative class (non-blonde hair), the second image is an example of the positive class
with the shortcut, and the third image is an example of the positive class without the shortcut (which
happens with probability 0.1 in the training set). Similar to Figure 3, samples of x̃1 do not resemble
the original image, but always encode the shortcut patch if it exists in the original image. Conversely,
samples of x̃2 bear great resemblance to the original image but may or may contain the shortcut —
confirming that they are shortcut-invariant.
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C.2 ColoredMNIST: Partial Reconstructions

Figure 8 shows partial reconstruction samples on three additional images. We observe the same
patterns as in Figure 4, where samples of x̃1 preserve the colour of the original image but not the
digit, whereas samples of x̃2 preserve the digit of the original shape but is colour-invariant.

Figure 8: For each row, left to right: (a) original image, (b) samples of partial reconstructions x̃1,
(c) samples of partial reconstructions x̃2.

C.3 Chest X-Ray: Partial Reconstructions

Figure 9 shows the reconstruction as well as partial reconstruction samples on a test example. Similar
to partial reconstructions on the CelebA dataset, samples of x̃1 are more diverse and less likely to
resemble the original image, whereas samples of x̃2 bear greater resemblance to the original image,
especially around the center region of the image (where true predictive signals for pneumonia are
located).

Figure 9: Top to bottom, left to right: (a) original image, (b) reconstruction, (c) samples of partial
reconstructions x̃1, (d) samples of partial reconstructions x̃2.
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D Broader Societal Impact

Positive Sources of Impact By learning shortcut-invariant predictive signals, Chroma-VAE is
robust to distribution shifts and performs well when deployed on OOD test cases. This is promising
for applications in high-stakes domains where errors are costly, such as the pneumonia prediction
example in Section 5.2. Furthermore, the partial reconstructions produced by Chroma-VAE can be
useful for identifying if shortcut learning is occurring in the first place, as they can be examined to
identify traits that are invariant in each latent subspace.

Potential for Abuse Deep generative models can be used to produce deepfakes [49], which are
samples generated by the model that are realistic enough to resemble real-life examples, e.g. fake
faces produced by a generative model trained on CelebA. Chroma-VAE can be abused in a similar
(and potentially more dangerous) way, as partial reconstructions can be generated to keep certain
traits while changing others, by concatenating z1 and z2 from different samples. For example,
partial reconstructions produced by Chroma-VAE trained on gender labels might be used to generate
“counterfactual deepfakes”, e.g. a person with the opposite gender. Combating deepfakes is an active
area of research, and such techniques can be used to detect Chroma-VAE deepfakes as well.
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