
Figure 5: Cables for Tracing Unseen Cables Experiment

Table 6: Tracing on Unseen Cables Results
Cable Reference TR 1 2 3 4 5 Avg.

Tracing Success Rate 6/8 7/8 8/8 7/8 6/8 6/8 40/48=83%

Failures (I) 2 (I) 1 (II) 1 (I) 1, (III) 1 (II) 1, (III) 1

7 Appendix431

7.1 Experiments Failure Mode Analysis432

7.1.1 Using LTODO for Tracing Cables Unseen During Training433

(1) Retraces previously traced cable (went in a loop).434

(2) Missteps onto a parallel cable.435

(3) Skips a loop.436

Figure 5 shows the cables tested on. The most common failure mode is (I), retracing previously437

traced cable. This is commonly observed in cases with near parallel segments or in dense loop areas438

within a knot.439

7.1.2 Using LTODO for Cable Inspection in Multi-Cable Settings440

(I) Misstep in the trace, i.e. the trace did not reach any adapter.441

(II) The trace reaches the wrong adapter.442

(III) The trace reaches the correct adapter but is an incorrect trace.443

The most common failure mode for the learned tracer, especially in Tier A3, is (I). One reason for444

such failures is the presence of multiple twists along the cable path (particularly in Tier A3 setups,445

which contain more complex inter-cable knot configurations). The tracer is also prone to deviating446

from the correct path on encountering parallel cable segments. In Tier A2, we observe two instances447

of failure mode (III), where the trace was almost entirely correct in that it reached the correct adapter448

but skipped a section of the cable.449

The most common failure modes across all tiers for the analytic tracer are (II) and (III). The analytic450

tracer particularly struggles in regions of close parallel cable segments and twists. As a result of the451

scoring metric, 87 of the 90 paths that we test reach an adapter; however, 45/90 paths did not reach452

the correct adapter. Even for traces that reach the correct adapter, the trace is incorrect, jumping to453

other cables and skipping sections of the true cable path.454

7.1.3 Using LTODO for Physical Robot Knot Tying from Demonstrations455

(1) Trace missteps onto a parallel cable.456

(2) Cable shifted during manipulation, not resulting in a knot at the end.457

Table 7: Multi-Cable Tracing Results
Analytic Learned

Tier A1 3/30 27/30

Tier A2 2/30 23/30

Tier A3 1/30 23/30

Failures (I) 3, (II) 45, (III) 36 (I) 14, (II) 1, (III) 2

12



Table 8: Learning From Demos
Succ. Rate Failures

Tier B1 5/5 -
Tier B2 4/5 (1) 1
Tier B3 4/5 (1) 1, (2) 1

Table 9: LTODO Experiments
SGTM 2.0 LTODO (-LT) LTODO (-CC) LTODO

Tier C1 2/30 14/30 20/30 24/30

Tier C2 28/30 8/30 21/30 26/30
Tier C3 12/30 14/30 0/30 19/30

Failures (A) 30, (B) 18 (D) 11, (F) 7 (B) 38, (C) 5, (B) 11, (D) 8
(G) 24, (H) 11 (E) 6 (F) 1

Table 10: LTODO and Physical Robot Experiments (90 total trials)

Tier D1 Tier D2 Tier D3

SGTM 2.0 LTODO SGTM 2.0 LTODO SGTM 2.0 LTODO
Knot 1 Succ. 11/15 12/15 6/15 11/15 9/15 14/15

Knot 2 Succ. - - - - 2/15 6/15

Verif. Rate 11/11 8/12 6/6 6/11 1/2 2/6
Knot 1 Time (min) 1.1±0.1 2.1±0.3 3.5±0.7 3.9±1.1 1.8±0.4 2.0±0.4
Knot 2 Time (min) - - - - 3.1±1.2 7.5±1.6
Verif. Time (min) 5.7±0.9 6.1±1.4 6.4±1.8 10.1±0.7 5.4 9.6±1.5

Failures (7) 4 (1) 2, (2) 1 (1) 3, (5) 6 (2) 2, (4) 1 (1) 3, (2) 3, (5) 3 (1) 2, (2) 3
(1) 2, (2) 1 (1) 3, (5) 6 (5) 1 (6) 2, (7) 2 (3) 1, (6) 3

Failure mode (1) occurs when the distractor cable creates near parallel sections to the cable of458

interest for knot tying, causing the trace to misstep. Failure mode (2) occurs when the manipulation459

sometimes slightly perturbs the rest of the cable’s position while moving one point of the cable,460

causing the end configuration to not be a knot, as intended.461

7.1.4 Using LTODO for Knot Detection462

(A) The system fails to detect a knot that is present—a false negative.463

(B) The system detects a knot where there is no knot present—a false positive.464

(C) The tracer retraces previously traced regions of cable.465

(D) The crossing classification and correction schemes fail to infer the correct cable topology.466

(E) The knot detection algorithm does not fully isolate the knot, also getting surrounding trivial467

loops.468

(F) The trace skips a section of the true cable path.469

(G) The trace is incorrect in regions containing a series of close parallel crossings.470

(H) The tracer takes an incorrect turn, jumping to another cable segment.471

For SGTM 2.0, the most common failure modes are (A) and (B), where it misses knots or incorrectly472

identifies knots when they are out of distribution. For LTODO (-LT), the most common failure473

modes are (F), (G), and (H). All 3 failures are trace-related and result in knots going undetected or474

being incorrectly detected. For LTODO (-CC), the most common failure modes are (B) and (E).475

This is because LTODO (-CC) is unable to distinguish between trivial loops and knots without the476

crossing cancellation scheme. By the same token, LTODO (-CC) is also unable to fully isolate a477

knot from surrounding trivial loops. For LTODO, the most common failure mode is (B). However,478

this is a derivative of failure mode (D), which is present in LTODO (-LT), LTODO (-CC), and479

LTODO. Crossing classification is a common failure mode across all systems and is a bottleneck for480

accurate knot detection. In line with this observation, we hope to dig deeper into accurate crossing481

classification in future work.482

7.1.5 Using LTODO for Physical Robot Untangling483

(1) Incorrect actions create a complex knot.484

13



(2) The system misses a grasp on tight knots.485

(3) The cable falls off the workspace.486

(4) The cable drapes on the robot, creating an irrecoverable configuration.487

(5) False termination.488

(6) Manipulation failure.489

(7) Timeout.490

The main failure modes in LTODO are (1), (2), and (6). Due to incorrect cable topology estimates,491

failure mode (1) occurs: a bad action causes the cable to fall into complex, irrecoverable states.492

Additionally, due to the limitations of the cage-pinch dilation and endpoint separation moves, knots493

sometimes get tighter during the process of untangling. While the perception system is still able to494

perceive the knot and select correct grasp points, the robot grippers bump the tight knot, moving495

the entire knot and causing missed grasps (2). Lastly, we experience manipulation failures while496

attempting some grasps as the YuMi has a conservative controller (6). We hope to resolve these497

hardware issues in future work.498

The main failure modes in SGTM 2.0 are (5) and (7). Perception experiments indicate that SGTM499

2.0 has both false positives and false negatives for cable configurations that are out of distribution.500

(5) occurs when out-of-distribution knots go undetected. (7) occurs when trivial loops are identified501

as knots, preventing the algorithm from terminating.502

7.2 Details on LTODO Methods503

7.2.1 Over/Undercrossing Predictor504

Model Architecture and Inference: The binary classification threshold of 0.275 is determined505

by testing accuracy on a held-out validation set of 75 images on threshold values in the range506

[0.05, 0.95] at intervals of 0.05. Scores < 0.275 indicate undercrossing predictions and scores507

� 0.275 indicate overcrossing predictions. We output the raw prediction score and a scaled confi-508

dence value (0.5 to 1) indicating the classifier’s probability.509

7.3 Details on Robot Untangling using LTODO510

7.3.1 Knot Definition511

Consider a pair of points p1 and p2 on the cable path at time t with (p1, p2 2 Ct). Knot theory strictly512

operates with closed loops, so to form a loop with the current setup, we construct an imaginary513

cable segment with no crossings joining p1 to p2 [44]. This imaginary cable segment passes above514

the manipulation surface to complete the loop between p1 and p2 (“p1 ! p2 loop”). A knot exists515

between p1 and p2 at time t if no combination of Reidemeister moves I, II (both shown in Figure 6),516

and III can simplify the p1 ! p2 loop to an unknot, i.e. a crossing-free loop. In this paper, we aim to517

untangle semi-planar knots. For convenience, we define an indicator function k(s) : [0, 1] ! {0, 1}518

which is 1 if the point ✓(s) lies between any such points p1 and p2, and 0 otherwise.519

Based on the above knot definition, this objective is to remove all knots, such that
R
k(s)10 = 0.520

In other words, the cable, if treated as a closed loop from the endpoints, can be deformed into an521

unknot. We measure the success rate of the system at removing knots, as well as the time taken to522

remove these knots.523

7.3.2 State Definition524

We construct line segments between consecutive points on the trace outputted by the learned cable525

tracer (Section 4.1). Crossings are located at the points of intersection of these line segments. We526

use the crossing classifier (Section 4.2) to estimate whether these crossings are over/undercrossings.527

We also implement probabilistic crossing correction with the aim of rectifying classification errors,528

as we describe in Section 4.2.2.529

14



1 2

Figure 6: Reidemeister Moves and Crossing Cancellation: Left of part 1 depicts Reidemeister Move II. Right
of part 1 depicts Reidemeister Move I. Part 2 shows that by algorithmically applying Reidemeister Moves II
and I, we can cancel trivial loops, even if they visually appear as knots.

We denote the sequence of corrected crossings, in the order that they are encountered in the trace,530

by X = (c1, ..., cn), where n is the total number of crossings and c1, ..., cn represent the crossings531

along the trace.532

7.3.3 Crossing Cancellation533

Crossing cancellation allows for the simplification of cable structure by removing non-essential534

crossings, shown in Figure 6. It allows the system to filter out some trivial configurations as Rei-535

demeister moves maintain knot equivalence [44]. We cancel all pairs of consecutive crossings (ci,536

ci+1) in X for some j) that meet any of the following conditions:537

• Reidemeister I: ci and ci+1 are at the same location, or538

• Reidemeister II: ci and ci+1 are at the same set of locations as cj and cj+1 (cj , cj+1 2 X ).539

Additionally, ci and ci+1 are either both overcrossings or both undercrossings. We also540

cancel (cj , cj+1) in this case.541

We algorithmically perform alternating Reidemeister moves I and II as described. We iteratively542

apply this step on the subsequence obtained until there are no such pairs left. We denote the final543

subsequence, where no more crossings can be canceled, by X 0.544

7.3.4 Knot Detection545

We say that a subsequence of X 0, Kij = (ci, ..., cj), defines a potential knot if:546

• ci is an undercrossing, and547

• cj is an overcrossing at the same location, and548

• at least one intermediate crossing, i.e. crossing in X 0 that is not ci or cj , is an overcrossing.549

The first invariant is a result of the fact that all overcrossings preceding the first undercrossing (as550

seen from an endpoint) are removable. We can derive this by connecting both endpoints from above551

via an imaginary cable (as in Section 7.3.1): all such overcrossings can be removed by manipulating552

the loop formed. The second invariant results from the fact that a cable cannot be knotted without a553

closed loop of crossings. The third and final invariant can be obtained by noting that a configuration554

where all intermediate crossings are undercrossings reduces to the unknot via the application of555

the 3 Reidemeister moves. Therefore, for a knot to exist, it must have at least one intermediate556

overcrossing.557

Notably, these conditions are necessary, but not sufficient, to identify knots. However, they improve558

the likelihood of bypassing trivial configurations and detecting knots. This increases the system’s559

efficiency by enabling it to focus its actions on potential knots.560

7.3.5 Algorithmic Cage-Pinch Point Detection561

As per the definition introduced in Section 7.3.4, given knot Kij = (ci, ..., cj), ci and cj define the562

segments that encompass the knot where ci is an undercrossing and cj is an overcrossing for the563

same crossing. The pinch point is located on the overcrossing cable segment, intended to increase564

space for the section of cable and endpoint being pulled through. The cage point is located on the565

15



Knot Detection & Topology Cage-Pinch Points

Cage
Pinch

Knot

Figure 7: Knot Detection and Cage Pinch Point Selection: The left image shows using crossing cancellation
rules from knot theory, the knot detection algorithm analytically determines where the knot begins in the cable.
The right image shows the survey process for selecting the cap pinch points.

undercrossing cable segment. To determine the pinch point, we search from crossing cu1 to crossing566

cu2. cu1 is the previous undercrossing in the knot closest in the trace to j. u2 > j and cu2 is the567

next undercrossing after the knot. We search in this region and select the most graspable region to568

pinch at, where graspability (G) is defined by the number of pixels that correspond to a cable within569

a given crop and a requirement of sufficient distance from all crossings ci. To determine the cage570

point, we search from crossing ci to ck where i < k < j and ck is the next undercrossing in the knot571

closest in the trace to ci. We similarly select the most graspable point. If no points in the search572

space for either the cage or pinch point are graspable, meaning G < T where T is an experimentally573

derived threshold value, we continue to step along the trace from cu2 for pinch and from ck for cage574

until G � T . This search process is shown in Figure 7.575

7.3.6 Manipulation Primitives576

We use the same primitives as in SGTM 2.0 (Sliding and Grasping for Tangle Manipulation 2.0)577

[6] to implement LTODO as shown in Figure 8 for untangling long cables. We add a perturbation578

move.579

Cage-Pinch Dilation: We use cage-pinch grippers as in Viswanath et al. [5]. We have one gripper580

cage grasp the cable, allowing the cable to slide between the gripper fingers but not slip out. The581

other gripper pinch grasps the cable, holding the cable firmly in place. This is crucial for preventing582

knots in series from colliding and tightening during untangling. The partial version of this move583

introduced by Shivakumar et al. [6] separates the grippers to a small, fixed distance of 5 cm.584

Reveal Moves: First, we detect endpoints using a Mask R-CNN object detection model. If both585

endpoints are visible, the robot performs an Endpoint Separation Move by grasping at the two end-586

points and then pulling them apart and upwards, away from the workspace, allowing gravity to help587

remove loops before placing the cable back on the workspace. If both endpoints are not visible, the588

robot performs an Exposure Move. This is when it pulls in cable segments exiting the workspace.589

Building on prior work, we add a focus on where this move is applied. While tracing, if we detect590

the trace hits the edge, we perform an exposure move at the point where the trace exits the image.591

Perturbation Move: If an endpoint or the cable segment near an endpoint has distracting cable592

segments nearby, making it difficult for the analytic tracer to trace, we perturb it by grasping it and593

translating in the x-y plane by uniformly random displacement in a 10cm ⇥ 10cm square in order to594

separate it from slack.595

16



Knot
Endpoint Detection

Certain

Tracer Initialization

Perturb Endpoint

No
Knots

Analyze Topology
Partial DilationExposure Move

Dilation

Uncertain

Left Workspace Re-Encountered Trace Hit Endpoint

(Re)start

Figure 8: Untangling Algorithm with LTODO: We first detect the endpoints and initialize the tracer with start
points. If we are not able to obtain start points, we perturb the endpoint and try again. Next, we trace. While
tracing, if the cable exits the workspace, we pull the cable towards the center of the workspace. If the tracer
gets confused and begins retracing a knot region, we perform a partial cage-pinch dilation that will loosen the
knot, intended to make the configuration easier to trace on the next iteration. If the trace is able to successfully
complete, we analyze the topology. If there are no knots, we are done. If there are knots, we perform a cage-
pinch dilation and return to the first step.

7.3.7 Cable Untangling System596

Combining LTODO and the manipulation primitives from Section 7.3.6, the cable untangling al-597

gorithm works as follows: First, detect endpoints and initialize the learned tracer with 6 steps of598

the analytic tracer. If LTODO is unable to get these initialization points, perturb the endpoint from599

which we are tracing and return to the endpoint detect step. Otherwise, during tracing, if the cable600

leaves the workspace, perform an exposure move. If the trace fails and begins retracing itself, which601

can happen in denser knots, perform a partial cage-pinch dilation as in [6]. If the trace completes602

and reaches the other endpoint, analyze the topology. If knots are present, determine the cage-pinch603

points for it, apply a cage-pinch dilation move to them, and repeat the pipeline. If no knots are604

present, the cable is considered to be untangled. The entire system is depicted in Figure 8.605

7.4 Details on Learning from Demos with LTODO606

Knot Tying Demo

1

2

1

Knot Tying With Two Distractor Cables

2

Completed Overhand Knot

Figure 9: Using LTODO for Learning from Demos: The left (blue panel) displays the single human demon-
stration, indicating the pick and place points for tying an overhand knot. The right (pink panel) shows this
demonstration successfully applied to the cable in a different configuration with 2 other distractor cables in the
scene. The first step of the demonstration is achieved through an arc length relative action while the second
step is achieved through a crossing relative action.

When performing state-based imitation, each of the pick and place points pi from the demonstration607

is parameterized in the following way: 1) find the point along the trace, T , closest to the chosen608

point p̂i with index j in T , 2) find the displacement di = pi� p̂i in the local trace-aligned coordinate609

system of p̂i, 3) in memory, for point pi, store di, arc length of p̂i (
Pj

x=1 Tx � Tx�1), and the index610

value of the crossing in the list of crossings just before p̂i.611

17



When rolling out a policy using this demonstration, there are two ways to do so: 1) relative to the arc612

length along the cable, or 2) relative to the fraction of the arc length between the 2 crossing indices.613

The way to do so is to find the point on the cable with the same arc length as p̂i from the demo or the614

fractional arc length between the same 2 crossing indices, depending on the type of demonstration.615

Then, apply di in the correct trace-aligned coordinate system. An example demonstration is shown616

in Figure 9.617

Additional conceivable ways, not explored in this work, include relative to the location of a knot618

along the cable or others.619

18


