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Abstract

Attention mechanism is a central component of the transformer architecture which1

led to the phenomenal success of large language models. However, the theoretical2

principles underlying the attention mechanism are poorly understood, especially its3

nonconvex optimization dynamics. In this work, we explore the seminal softmax-4

attention model f (X) = v⊤X⊤softmax(XW⊤ p), where, X is the tokenized input, v5

is the value weights, W is the key-query weights, and p is a tunable token/prompt.6

We prove that running gradient descent on p, or equivalently W, converges to a max-7

margin solution that separates locally-optimal tokens from non-optimal ones. We8

also develop regularization path analysis that generalizes these findings to nonlinear9

classifier head – rather than linear v. When optimizing v and p simultaneously with10

logistic loss, we identify conditions under which the regularization paths converge11

to their respective max-margin solutions where v separates the input features based12

on their labels. Finally, we verify our results through numerical insights.13

1 Introduction14

Since its introduction in the seminal work [1], attention mechanism has played an influential role in15

the advances in natural language processing, and more recently, large language models [2, 3, 4, 5].16

Attention is initially introduced for encoder-decoder RNN architectures in order to allow the decoder17

to use the most relevant parts of the input sequence, rather than relying on a fixed-length hidden18

state. Attention mechanism has taken the center stage in the transformers [6] where the self-attention19

layer – which calculates softmax similarities between input tokens – forms the backbone of the20

architecture. Since their inception, transformers have revolutionized natural language processing21

(from BERT to ChatGPT [7, 8]) and they have also become the architecture of choice for foundation22

models [9] to address diverse challenges in generative modeling [3, 10], computer vision [11, 12],23

and reinforcement learning [13, 14, 15].24

The prominence of the attention mechanism motivate a fundamental theoretical understanding of its25

role in optimization and learning. While it is well-known that attention enables the model to focus on26

the relevant parts of the input sequence, the precise mechanism by which this is achieved is far from27

clear. To this end, we ask28

Q: What are the optimization dynamics and inductive biases of the attention mechanism?29

We study this question using the fundamental attention model f (X) = v⊤X⊤S(XW⊤ p). Here, X is the30

sequence of input tokens, v is the classifier head, W is the trainable key-query weights, and S denotes31

the softmax nonlinearity. For transformers, p corresponds to the [CLS] token or tunable prompt [16]32

whereas for RNN architectures [1], p corresponds to the hidden state.33

Given training data (Yi, Xi)n
i=1 with labels Yi ∈ {−1, 1} and inputs Xi ∈ R

T×d, we consider the empirical34

risk minimization with a decreasing loss function ℓ(·) : R→ R,35

L(v, p,W) =
1
n

n∑
i=1

ℓ(Yi · f (Xi)).
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Figure 1: The convergence behavior of the gradient descent on the attention weights p using the
logistic loss in (ERM). Here, (- - -) and (- - -) denote the global and local max-margin solutions. γ
denotes the score of a token per Definition 1. Discussion is provided under Theorem 1.

We operate under the assumption that the most relevant tokens within each input are separable from36

the rest through softmax nonlinearity. Our main contributions are as follows:37

• Optimize p or W for fixed v (Sec. 2): We first prove that gradient iterations of p and W admit a38

one-to-one mapping, thus we focus on optimizing p without losing generality. We prove that gradient39

iterates of p converges to a max-margin solution (namely (ATT-SVM)) that separates locally-optimal40

tokens from non-optimal ones. The notion of relevant tokens is clearly quantified in terms of scores41

γt = Y · v⊤xt where xt is the t’th token of input X. The locally-optimal tokens are those with higher42

scores than their nearest neighbors determined by the SVM solution. These are illustrated in Figure 1.43

• Optimize (v, p) jointly (Sec. 3): We study the joint problem under logistic loss function. We44

use regularization path analysis where (ERM) is solved under ridge constraints and we study the45

solution trajectory as the constraints are relaxed. Since the problem is linear in v, if the attention46

features xatt
i = S(XiW⊤ p) are separable based on their labels Yi, v would implement a max-margin47

classifier. Building on this, we prove that p and v converges to their respective max-margin solutions48

under certain margin conditions. Relaxing these conditions, we obtain a more general solution where49

margin constraints on p are relaxed on the inputs whose attention features are not support vectors of50

v. Figure 2 illustrates these outcomes.51

In Sec. 4, we extend the ideas in Sec. 2 to the more general model f (X) = ψ(X⊤S(XW⊤ p)) with52

nonlinear head ψ. Overall, our results clearly formalize the role of the attention mechanism as a token-53

selection/context-discovery mechanism and lay the groundwork for future research by connecting it54

to the implicit bias literature and max-margin SVM formulation.55

Next section introduces preliminaries, Section 5 discusses related literature, and Section 6 provides a56

discussion of limitations and future work.57

1.1 Preliminaries58

Notations. For any integer N ≥ 1, let [N] = {1, . . . ,N}. We use lower-case and upper-case bold59

letters (e.g. a and A) to represent vectors and matrices, respectively. The entries of a are denoted60

as ai. We use σmax(A) and σmin(A) to denote the maximum and minimum singular values of A,61

respectively. We denote the minimum of two numbers a, b as a ∧ b, and the maximum a ∨ b. We use62

the standard big-Oh notation O(·) to hide universal constants.63

Optimization. Given a function L : Rd → R and an ℓ2-norm bound R, the regularized solution is64

defined as65

p̄(R) := arg min
∥p∥≤R

L(p). (1)

Note that p̄(R) is not unique in general. For gradient descent, we assume the objective L(p) is smooth66

and describe the gradient descent process as67

p(t + 1) = p(t) − η(t)∇L(p(t)), (2)
where η(t) is the stepsize at time t and ∇L(p(t)) is the gradient of L at p(t).68

Attention in Transformers. We now describe how our model relates to the attention mechanism in69

transformers. Our exposition follows the recent work [17] which focuses on the theoretical properties70

of prompt-tuning.71
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• Self-attention is the core building block of transformers [6]. Given an input consisting of T72

tokens X = [x1, . . . , xT ]⊤ ∈ RT×d, self-attention with key-query matrix W ∈ Rd×d, and value matrix73

V ∈ Rd×v, the self-attention model is defined as follows:74

fsa(X) = S(XWX⊤)XV. (3)

Here, S(·) is the softmax nonlinearity that applies row-wise on the similarity matrix XWX⊤.75

• Tunable tokens: [CLS] and prompt-tuning. In practice, we append additional tokens to the raw76

input features X: For instance, a [CLS] token is used for classification purposes [7] and prompt77

vectors can be appended for adapting a pretrained model to new tasks [16, 18]. Let p ∈ Rd be the78

tunable token ([CLS] or prompt vector) and concatenate it to X to obtain Xp := [p X⊤]⊤ ∈ R(T+1)×d.79

Consider the cross-attention features obtained from Xp and X given by80 [
f⊤cls(X)
fsa(X)

]
= S(XpWX⊤)XV =

[
S(p⊤WX⊤)
S(XWX⊤)

]
XV.

The beauty of cross-attention is that it isolates the contribution of p under the upper term fcls(X) =81

V⊤X⊤S(XW⊤p) ∈ Rv. In this work, we use the value weights for classification, thus we set v = 1,82

and denote v = V ∈ Rd. This brings us to our attention model of interest:83

f (X,Θ) = v⊤X⊤S(K p) where K = XW⊤. (4)

Above Θ = (v,W, p) are the tunable model parameters and K is the key embeddings. Note that84

W and p are playing the same role within softmax, thus, it is intuitive that they exhibit similar85

optimization dynamics. Confirming this, the next lemma shows that gradient iterations of p (after86

setting W ← Identity) and W admit a one-to-one mapping.87

Lemma 1 Fix a ∈ Rd. Let ψ : Rd → R and ℓ : R × R→ R be differentiable functions. On the same88

training data, define L(p) = 1
n
∑n

i=1 ℓ(Yi, ψ(X⊤i S(Xi p))) and L(W) = 1
n
∑n

i=1 ℓ(Yi, ψ(X⊤i S(XiW⊤a))).89

Starting from p(0) and W(0) = ap(0)⊤/∥a∥2 consider the gradient descent iterations with stepsize η:90

p(t + 1) = p(t) − η∇L(pt),

W(t + 1) =W(t) − η∥a∥−2∇L(W(t)).

We have that Wt = ap⊤t /∥a∥2 for all t ≥ 0.91

Thanks to this lemma, W’s optimization dynamics is directly characterized by p’s dynamics, since we92

can always reconstruct W from p using the relationship between their gradient iterations. Hence, in93

what follows, we fix W, and focus on optimizing p in Sec 2 and joint optimization of (v, p) in Sec 3.94
95

Problem definition: Throughout, (Yi, Xi)n
i=1 denotes our training dataset where Yi ∈ {−1, 1} and

Xi ∈ R
T×d. We denote the key embeddings of Xi via Ki = XiW⊤ and explore the training risk

L(v, p) =
1
n

n∑
i=1

ℓ(Yi · v⊤X⊤i S(Ki p)). (ERM)

Importantly, our results apply to general tuples (Yi, Xi, Ki) and do not assume that (Xi, Ki) are
tied via W. Finally, the tth tokens of Xi, Ki are denoted by xit, kit ∈ R

d respectively for t ∈ [T ].
96

2 Global and Local Margin Maximization with Attention97

In this section, we establish the main results of this paper (Theorems 1 and 3) by characterizing the98

implicit bias of gradient descent on learning p ∈ Rd for a fixed v ∈ Rd choice. A notable feature of our99

results is that they apply to general decreasing loss functions. The underlying reason is that margin100

maximization arises from the exponentially-tailed nature of the softmax within attention rather than ℓ.101

Throughout, we make the following assumption on the loss function:102

Assumption A (Well-Behaved Losses) Over any bounded set in R, ℓ : R→ R obeys103

A1. ℓ is strictly decreasing and bounded from below.104

A2. ℓ′ is M0-Lipschitz continuous and |ℓ′(u)| ≤ M1.105
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Assumption A includes many common loss functions, including the logistic loss ℓ (u) = log (1 + e−u),106

exponential loss ℓ (u) = e−u, and correlation loss ℓ(u) = −u. Assumption A implies that L (p) is a107

O
(
(M0 + M1)σ̄4

max

)
-smooth function (see supplementary), where σ̄max := 1/n

∑n
i=1 σmax(Xi). The108

central feature of this assumption is that we do not require convexity for the loss function.109

We now introduce a convex hard-margin SVM problem that separates one token of the input sequence110

from the rest, jointly solved over all inputs. We will show that this problem captures the optimization111

properties of softmax-attention. Fix indices α = (αi)n
i=1 and consider112

pmm(α) = arg min
p
∥p∥ subject to min

t,αi
p⊤(kiαi − kit) ≥ 1 for all 1 ≤ i ≤ n. (ATT-SVM)

We are ready to introduce our main results by characterizing global and local convergence of the113

attention weights p in the direction of (ATT-SVM) solutions.114

2.1 Global Convergence of the Attention Weights p115

We first identify the conditions that guarantees the global convergence of gradient descent for p. The116

intuition is that, in order for attention to exhibit implicit bias, the softmax nonlinearity should be117

forced to select the optimal token within each input sequence. Fortunately, the optimal tokens that118

achieve the smallest training objective under decreasing loss function ℓ(·) have a clear definition.119

Definition 1 (Token Score and Optimality) The score of token xit of input Xi is defined as γit :=120

Yi · v⊤xit. The optimal tokens for input Xi are those tokens with highest scores given by121

opti ∈ arg max
t∈[T ]
γit.

We denote the solution of (ATT-SVM) with optimal indices (opti)n
i=1 by pmm⋆. Note that multiple122

tokens within an Xi might attain same score, thus opti and pmm⋆ may not be unique.123

To proceed with our global convergence analysis, we need to make the assumption that all non-optimal124

tokens have equal scores. In other words, if a potential solution includes tokens that do not appear in125

the final optimal solution, all of these tokens are assumed to have the same score value.126

Assumption B For all i ∈ [n] and t, τ , opti, the scores per Def. 1 obey γit = γiτ < γiopti .127

Theorem 1 (Global Convergence of Gradient Descent) Suppose Assumption A on the loss func-128

tion ℓ and Assumption B on the tokens’ score hold. Then the gradient descent iterates p(t + 1) =129

p(t) − η∇Lp(p(t)) on (ERM), with the step size η ≤ O
(
σ̄−4

max/(M0 + M1)
)

and any starting point p(0)130

satisfies limt→∞ p(t)/∥p(t)∥ = pmm⋆/∥pmm⋆∥.131

Theorem 1 shows that gradient descent dynamics of the normalized predictor p(t)/∥p(t)∥ converges132

towards pmm⋆/∥pmm⋆∥, effectively separating globally optimal tokens from non-optimal ones. To133

illustrate this theorem, we have conducted synthetic experiments. Let us first explain the setup used134

in Figure 1 and 2(a). We set d = 3 with each token having three entries x = [x1, x2, x3]. We reserve135

the first two coordinates as key embeddings k = [x1, x2, 0] by setting W = diag([1, 1, 0]). This is136

what we display in our figures as token positions. Finally, in order to assign scores to the tokens we137

use the last coordinate by setting v = [0, 0, 1]. This way score becomes Y · v⊤x = Y · x3, allowing us138

to assign any score (regardless of key embedding).139

In Figure 1(a), the gray paths represent gradient descent trajectories initiated from different points,140

while the points (0, 0) and (1, 0) correspond to non-optimal tokens, and (−0.1, 1) represents the optimal141

token. Notably, gradient descent iterates with various starting points converge towards the direction142

of the max-margin solution pmm⋆ (depicted by - - -). Moreover, as the iteration count t increases,143

the inner product
〈

p(t)/∥p(t)∥, pmm⋆/∥pmm⋆∥
〉

consistently increases. Figure 1(c) also illustrates144

the result of Theorem 1 on multiple inputs (gray dot line is the separating hyperplane). These145

observations emphasize the gradual alignment between the evolving predictor and the max-margin146

solution throughout optimization.147

Transient optimization dynamics and the role of loss function. While asymptotic direction of148

gradient descent is determined by pmm, intuitively transient dynamics can exhibit bias towards tokens149

with extreme scores. We aim to capture this intuition in Figure 2(a) which depicts the gradient150
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trajectories for different scores and loss functions. We have two optimal tokens (⋆) with scores151

γ1 = 1,γ2 = C for varying C and we consider correlation loss ℓ(x) = −x and exponential loss152

ℓ(x) = e−x. In a nutshell, as C grows, it can be seen that ℓ(x) = −x is biased towards token with153

high-score whereas ℓ(x) = e−x is biased towards the low-score token. The underlying reason can be154

seen from the gradient of individual inputs: ∇Li(p) = ℓ′i · K
⊤
i S
′(X p)Xv where S′(·) is the softmax155

derivative and ℓ′i := ℓ′(Yi · v⊤X⊤i S(Xi p)). Assuming p (approximately) selects the optimal tokens, this156

would simplify to ℓ′i ≈ ℓ
′(γi) and ∥∇Li(p)∥ ∝ |ℓ′(γi)| · γi. Now, with correlation loss |ℓ′| = 1, thus,157

∥∇Li(p)∥ ∝ γi and larger score induces larger gradient. Whereas with exponential loss |ℓ′| = e−u,158

thus, ∥∇Li(p)∥ ∝ γie−γi and smaller score induces larger gradient explaining the empirical behavior.159

We next provide the regularization path analysis that requires relaxed assumptions on both loss160

function and tokens’ score.161

Theorem 2 (Regularization Path) Suppose Assumption A on the loss function holds, and for all162

i ∈ [n] and t , opti, scores obey γit < γiopti . Then the regularization path p̄(R) = arg min∥p∥≤RL(p)163

satisfies limR→∞ p̄(R)/R = pmm⋆/∥pmm⋆∥.164

Theorem 2 reveals that as we loosen the regularization strength R to achieve ridgeless optimization165

with minpL(p), the optimal direction p̄(R) gradually aligns with the max-margin solution pmm⋆.166

A central feature of this theorem is its ability to handle non-optimal tokens that possess different167

arbitrary scores. Thus, it demonstrates that max-margin convergence is a global feature of attention168

mechanism. As we shall see in the next section, due to nonconvex landscape and nonlinearity of169

softmax, convergence of regularization path without Assumption B does not imply that Theorem 1170

can avoid this condition.171

2.2 Local convergence of the attention weights p172

Theorem 1 on the global convergence of gradient descent serves as a prelude to the general behavior173

of the optimization. Once we relax Assumption B by allowing for arbitrary token scores, we will174

show that p can converge (in direction) to a locally-optimal solution. However, this locally-optimal175

solution is still characterized in terms of (ATT-SVM) which separates locally-optimal tokens from the176

rest. Our theory builds on two new concepts: locally-optimal tokens and neighbors of these tokens.177

Definition 2 (SVM-Neighbor and Locally-Optimal Tokens) Fix token indices α = (αi)n
i=1. Solve178

(ATT-SVM) to obtain pmm = pmm(α). Consider tokens Ti ⊂ [T ] such that (kiαi − kit)⊤ pmm = 1179

for all t ∈ Ti. We refer to Ti as SVM-neighbors of kiαi . Additionally, tokens α = (αi)n
i=1 are called180

locally-optimal if for all i ∈ [n], t ∈ Ti scores per Def. 1 obey γiαi > γit.181

To provide a basis for discussing local convergence, we establish a cone centered around pmm using182

the following construction. Let µ be a positive scalar, and define the cone as:183

coneµ(pmm) :=
{

p ∈ Rd
∣∣∣∣ 〈

p
∥p∥

,
pmm

∥pmm∥

〉
≥ 1 − µ

}
. (5)

In the subsequent theorem, we demonstrate the existence of a scalar µ = µ(α) > 0 and a radius R such184

that when R is sufficiently large, there are no stationary points within the intersection of coneµ(pmm)185

and the set {p | ∥p∥ ≥ R}. Further, the gradient descent initialized within this intersection converges in186

direction to pmm/∥pmm∥.187

Theorem 3 (Local Convergence of Gradient Descent) Suppose Assumption A on the loss function188

ℓ holds and assume α = (αi)n
i=1 are locally-optimal tokens per Definition 2. Then, there exists a scalar189

µ = µ(α) ∈ (0, 1) and a radius R > 0 such that coneµ(pmm)
⋂
{p | ∥p∥ ≥ R} does not contain any190

stationary points. Further, the gradient descent iterates p(t + 1) = p(t) − η∇L(p(t)) on (ERM) with191

η ≤ O

(
min

(
1

(M0 + M1)σ̄4
max

,
µ − ϵ

(1 − µ)

))
, (6)

for any ϵ ∈ (0,min(µ, 1)), and any starting point p(0) ∈ coneµ(pmm)
⋂
{p | ∥p∥ ≥ R} satisfies192

limt→∞ p(t)/∥p(t)∥ = pmm/∥pmm∥.193

Proof sketch. We provide the proof in four steps:194

Step 1. We begin by proving that there are no stationary points within coneµ(pmm)
⋂{

p | ∥p∥ ≥ Rµ

}
195
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for a specific radius Rµ. Let (Ti)n
i=1 denote the set of SVM-neighbors as defined in Definition 2. We196

define T̄i = [T ] − Ti − αi as the tokens that are non-SVM neighbors. Additionally, let197

δ :=
1
2

min
i∈[n]

min
t∈Ti,τ∈T̄i

(kit − kiτ)⊤ pmm, A := max
i∈[n],t∈[T ]

∥kit∥ · ∥pmm∥, µ :=
1
8

(
min(0.5, δ)

A

)2

.

For all q, p ∈ coneµ(pmm) with ∥q∥ = ∥pmm∥, we establish the existence of Rµ such that −q⊤∇L(p)198

is strictly positive for ∥p∥ ≥ Rµ. Specifically, we show the existence of positive constants C and c199

satisfying:200

C ·max
i∈[n]

qi ≥ − ⟨∇L(p), q⟩ ≥ c ·min
i∈[n]

qi > 0.

Here, qi = 1 − S(Ki p)αi and α = (αi)n
i=1 are locally-optimal tokens per Definition 2.201

Step 2. We demonstrate that for any ϵ ∈ (0,min(µ, 1)), there exists Rϵ such that all p ∈202

coneµ(pmm)
⋂
{p | ∥p∥ ≥ Rϵ} satisfy203 〈

−∇L(p),
pmm

∥pmm∥

〉
≥ (1 − ϵ)

〈
−∇L(p),

p
∥p∥

〉
.

Step 3. By leveraging the results from Step 1 and Step 2, we can demonstrate that the gradient204

iterates, with an appropriate step size, starting from p(0) ∈ coneµ(pmm)
⋂
{p | ∥p∥ ≥ R}, remain205

within this cone. Specifically, if p(t) ∈ coneµ(pmm)
⋂
{p | ∥p∥ ≥ R}, then ∥p(t + 1)∥ ≥ ∥p(t)∥, and206 〈

p(t + 1)
∥p(t + 1)∥

,
pmm

∥pmm∥

〉
≥ 1 − µ + O

(
η(µ − ϵ) − η2(1 − µ)

)
,

which implies that, with the step size η satisfying (6), p(t + 1) ∈ coneµ(pmm)
⋂
{p | ∥p∥ ≥ R}.207

Step 4. The remaining part of the proof follows the same reasoning as the proof of Theorem 1 and is208

provided in the supplementary material.209

To further illustrate Theorem 3, we can consider Figure 1(b) where n = 1 and T = 3. In this figure,210

the point (0, 0) represents the non-optimal tokens, while (1, 0) represents the locally optimal token.211

Additionally, the gray paths represent the trajectories of gradient descent initiated from different212

points. By observing the figure, we can see that gradient descent, when properly initialized, converges213

towards the direction of pmm (depicted by - - -). This direction of convergence effectively separates214

the locally optimal tokens (1, 0) from the non-optimal token (0, 0).215

2.3 Tightness of the locally-optimal token definition216

An important question is whether our definition of locally-optimal tokens (Def. 2) covers all token217

configurations α = (αi)n
i=1 that can be selected by the attention mechanism asymptotically (as218

∥p∥ → ∞). The following theorem essentially establishes the tightness of our definition: It shows that,219

given α = (αi)n
i=1, if any of the αi’s have an SVM-neighbor with a higher score, then regularization220

path will not prefer the pmm(α) direction.221

Theorem 4 Fix indices α = (αi)n
i=1 with SVM-neighbors (Ti)n

i=1. Set pmm := pmm(α). Suppose that:222

• For some j ∈ [n], there exists β ∈ T j with higher score than α j, i.e., Y j · v⊤x jβ > Y j · v⊤x jα j .223

• For all i ∈ [n] and t ∈ Ti, the vectors kiαi − kit are linearly independent (We note that this224

holds for almost all datasets).225

For any ε > 0, there exists Rε > 0 as follows: Consider the neighborhood of pmm: Cε = coneε(pmm)226 ⋂
{p | ∥p∥ ≥ Rε}. Define the local path p̄(R) = minp∈Cε,∥p∥≤RL(p). Then lim

R→∞

p̄(R)
∥ p̄(R)∥ ,

pmm

∥pmm∥
.227

3 Joint Convergence of Head v and Attention Weights p228

In this section, we extend the preceding results to the general case of joint optimization of head v229

and attention weights p using a logistic loss function. To this aim, we focus on regularization path230

analysis, which involves solving (ERM) under ridge constraints and examining the solution trajectory231

as the constraints are relaxed.232
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Figure 2: (a) Global convergence of p with different loss functions and scores. (b)&(c) Joint
convergence of attention weights p and classifier head v to max-margin directions.

High-level intuition. Since the prediction is linear as a function of v, logistic regression in v can233

exhibit its own implicit bias to a max-margin solution. Concretely, define the attention features234

xp
i = X⊤i S(Ki p) and define the dataset Sp = (Yi, x

p
i ). If the dataset Sp is separable by v, then235

optimizing only v will converge in the direction of the max-margin classifier by setting ri ← xp
i :236

vmm = arg min
v∈Rd
∥v∥ subject to Yi · v⊤ri ≥ 1. (CLS-SVM)

This motivates a clear question: Under what conditions, optimizing v, p jointly will converge to their237

respective max-margin solutions? We study this question in two steps. Loosely speaking, we will238

first assume that when solving (CLS-SVM), all inputs i ∈ [n] are also the support vectors. We will239

then relax this condition to uncover a more general implicit bias for p. Throughout we assume that240

the joint problem is separable and there exists (v, p) asymptotically achieving zero training loss.241

3.1 When all attention features are support vectors242

In (CLS-SVM), define label margin to be 1/∥vmm∥. Our first insight in quantifying joint implicit243

bias is that, optimal tokens admit a natural definition: Those that maximize the downstream label244

margin when selected. This is formalized below where we assume that: (1) selecting the token indices245

α = (αi)n
i=1 from each input data achieves the largest label margin. (2) The optimality of the α choice246

is strict in the sense that mixing other tokens will shrink the label margin in (CLS-SVM).247

Assumption C Let Γ > 0 be the label margin when solving (CLS-SVM) with ri ← xiαi . There exists248

ν > 0 such that for all p, solving (CLS-SVM) with ri ← xp
i results in a label margin of at most249

Γ − ν ·maxi∈[n](1 − siαi ) where si = S(Ki p).250

Example: To gain intuition, let us fix v⋆ ∈ Rd and consider the dataset obeying xi1 = Yi · v⋆ and251

∥xit∥ < ∥v⋆∥ for all t ≥ 2 and all i ∈ [n]. For this dataset, we can choose αi = 1, Γ = ∥v⋆∥ and252

ν = ∥v⋆∥ − supi∈[n],t≥2 ∥xit∥.253

Theorem 5 Consider the ridge-constrained solutions (vr, pR) of (ERM) defined as254

vr, pR = arg min
∥v∥≤r,∥p∥≤R

L(v, p).

Suppose Assumption C holds for some Γ, ν > 0. As r,R → ∞, the joint regularization path (vr, pR)255

converges as follows: pR
R →

pmm

∥pmm∥
where pmm is the solution of (ATT-SVM). vr

r →
vmm

∥vmm∥
where vmm

256

is the solution of (CLS-SVM) with ri = xi1.257

As further discussion, consider Figure 2(b) where we set n = 3,T = d = 2 and W = Identity. All258

three inputs share the point (0, 0) which corresponds to their non-optimal tokens. The optimal tokens259

(denoted by ⋆) are all support vectors of the (CLS-SVM) since vmm = [0, 1] is the optimal classifier260

direction (blue color). Because of this, pmm will separate optimal tokens from (0, 0) coordinate via261

(ATT-SVM) which results in the red direction (yellow and teal ⋆ are the support tokens).262

3.2 General solution when selecting one token per input263

Can we relax Assumption C, and if so, what is the resulting behavior? Consider the scenario where264

the optimal p diverges to∞ and ends up selecting one token per input. Suppose this p selects some265
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coordinates α = (αi)n
i=1. Let N ⊂ [n] be the set of indices where the associated token xiαi is not a266

support vector when solving (CLS-SVM). Our intuition is as follows: Even if we slightly perturb this267

p choice and mix other tokens t , αi over the input set N ⊂ [n], since N is not support vector for268

(CLS-SVM), we can preserve the label margin (by only preserving the support vectors [n]−N). This269

means that p may not have to enforce max-margin constraint over inputs i ∈ N , instead, it suffices to270

just select these tokens (asymptotically). This results in the following relaxed SVM problem:271

prelax = min
p
∥p∥ such that p⊤(kiαi − kit) ≥

{
1 for all t , αi, i ∈ [n] − N
0 for all t , αi, i ∈ N

. (7)

Here, p⊤xiαi ≥ 0 corresponds to the selection idea. Building on this intuition, the following theorem272

captures the generalized behavior of the joint regularization path.273

Theorem 6 Consider the path of (vr, pR) as r,R→ ∞ as in Theorem 5. Suppose S(Ki pR)αi → 1, i.e.,274

the tokens (αi)n
i=1 are asymptotically selected. Let vmm be the solution of (CLS-SVM) with ri = xiαi275

and N be its set of non-support indices. Suppose Assumption C holds over the support vectors276

[n] − N . Then, vr
r →

vmm

∥vmm∥
and pR

R →
prelax

∥prelax∥
where prelax is the solution of (7) with αi choices.277

To illustrate this numerically, consider Figure 2(c) which modifies Figure 2(b) by pushing the yellow278

⋆ to the northern position (0.5, 1.5). We still have vmm = [0, 1] however the yellow ⋆ is no longer a279

support vector of (CLS-SVM). Thus, p solves the relaxed problem which separates green and teal280

⋆’s by enforcing the max-margin constraint on p (which is the red direction). Instead, yellow ⋆ only281

needs to achieve positive correlation with p (unlike Figure 2(c) where it dictates the direction).282

4 Regularization Path of Attention with Nonlinear Head283

So far our discussion has focused on the attention model with linear head. However, the conceptual284

ideas on optimal token selection via margin maximization also extends to a general nonlinear model285

under mild assumptions. The aim of this section is showcasing this generalization. Specifically,286

we consider the prediction model f (X) = ψ(X⊤S(K p)) where ψ(·) : Rd → R generalizes the linear287

head v of our attention model. For instance, following exposition in Section 1.1, ψ(·) can represent a288

multilayer transformer with p being a tunable prompt at the input layer. Recall that S = (Xi, Ki,Yi)n
i=1289

is the dataset of the input-key-label tuples. We consider the training risk290

L(p) =
1
n

n∑
i=1

ℓ(Yi, ψ(X⊤i sp
i )) where sp

i = S(Ki p) ∈ RT . (8)

The challenge with nonlinear ψ(·) is that, we lack a clear score function (Def. 1) unlike the previous291

sections. The assumption below introduces a generic condition that splits the tokens of each Xi into292

an optimal set Oi and non-optimal set Ōi = [T ] − Oi. In words, non-optimal tokens are those that293

strictly increase the training risk L(p) if they are not fully suppressed by attention probabilities sp
i .294

Assumption D (Mixing non-optimal tokens hurt) There exists sets (Oi)n
i=1 ⊂ [T ] as follows. Let295

qp
i =

∑
t∈Ōi

sp
it be the sum of softmax similarities over the non-optimal set for p. Set qp

max = maxi∈[n] qp
i .296

For any ∆ > 0, there exists ρ < 0 such that:297

For all p, p′ ∈ Rd, if log(qp
max) ≤ (1 + ∆) log(qp′

max) ∧ ρ, then L(p) < L(p′).

This assumption is titled mixing hurts because the attention output X⊤i sp
i is mixing the tokens of Xi298

and our condition is that, to achieve optimal risk, this mixture should not contain any non-optimal299

tokens. In particular, we require that, a model p that contains exponentially less non-optimality300

(quantified via log(qmax)) compared to p′ is strictly preferable. As we discuss in the supplementary301

material, Theorem 2 is in fact a concrete instance (with linear head v) satisfying this condition.302

Before stating our generic theorem, we need to introduce the max-margin separator towards which303

regularization path of attention will converge. This is a slightly general version of Section 2’s304

(ATT-SVM) problem where we allow for a set of optimal tokens Oi for each input.305

pmm = arg min
p
∥p∥ subject to max

α∈Oi

min
β∈Ōi

p⊤(kiα − kiβ) ≥ 1 for all i ∈ [n]. (ATT-SVM’)

Unlike (ATT-SVM), this problem is not necessarily convex when the optimal set Oi is not a singleton.306

To see this, imagine n = d = 1 and T = 3: Set the two optimal tokens as k1 = 1 and k2 = −1 and the307
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non-optimal token as k3 = 0. The solution set of (ATT-SVM’) is pmm ∈ {−1, 1} whereas their convex308

combination p = 0 violates the constraints. To proceed, our final result establishes the convergence309

of regularization path to the solution set of (ATT-SVM’) under Assumption D.310

Theorem 7 Let Pmm be the set of global minima of (ATT-SVM’). Suppose its objective Γ := ∥pmm∥311

is finite and Assumption D holds. Let dist (·, ·) denote the ℓ2-distance between a vector and a set.312

Following (8), define p̄(R) = arg min∥p∥≤RL(p). We have that limR→∞ dist
(
Γ

p̄(R)
R ,Pmm

)
= 0.313

We note that Theorem 2 is a corollary of this result where the set Pmm is a singleton.314

5 Related Work315

Implicit Regularization. The implicit bias of gradient descent in classification tasks involving316

separable data has been extensively examined by [19, 20, 21, 22, 23, 24]. These works typically317

use logistic loss or, more generally, exponentially-tailed losses to make connections to margin318

maximization. These results are also extended to non-separable data by [25, 26, 27]. Furthermore,319

there have been notable investigations into the implicit bias in regression problems/losses utilizing320

techniques such as mirror descent [28, 20, 29, 30, 31, 32]. In addition, several papers have explored321

the implicit bias of stochastic gradient descent [33, 34, 35, 36, 37, 38], as well as adaptive and322

momentum-based methods [39, 40, 41, 42]. Although there are similarities between our optimization323

approach for v and existing works, the optimization of p stands out as significantly different. Firstly,324

our optimization problem is nonconvex, introducing new challenges and complexities. Secondly, it325

necessitates the introduction of novel concepts such as locally-optimal tokens and requires a fresh326

analysis specifically tailored to the cones surrounding them.327

Attention Mechanism. Transformers, introduced by [6], revolutionized the field of NLP and328

machine translation, with earlier works on self-attention by [43, 44, 45, 46]. Self-attention differs from329

traditional models like MLPs and CNNs by leveraging global interactions for feature representations,330

showing exceptional empirical performance. However, the underlying mechanisms and learning331

processes of the attention layer remain unknown. Recent studies such as [47, 48, 49, 50, 51] have332

focused on specific aspects like representing sparse functions, convex-relaxations, and expressive333

power. [52, 53] have developed initial results to characterize the optimization and generalization334

dynamics of attention. [17] is another closely related work where the authors analyze the same335

attention model (ERM) as us. However, all of these works make stringent assumptions on the data,336

namely, tokens are tightly clusterable or can be clearly split into clear relevant and irrelevant sets.337

Additionally [53] requires assumptions on initialization and [52] considers a simplified attention338

structure where the attention matrix is not directly parameterized with respect to the input. Our work339

offers a comprehensive optimization-theoretic analysis of the attention model by establishing a formal340

connection to max-margin problems. Notably, our work presents the first theoretical understanding341

of the implicit bias exhibited by gradient descent methods in the context of the attention model.342

6 Discussion343

We have provided a thorough optimization-theoretic characterization of the fundamental attention344

model f (X) = v⊤X⊤S(XW p) by formally connecting it to max-margin problems. We first established345

the convergence of gradient descent on p (or equivalently W) in isolation. We also explored joint346

convergence of (v, p) via regularization path which revealed surprising implicit biases such as (7).347

These findings motivate several exciting avenues for future research. An immediate open problem is348

characterizing the (local) convergence of gradient descent for joint optimization of (v, p). Another349

major direction is to extend similar analysis to study self-attention layer (3) or to allow for multiple350

tunable tokens (where p becomes a matrix). Either setting will enrich the problem by allowing351

the attention to discover multiple hyperplanes to separate tokens. While we assumed the tokens to352

be separable, it would be interesting to relax this assumption by leveraging results developed for353

logistic regression analysis [26, 19]. Ideas from these results can also be useful for characterizing the354

non-asymptotic behavior of how gradient descent aligns with the max-margin direction.355
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616

Roadmap. The appendix is organized as follows: Section A provides basic facts about the training617

risk. Section B presents the proof of local and global gradient descent and regularized path for618

learning p ∈ Rd with a fixed v ∈ Rd choice. Section C provides the proof of regularized path applied619

to the general case of joint optimization of head v and attention weights p using a logistic loss620

function. Section D presents the proof for the regularized path applied to a more general model621

f (X) = ψ(X⊤S(XW⊤p)) with a nonlinear head ψ. Section E provides implementation details. Finally,622

Section F discusses additional related work on implicit bias and self-attention.623

Corrections and Refinements. We have made the following changes to the main submission.624

• In the first bullet point of Theorem 4, we corrected indices i into j. This was a typo.625

• In the statement of Theorem 4, we now include the norm lower bound Rε over the conic626

neighborhood. Note that, this is consistent with the setting of success guarantee Theorem 3627

and the main message on the tightness of local optimality remains intact.628

• In Theorem 6, we corrected the statement from X⊤i S(Ki pR) → xiαi to S(Ki pR)αi → 1.629

Note that, the former statement does not actually imply token index αi is selected because630

combination of other tokens can still add up to xiαi . Instead, the new statement says softmax631

probability fully concentrates over αi.632

633
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A Addendum to Section 1659

A.1 Preliminaries on the Training Risk660

Recall the objective661

L(v, p,W) =
1
n

n∑
i=1

ℓ(Yi · f (Xi)). (9)

with the generic prediction model f (X) = ψ(X⊤S(K p)) and K = XW⊤. Here, we write down the662

gradients of W and p in (9) to highlight the connection. Set q := W⊤ p, z{X} := X⊤S(K p) and663

a{X} := K p. Given X and using K = XW⊤, we have that664

∇q fψ(Θ) = X⊤S′(a{X})X · ∇ψ(z{X}) (10a)
∇p fψ(Θ) =W∇q fψ(Θ), (10b)

∇W fψ(Θ) = p∇⊤q fψ(Θ). (10c)

Setting ψ(z) = v⊤ z and recalling the score definition γ = Xv, for linear head, we obtain665

∇q fψ(Θ) = X⊤S′(a{X})γ (11a)

∇p fψ(Θ) =W∇q fψ(Θ) = K⊤S′(a{X})γ, (11b)

∇W fψ(Θ) = p∇⊤q fψ(Θ) = pγ⊤S′(a{X})X. (11c)

Note that the gradient of W is rank-1 with fixed left singular direction. The proof of Lemma 1 below666

shows that solutions induced by matrix W and vectors q, p can be mapped to each other exactly.667

A.2 Proof of Lemma 1668

Proof. Let us prove the result for a general step size sequence (ηt)t≥0. By our assumption ψ : Rd → R669

and ℓ : R × R → R are differentiable functions. Recall L(p) = 1
n
∑n

i=1 ℓ(Yi, ψ(X⊤i S(Xi p))) and670

L(W) = 1
n
∑n

i=1 ℓ(Yi, ψ(X⊤i S(XiW⊤a))) for fixed a. Suppose claim is true till iteration t. For iteration671

t + 1, using W⊤
t a = pt, define and observe that672

St
i = S

′(XiW⊤
t a) = S′(Xi pt) (12)

st
i = S(XiW⊤

t a) = S(Xi pt) (13)

z{Xi} := X⊤i S(Xi pt) = X⊤i S(XiW⊤
t a) (14)

for all i ∈ [n]. Thus, recalling (10a) and (10c), and defining ℓ′i = ℓ
′(Yi, ψ(z{Xi})) we have that673

∇pℓ(Yi, ψ(X⊤i S(Xi pt))) = ℓ′i · X
⊤
i St

i Xi · ∇ψ(z{Xi}), (15)

∇Wℓ(Yi, ψ(X⊤i S(XiW⊤
t a))) = a

(
ℓ′i · X

⊤
i St

i Xi · ∇ψ(z{Xi})
)⊤
. (16)

Consequently, we found that gradient is rank-1 with left singular space equal given by a674

∇WLW (Wt) = a∇⊤pLq(pt).

Since Wt’s left singular space is guaranteed to be in a (including W0 by initialization), we only need675

to study the right singular vector. Using the induction till t, this yields676

W⊤
t+1a =W⊤

t a − ηt∥a∥−2∇⊤WLW (Wt)a (17)

= pt − ηt∥a∥−2a⊤a∇pLq(pt) (18)
= qt+1. (19)

This concludes the induction.677
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B Addendum to Section 2678

B.1 Local Gradient Condition679

Lemma 2 (Key lemma) Let p, q ∈ Rd, a = Kq, s = S(K p), γ = Xv. Set Γ = supt,τ∈[T ] |γt − γτ| and680

A = supt∈[T ] ∥kt∥ · ∥q∥. We have that681 ∣∣∣a⊤diag(s)γ − a⊤ss⊤γ −
T∑

t≥2

(a1 − at)st(γ1 − γt)
∣∣∣ ≤ 2ΓA(1 − s1)2.

Proof. Set γ̄ =
∑T

t=1 γt st. γ1 − γ̄ =
∑T

t≥2(γ1 − γt)st. Also note that682

|γ̄ − γ1| ≤ Γ(1 − s1).
Proceeding,683

a⊤diag(s)γ − a⊤ss⊤γ =
T∑

t=1

atγt st −

T∑
t=1

at st

T∑
t=1

γt st

= a1s1(γ1 − γ̄) −
∑
t≥2

at st(γ̄ − γt). (20)

Now using |
∑

t≥2 at st(γ̄ − γt) −
∑

t≥2 at st(γ1 − γt)| ≤ AΓ(1 − s1)2, we obtain1
684

a⊤diag(s)γ − a⊤ss⊤γ = a1s1(γ1 − γ̄) −
∑
t≥2

at st(γ1 − γt) ± AΓ(1 − s1)2

= a1s1

T∑
t≥2

(γ1 − γt)st −
∑
t≥2

at st(γ1 − γt) ± AΓ(1 − s1)2

=

T∑
t≥2

(a1s1 − at)st(γ1 − γt) ± AΓ(1 − s1)2

=

T∑
t≥2

(a1 − at)st(γ1 − γt) ± 2AΓ(1 − s1)2.

Above, in the last inequality (i.e., ± on the right handside), we used the fact that685

|

T∑
t≥2

(a1s1 − a1)st(γ1 − γt)| ≤ (1 − s1)ΓA
∑
t≥2st

= (1 − s1)2ΓA.

686

This lemma will play a key role in the following lemma.687

Lemma 3 (Local Gradient Condition) Let α = (αi)n
i=1 be locally-optimal tokens per Definition 2.688

Define coneµ(pmm) to be the set of vectors obeying corr(p, pmm) ≥ 1 − µ. There exists a scalar689

µ = µ(α) > 0 such that for sufficiently large R = Rµ:690

• There is no stationary point within coneµ(pmm)
⋂
{p

∣∣∣ ∥p∥ ≥ R}.691

• Let qi = 1−S(Ki p)αi and ℓ′i = ℓ
′(Yi ·v⊤X⊤i S(Ki p)) < 0, γgap

i = mint∈Ti Yi ·(xiαi−xit)⊤v, γ̄gap
i =692

maxt∈Ti Yi · (xiαi − xit)⊤v. For all q, p ∈ coneµ(pmm) with ∥q∥ = ∥pmm∥, we have693

2
n

∑
i∈[n]

ℓ′i · qi · γ̄
gap
i ≥ ⟨∇L(p), q⟩ ≥

1
8n

∑
i∈[n]

ℓ′i · qi · γ
gap
i . (21)

Note that above −ℓ′i and γgap
i , γ̄

gap
i are upper/lower bounded by positive dataset-dependent694

constants. The only term that can vanish (as ∥p∥ → ∞) is qi. Consequently, there exists695

constants C, c > 0 such that,696

C ·max
i∈[n]

qi ≥ − ⟨∇L(p), q⟩ ≥ c ·min
i∈[n]

qi > 0. (22)

Note that, the identical bound holds by setting q = pmm or q = ∥pmm∥p/∥p∥.697

1For simplicity, we use ± on the right hand side to denote the upper and lower bounds.
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• Denote p̄ = ∥pmm∥p/∥p∥. For any π > 0, there exists R := Rπ such that all p ∈ coneµ(pmm)698

with ∥p∥ ≥ R obeys699

⟨∇L(p), p̄⟩ ≥ (1 + π)
〈
∇L(p), pmm〉

,

Proof. Let pmm = pmm(α) be the solution of (ATT-SVM). Define coneµ,R(pmm) = {p ∈700

Rd
∣∣∣ corr(p, pmm) ≥ 1 − µ, ∥p∥ ≥ R}. Let (Ti)n

i=1 be the set of all SVM-neighbors per Defini-701

tion 2. Let T̄i = [T ] − Ti − {αi} be the non-SVM-neighbor tokens. Introduce the notation702

Θ = 1/∥pmm∥, (23)

δ = 0.5 min
i∈[n]

min
t∈Ti,τ∈T̄i

(kit − kiτ)⊤ pmm, (24)

A = max
i∈[n],t∈[T ]

∥kit∥/Θ, (25)

µ = µ(δ) =
1
8

(
min(0.5, δ)

A

)2

. (26)

Since pmm is the max-margin model ensuring (kiαi − kit)⊤ pmm ≥ 1, the following inequalities hold703

for all p ∈ coneµ(pmm), ∥p∥ = ∥pmm∥ and all i ∈ [n], t ∈ Ti, τ ∈ T̄i:704

(kit − kiτ)⊤ p ≥ δ > 0, (27)

(kiαi − kiτ)⊤ p ≥ 1 + δ, (28)

3/2 ≥ (kiαi − kit)⊤ p ≥ 1/2. (29)

Above we used ∥p− pmm∥2/∥pmm∥2 ≤ 2µ which implies ∥p− pmm∥ ≤
√

2µ/Θ.705

Proving Steps 1 and 2: No stationary point and −q⊤∇L(p) > 0 within cone. Now that the choice706

of local cone is determined, we need to prove the main claims. We will lower bound −q⊤∇L(p)707

and establish its strict positivity for ∥p∥ ≥ R. This will show that there is no stationary point as a by708

product. Given any p ∈ coneµ,R(pmm), denote p̄ = (∥pmm∥/∥p∥)p and recall ∥q∥ = ∥pmm∥. To proceed,709

we write the gradient correlation following (44) and (46)710

⟨∇L(p), q⟩ =
1
n

n∑
i=1

ℓ′i ·
〈
ai,S

′(a′i)γi
〉
. (30)

where we denoted ℓ′i = ℓ
′(Yi · v⊤X⊤i S(Ki p)), ai = Kiq, a′i = Ki p, si = S(Ki p). Using (27), for all711

t ∈ Ti, τ ∈ T̄i, for all p ∈ coneµ,R(pmm), we have that712

a′iαi
− a′iτ ≥ RΘ(1 + δ), a′it − a′iτ ≥ RΘδ

Consequently, we can bound the softmax probabilities si = S(Ki p) over non-neighbors as follows:713

For all i ∈ [n] and any ti ∈ Ti714

S i :=
∑
τ∈Ti

siτ ≤
∑
τ,αi

siτ ≤ Te−RΘ/2siαi ≤ Te−RΘ/2, (31)

Qi :=
∑
τ∈T̄i

siτ ≤ Te−RΘδsiti ≤ Te−RΘδS i. (32)

Recall scores γit = Yi · v⊤xit. Define the score gaps over neighbors: γgap
i = γiαi − maxt∈Ti γit,715

γ̄
gap
i = γiαi −mint∈Ti γit. Recall that A := maxi∈[n],t∈[T ] ∥kit∥/Θ ≥ maxi,t∈[T ] ∥ait∥ = ∥kit q∥. Define the716

α-dependent global scalar Γ = supi∈[n],t,τ∈[T ] |γit − γiτ|.717

Let us focus on a fixed datapoint i ∈ [n], assume (without losing generality) α := αi = 1, and drop718

subscripts i, that is, α := αi, X := Xi, Y := Yi, K := Ki, a′ = K p, a = Kq, s = S(K p), γ = Y · Xv,719

γgap := γgap
i . Directly applying Lemma 2, we obtain720 ∣∣∣a⊤diag(s)γ − a⊤ss⊤γ −

T∑
t≥2

(a1 − at)st(γ1 − γt)
∣∣∣ ≤ 2ΓA(1 − s1)2.

To proceed, let us decouple the non-neighbors within
∑T

t≥2(a1 − at)st(γ1 − γt) via721

|
∑
t∈T̄

(a1 − at)st(γ1 − γt)| ≤ 2QΓA.
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Aggregating these, we found722 ∣∣∣a⊤diag(s)γ − a⊤ss⊤γ −
∑
t∈T

(a1 − at)st(γ1 − γt)
∣∣∣ ≤ 2ΓA((1 − s1)2 + Q). (33)

To proceed, let us upper/lower bound the gradient correlation. Since 1.5 ≥ a1 − at ≥ 0.5, we find723

1.5 · S · γ̄gap
∑
t∈T

(a1 − at)st(γ1 − γt) ≥ 0.5 · S · γgap.

Next we claim that S dominates ((1 − s1)2 + Q) for large R. Specifically, we wish for724

S · γgap/4 ≥ 4ΓA max((1 − s1)2,Q) ⇐⇒ S ≥ 16
ΓA
γgap max((1 − s1)2,Q). (34)

Now choose R ≥ δ−1 log(T )/Θ to ensure Q ≤ S since Q ≤ Te−RΘδS . Consequently725

(1 − s1)2 = (Q + S )2 ≤ 4S 2 ≤ 4S Te−RΘ/2.

Combining these, what we wish is ensured by guaranteeing726

S ≥ 16
ΓA
γgap max(4S Te−RΘ/2,Te−RΘδS ). (35)

This in turn is ensured for all inputs i ∈ [n] by choosing727

R =
max(2, δ−1)
Θ

log
(64TΓA
γ

gap
min

)
, (36)

where γgap
min = supi∈[n] γ

gap
i is the global scalar which is the worst case score gap over all inputs. With728

the above choice of R, we guaranteed729

2(1 − s1) · γ̄gap ≥ 2 · S · γ̄gap ≥
∑
t∈T

(a1 − at)st(γ1 − γt) ≥
S · γgap

4
≥

(1 − s1)γgap

8
.

via (34) and (39). Since this holds over all inputs, going back to the gradient correlation (30) and730

averaging above over all inputs i ∈ [n] and plugging back the indices i, we obtain the advertised731

bound by setting qi = 1 − siαi (where we set αi = 1 above without losing generality)732

2
n

∑
i∈[n]

ℓ′i · qi · γ̄
gap
i ≥ ⟨∇L(p), q⟩ ≥

1
8n

∑
i∈[n]

ℓ′i · qi · γ
gap
i . (37)

Proving Step 3: Establishing gradient correlation. Our final goal is establishing gradient compari-733

son between p, pmm for the same choice of µ > 0 provided in (23). Define p̄ = ∥pmm∥p/∥p∥ to be the734

normalized vector. Set notations ai = Ki p̄, āi = Ki pmm, and si = S(Ki p). To establish the result, we735

will prove that, for sufficiently large R = Rπ, for any p ∈ coneµ,R(pmm) and for any i ∈ [n],736 〈
ai,S

′(ai)γi
〉
≤ (1 + π)

〈
āi,S

′(ai)γi
〉
. (38)

Once (38) holds for all i, the same conclusion will hold for the gradient correlations via (30). Moving737

forward, we shall again focus on a single point i ∈ [n] and drop all subscripts i. Also assume738

α = αi = 1 without losing generality (same as above).739

Following (39), for all q ∈ coneµ with ∥q∥ = ∥pmm∥ and a′ = Kq, we have found740 ∣∣∣a′⊤diag(s)γ − a′⊤ss⊤γ −
∑
t∈T

(a′1 − a′t)st(γ1 − γt)
∣∣∣ ≤ 2ΓA((1 − s1)2 + Q). (39)

Plugging in a, ā in the bound above and assuming π ≤ 1 (w.l.o.g.), (38) is implied by the following741

stronger inequality742

6ΓA((1− s1)2 +Q)+
∑
t∈T

(a1 − at)st(γ1 −γt) ≤ (1+ π)
∑
t∈T

(ā1 − āt)st(γ1 −γt) = (1+ π)
∑
t∈T

st(γ1 −γt)

First, we claim that 0.5π
∑

t∈T st(γ1 − γt) ≥ 6ΓA((1 − s1)2 + Q). The proof of this claim directly743

follows the earlier argument, namely, following (34), (36) and (35) which leads to the choice744

Rπ =
max(2,δ−1)
Θ

log
(C·TΓA
πγ

gap
min

)
for some constant C > 0.745
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Following this control over the perturbation term 6ΓA((1 − s1)2 + Q), to conclude with the result,746

what remains is proving the comparison747 ∑
t∈T

(a1 − at)st(γ1 − γt) ≤ (1 + 0.5π)
∑
t∈T

st(γ1 − γt) (40)

To proceed, we split the problem into two scenarios.748

Scenario 1: ∥ p̄− pmm∥ ≤ ε = π
4AΘ for some ε > 0. In this scenario, for any token, we find that749

|at − āt | = |k⊤t ( p̄− pmm)| ≤ AΘε = π/4.

Consequently, we obtain750

a1 − at ≤ ā1 − āt + 2AΘε ≤ 1 + 0.5π.
Similarly, a1 − at ≥ 1 − 0.5π ≥ 0.5. Since all terms a1 − at, st,γ1 − γt in (40) are nonnegative and751

(a1 − at)st(γ1 − γt) ≤ (1 + 0.5π)st(γ1 − γt), above implies the desired result (40).752

Scenario 2: ∥ p̄− pmm∥ ≥ ε = π
4AΘ . Since p̄ is not (locally) max-margin, in this scenario, for some753

ν = ν(ε) > 0 and τ ∈ T , we have that p̄⊤(k1 − kτ) = a1 − aτ ≤ 1 − 2ν. Here τ = arg maxτ∈T p̄⊤kτ754

denotes the nearest point to k1 (along the p̄ direction). Note that a non-neighbor τ ∈ T̄ cannot be755

nearest because p ∈ Cµ and (27) holds. Recall that s = S(R̄a) where R̄ = RΘ. To proceed, split the756

tokens into two groups: LetN be the group of tokens obeying p⊤(k1 − kτ) ≤ 1 − ν and T −N be the757

rest of the neighbors. Observe that758 ∑
t∈T−N st∑

t∈T st
≤

∑
t∈T−N st∑

t=τ st
≤ T

eνR̄

e2νR̄
= Te−R̄ν.

Thus, using |a1 − at | ≤ 2A and recalling the definition of γgap, observe that759 ∑
t∈T−N

(a1 − at)st(γ1 − γt) ≤
2ΓATe−R̄ν

γgap

∑
t∈N

st(γ1 − γt).

Plugging this into (40), we obtain760 ∑
t∈T

(a1 − at)st(γ1 − γt) =
∑
t∈N

(a1 − at)st(γ1 − γt) +
∑

t∈T−N

(a1 − at)st(γ1 − γt)

≤
∑
t∈N

(1 − ν)st(γ1 − γt) +
∑

t∈T−N

2AΓTe−R̄ν

≤ (1 − ν +
2ΓATe−R̄ν

γgap )
∑
t∈T

st(γ1 − γt) (41)

≤ (1 +
2ΓATe−R̄ν

γgap )
∑
t∈T

st(γ1 − γt). (42)

(43)

Consequently, the proof boils down to ensuring the perturbation term 2ΓATe−RΘν

γgap ≤ 0.5π. This is761

guaranteed for all inputs i ∈ [n] by recalling γgap
min = mini∈[n] γ

gap
i and choosing762

R ≥ Rπ =
1
νΘ

log(
4ΓA
γ

gap
minπ

),

where ν = ν( π
4AΘ ) depends only on π and global problem variables.763

Combining this with the prior Rπ choice (by taking maximum), we conclude with the statement.764

B.2 Descent and Gradient Correlation Conditions765

The lemma below identifies conditions under which pmm⋆ is a global descent direction for L(p).766

Lemma 4 (Global descent conditions) Suppose ℓ(·) is a strictly decreasing loss function and either767

of the following two conditions holds768
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• Scores of non-optimal tokens are same: For all i ∈ [n] and t1, t2 , opti, v⊤xit1 = v⊤xit1 .769

• All tokens are support vectors: Consider (ATT-SVM) with optimal indices (opti)n
i=1. (kopti −770

kit)⊤pmm⋆ = 1 for all t , opti, i ∈ [n].771

Define772

• ai
gap := 1 = inft,opti (kopti − kit)⊤ pmm⋆,773

• γi
gap = inft,opti Yi · (xopti − xit)⊤v,774

• lgt′i = popt(1 − popt) where popt = S(Ki p)opti ,775

• ℓ′i = ℓ
′(Yi · v⊤X⊤i S(Ki p)) < 0.776

Then, for all p ∈ Rd, the training loss (ERM) obeys777

−
〈
∇L(p), pmm⋆

〉
≥ min

i∈[n]

{
−ℓ′i · lgt

′
i · a

i
gap · γ

i
gap

}
> 0.

Proof. Set āi = Ki pmm⋆ to obtain In order to show this result, let us recall the gradient evaluated at p778

which is given by779

∇L(p) =
1
n

n∑
i=1

ℓ′i · K
⊤
i S
′(ai)γi. (44)

Here γi = Yi · Xiv, ai = Ki p, and ℓ′i = ℓ
′(Yi · v⊤X⊤i S(Ki p)). This implies that780 〈

∇L(p), pmm⋆
〉
=

1
n

n∑
i=1

ℓ′i ·
〈
āi,S

′(ai)γi
〉
.

To proceed, we will prove that individual summands are all strictly negative. To show that, without781

losing generality, let us focus on the first input and drop the subscript i for cleaner notation. This782

yields783 〈
ā,S′(a)γ

〉
= ā⊤diag(S(a))γ − ā⊤S(a)S(a)⊤γ. (45)

Without losing generality, assume optimal token is the first one. The lemma has two scenarios. In784

the first scenario (same non-optimal scores), γt is a constant for all t ≥ 2. In the second scenario785

(all tokens are support), āt = kt pmm⋆ is constant for all t ≥ 2. Since ā,γ vectors are represented786

symmetrically in the gradient correlation, verifying these two conditions are equivalent.787

To proceed, we will prove the following (focusing on the first condition): Suppose γ = γt≥2 is788

constant, γ1, ā1 are the largest indices of γ, ā. Then, for any s obeying
∑

t∈[T ] st = 1, st ≥ 0, we have789

that ā⊤diag(s)γ − ā⊤ss⊤γ > 0. To see this, we write790

ā⊤diag(s)γ − ā⊤ss⊤γ =
T∑

t=1

ātγt st −

T∑
t=1

āt st

T∑
t=1

γt st (46)

= (ā1γ1s1 + γ
∑
t≥2

āt st) − (γ1s1 + γ(1 − s1))(ā1s1 +

T∑
t≥2

āt st) (47)

= ā1(γ1 − γ)s1(1 − s1) + (γ − (γ1s1 + γ(1 − s1)))
T∑

t≥2

āt st (48)

= ā1(γ1 − γ)s1(1 − s1) − (γ1 − γ)s1

T∑
t≥2

āt st (49)

= (γ1 − γ)(1 − s1)s1[ā1 −

∑T
t≥2 āt st∑

t≥2 st
]. (50)

To proceed, recall the definitions γgap = γ1 −maxt≥2 γt and agap = ā1 −maxt≥2 at. With these, we791

obtain792

ā⊤diag(s)γ − ā⊤ss⊤γ ≥ agapγgaps1(1 − s1),
which is the advertised result after noticing s1(1 − s1) is the logistic derivative and infimum’ing over793

all inputs and multiplying by ℓ′i .794
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Lemma 5 (Gradient correlation conditions) Fix indices α = (αn
i=1) and let pmm = pmm(α) be795

the SVM solution separating αi from remaining tokens of input Xi for i ∈ [n]. Suppose for all796

i ∈ [n] and t1, t2 , αi, v⊤xit1 = v⊤xit2 < v⊤xiαi and ℓ(·) is strictly decreasing. Let p̄ = ∥pmm∥p/∥p∥.797

M = supi,t ∥ki∥ and Ξ = 1/∥pmm∥. For any choice of π > 0, there exists R := Rπ such that, for any p798

with ∥p∥ ≥ R, we have799

⟨∇L(p), p̄⟩ ≥ (1 + π)
〈
∇L(p), pmm〉

.

Above, observe that as R→ ∞, we eventually get to set π = 0.800

Proof. The proof is similar to Lemma 4 at a high-level. However, we also need to account for801

the impact of p besides pmm in the gradient correlation. The main goal is showing that pmm is the802

near-optimal descent direction, thus, p cannot significantly outperform it.803

To proceed, set si = S(Ki p), ai = Ki p̄, āi = Ki pmm. Without losing generality assume αi = 1 for all804

i ∈ [n]. Set lgt′i = si1/(1 − si1). Repeating the proof of Lemma 4 yields805

〈
∇L(p), pmm〉

=
1
n

n∑
i=1

ℓ′i · lgt
′
i · (γi1 − γi)

āi1 −

∑T
t≥2 āit sit∑

t≥2 sit

 (51)

⟨∇L(p), p̄⟩ =
1
n

n∑
i=1

ℓ′i · lgt
′
i · (γi1 − γi)

ai1 −

∑T
t≥2 ait sit∑

t≥2 sit

 (52)

Focusing on a single example i ∈ [n] with s, a, ā vectors (dropping subscript i), given π, for sufficiently806

large R, we wish to show that807 a1 −

∑T
t≥2 at st∑

t≥2 st

 ≤ (1 + π) ·
ā1 −

∑T
t≥2 āt st∑

t≥2 st

 . (53)

We consider two scenarios. Let M = maxi∈[n],t∈[T ] ∥kit∥.808

Scenario 1: ∥ p̄− pmm∥ ≤ ε := π/2M. In this scenario, for any token, we find that809

|at − āt | = |k⊤t ( p̄− pmm)| ≤ M∥ p̄− pmm∥ ≤ Mε.

Consequently, we obtain810

ā1 −

∑T
t≥2 āt st∑

t≥2 st
≥ a1 −

∑T
t≥2 at st∑

t≥2 st
− 2Mε = a1 −

∑T
t≥2 at st∑

t≥2 st
− π.

Also noticing ā1 −
∑T

t≥2 āt st∑
t≥2 st

≥ 1 (thanks to pmm satisfying ≥ 1 margin), this implies (53).811

Scenario 2: ∥ p̄− pmm∥ ≥ ε := π/2M. In this scenario, for some δ = δ(ε) and τ ≥ 2, we have that812

p⊤(k1 − kτ) = a1 − aτ ≤ 1 − 2δ. Here τ = arg maxt≥2 p⊤kt denotes the nearest point to k1. Recall813

that s = S(R̄a) where R̄ = RΞ = R/∥pmm∥. To proceed, split the tokens into two groups: Let N be the814

group of tokens obeying p⊤(k1 − kτ) ≥ 1 − δ and [T ] − N be the rest. Observe that815 ∑
t∈N st∑
t≥2 st

≤

∑
t∈N st∑
t=τ st

≤ T
eδR̄

e2δR̄
= Te−R̄δ.

Set M̄ = M/Ξ and note that ∥at∥ ≤ ∥pmm∥ · ∥kt∥ ≤ M̄. Using p⊤(k1 − kτ) < 1 − δ over τ ∈ [T ] − N816

and plugging in the above bound, we obtain817 ∑T
t≥2(a1 − at)st∑

t≥2 st
=

∑T
t∈[T ]−N (a1 − at)st∑

t≥2 st
+

∑T
t∈N (a1 − at)st∑

t≥2 st

≤ (1 − δ) + 2M̄Te−R̄δ.

Using the fact that ā1 −
∑T

t≥2 āt st∑
t≥2 st

≥ 1, the above implies (53) with π′ = (1− δ)+ 2M̄Te−R̄δ. To proceed,818

choose Rπ = δ
−1Ξ−1 log(2M̄T/π) to ensure π′ ≤ π.819

The following lemma states the descent property of gradient descent for L(p) under Assumption A.820

It is important to note that although the infimum of the optimization problem is L∗, it is not achieved821

at any finite p. Additionally, there are no finite critical points p.822
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Lemma 6 Under Assumption A, the objective L(p) is Lp-smooth, where823

Lp :=
1
n

n∑
i=1

(
M0∥v∥2∥W∥2 + M1∥v∥|W∥3

)
∥Xi∥

4. (54)

Further, if η ≤ 2/Lp, then, for any initialization p(0), with the GD sequence p(t + 1) = p(t)−η∇L(p(t)),824

we have825

L(p(t + 1)) − L(p(t)) ≤ −
η

2
∥∇L(p(t))∥2, (55)

for all t ≥ 0,
∑∞

t=0 ∥∇L (p(t))∥2 < ∞ and limt→∞ ∥∇L (p (t))∥2 = 0.826

Proof. Recall that we defined γi = Yi · Xiv, ai = Ki p, and ℓ′i = ℓ
′(Yi · v⊤X⊤i S(Ki p)). The gradient827

evaluated at p is given by828

∇L(p) =
1
n

n∑
i=1

ℓ′i · K
⊤
i S
′(ai)γi.

Now, for any p, ṗ ∈ Rd, we have829

∥∇L(p) − ∇L( ṗ)∥ ≤
1
n

n∑
i=1

∥∥∥ℓ′(γ⊤i S(Ki p)) · K⊤i S
′(Ki p)γi − ℓ

′(γ⊤i S(Ki ṗ)) · K⊤i S
′(Ki ṗ)γi

∥∥∥
≤

1
n

n∑
i=1

∥K⊤i S
′(Ki ṗ)γi∥

∥∥∥ℓ′(γ⊤i S(Ki p)) − ℓ′(γ⊤i S(Ki ṗ))
∥∥∥

+
1
n

n∑
i=1

∥ℓ′(γ⊤i S(Ki p))∥
∥∥∥K⊤i S

′(Ki p)γi − K⊤i S
′(Ki ṗ)γi

∥∥∥
≤

1
n

n∑
i=1

M0∥γi∥
2∥Ki∥ ∥S(Ki p) − S(Ki ṗ)∥ + M1∥Ki∥∥γi∥

∥∥∥S′(Ki p) − S′(Ki ṗ)
∥∥∥ ,

where the second inequality follows from the fact that |ab − cd| ≤ |d||a − c| + |a||b − d| and the third830

inequality uses Assumption A.831

Note also that for any p, ṗ ∈ Rd,832

∥S(Ki p) − S(Ki ṗ)∥ ≤ ∥Ki∥∥p− ṗ∥ and
∥∥∥S′(Ki p) − S′(Ki p)

∥∥∥ ≤ ∥Ki∥
2∥p− ṗ∥.

Hence,833

∥∇L(p) − ∇L( ṗ)∥ ≤
1
n

n∑
i=1

(
M0∥γi∥

2∥Ki∥
2 + M1∥Ki∥

3∥γi∥
)
∥p− ṗ∥

≤
1
n

n∑
i=1

(
M0∥v∥2∥W∥2∥Xi∥

4 + M1∥v∥|W∥3∥Xi∥
4
)
∥p− ṗ∥

≤ Lp∥p− ṗ∥,

where Lp is defined in (54).834

The reminder of proof is similar to the proof of [19, Lemma 10]. Since L (p) is Lp-smooth, we get835

L (p (t + 1)) ≤ L (p (t)) + ∇L (p (t))⊤ (p (t + 1) − p (t)) +
Lp

2
∥p (t + 1) − p (t)∥2

= L (p (t)) − η ∥∇L (p (t))∥2 +
Lpη

2

2
∥∇L (p (t))∥2

= L (p (t)) − η
(
1 −

Lpη

2

)
∥∇L (p (t))∥2

= L (p (t)) −
η

2
∥∇L (p (t))∥2 ,

where the last inequality follows from our assumption on the stepsize.836

24



The above inequality implies that837

∞∑
t=0

∥∇L (p (t))∥2 ≤
2
η

(L (p (0)) − L∗) .

Here, the right hand side is upper bounded by a finite constant, since by Assumption A, L (p (0)) < ∞838

and L∗ ≤ L (p (t)). This implies
∑∞

t=0 ∥∇L (p (t))∥2 < ∞ and therefore ∥∇L (p (t))∥2 → 0.839

B.3 Proof of Theorem 1840

Proof. We first show that limt→∞ ∥p (t)∥ = ∞. From Lemma 4, we have841 〈
∇L(p), pmm⋆

〉
=

1
n

n∑
i=1

ℓ′i ·
〈
Ki pmm⋆,S′(ai)γi

〉
,

where γi = Yi · Xiv, ai = Ki p, and ℓ′i = ℓ
′(Yi · v⊤X⊤i S(Ki p)).842

It follows from Lemma 4 that
〈
∇L(p), pmm⋆〉 < 0 for all p ∈ Rd. Hence, for any finite p,843 〈

∇L(p), pmm⋆〉 cannot be equal to zero, as a sum of negative terms. Therefore, there are no finite844

critical points p, for which ∇L(p) = 0 which contradicts Lemma 6. This implies that ∥p (t)∥ → ∞.845

Now, given any ϵ ∈ (0, 1), let π = ϵ/(1 − ϵ). Since limt→∞ ∥p(t)∥ = ∞, we can choose t0 such that for846

any t ≥ t0, it holds that ∥p(t)∥ > Rϵ ∨ 1/2 for some radius Rϵ . Now for any t ≥ t0, it follows from847

Lemma 5 that848 〈
−∇L(p(t)),

pmm⋆

∥pmm⋆∥

〉
≥ (1 − ϵ)

〈
−∇L(p(t)),

p(t)
∥p(t)∥

〉
.

Multiplying both sides by the stepsize η and using the gradient descent update, we get849 〈
p(t + 1) − p(t),

pmm⋆

∥pmm⋆∥

〉
≥ (1 − ϵ)

〈
p(t + 1) − p(t),

p(t)
∥p(t)∥

〉
=

(1 − ϵ)
2∥p(t)∥

(
∥p(t + 1)∥2 − ∥p(t)∥2 − ∥p(t + 1) − p(t)∥2

)
≥ (1 − ϵ)

(
∥p(t + 1)∥2 − ∥p(t)∥2 − ∥p(t + 1) − p(t)∥2

)
≥ (1 − ϵ)

(
∥p(t + 1)∥ − ∥p(t)∥ − ∥p(t + 1) − p(t)∥2

)
≥ (1 − ϵ)

(
∥p(t + 1)∥ − ∥p(t)∥ − 2η (L(p(t)) − L(p(t + 1)))

)
.

(56)

Here, the last inequality uses Lemma 6.850

Summing the above inequality over t ≥ t0 gives851 〈
p(t)
∥p(t)∥

,
pmm⋆

∥pmm⋆∥

〉
≥ 1 − ϵ +

C(ϵ, η)
∥p(t)∥

,

for some finite constant C(ϵ, η) defined as852

C(ϵ, η) :=
〈

p(t0),
pmm⋆

∥pmm⋆∥

〉
− (1 − ϵ)∥p(t0)∥ − 2η(1 − ϵ)(L(p(t0)) − L∗), (57)

where L∗ ≤ L (p (t)) for all t ≥ 0.853

Since ∥p (t)∥ → ∞, we get854

lim inf
t→∞

〈
p(t)
∥p(t)∥

,
pmm⋆

∥pmm⋆∥

〉
≥ 1 − ϵ.

Given that ϵ is arbitrary, we can consider the limit as ϵ approaches zero. Thus, we have: p(t)/∥p(t)∥ →855

pmm⋆/∥pmm⋆∥.856
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B.4 Proof of Theorem 2857

This proof is a direct corollary of Lemma 9 which itself is a special case of the nonlinear head858

Theorem 7. Let us verify that f (X) = v⊤X⊤S(X p) satisfies the assumptions of Lemma 9 where859

we replace the nonlinear head with linear v. To see this, set the optimal sets to be the singletons860

Oi = {opti}. given (Xi,Yi) and defining si = S(Ki p) and qi := qp
i =

∑
t,opti

sit. Recalling score861

definition γi = Yi · Xiv and setting νi := γiopti and Zi :=
∑

t,opti
γit sit, a particular prediction can be862

written as863

Yi · v⊤X⊤i S(Xi p) = γ⊤i si = γiopti (1 − qi) +
∑

t,opti

γit sit (58)

= νi(1 − qi) + Zi. (59)
To proceed, we demonstrate the choices for C, ε > 0. Let C := −mini∈[n],t∈[T ] γit ∧ 0 and qmax =864

maxi∈[n] qi. Note that Zi ≥
∑

t,opti
γit sit ≥ qiγmin ≥ −Cqmax. Now, using strict score optimality of865

opti’s for all i ∈ [n], we set866

ε := 1 − sup
i∈[n]

∑
t,opti

γit sit

νiqi
≥ 1 − sup

i∈[n]

supt,opti
γit

γiopti

> 0.

We conclude by observing Zi ≤ νiqi

∑
t,opti γit sit

νiqi
≤ νiqiε as desired.867

B.5 Proof of Theorem 3868

Proof. We provide the proof in four steps:869

Step 1: There are no stationary points within the cone. We begin by proving that there are no870

stationary points within coneµ(pmm)
⋂{

p | ∥p∥ ≥ Rµ

}
for a specific radius Rµ. Let (Ti)n

i=1 denote the871

set of SVM-neighbors as defined in Definition 2. We define T̄i = [T ] − Ti − αi as the tokens that872

are non-SVM neighbors. Additionally, let µ be defined as in (23). For all q, p ∈ coneµ(pmm) with873

∥q∥ = ∥pmm∥, it follows from Lemma 3 that there exists Rµ such that −q⊤∇L(p) is strictly positive874

for ∥p∥ ≥ Rµ.875

Step 2: Let ϵ ∈ (0,min(µ, 1)), 1/(1 + π) = 1 − ϵ. It follows from Lemma 5 that, there exists Rϵ such876

that all p ∈ coneµ(pmm)
⋂
{p | ∥p∥ ≥ Rϵ} satisfy877 〈
−∇L(p),

pmm(α)
∥pmm(α)∥

〉
≥ (1 − ϵ)

〈
−∇L(p),

p
∥p∥

〉
. (60)

878

Step 3: Updates remain inside the cone. By leveraging the results from Step 1 and Step879

2, we show that that the gradient iterates, with an appropriate step size, starting from p(0) ∈880

coneµ(pmm)
⋂
{p | ∥p∥ ≥ R}, remain within this cone.881

We proceed by induction. Suppose that the claim holds up to iteration t ≥ 0. This implies that882

p(t) ∈ coneµ(pmm)
⋂
{p | ∥p∥ ≥ R}. Hence, there exists scalar µ = µ(α) ∈ (0, 1] and Rµ such that883

corr(p(t), pmm(α)) ≥ 1− µ and ∥p(t)∥ ≥ Rµ. Let ρ := −(1/(1− ϵ))
〈
∇L(p(t)), pmm(α)

∥pmm(α)∥

〉
> 0. We have884 〈

p(t + 1)
∥p(t)∥

,
pmm(α)
∥pmm(α)∥

〉
=

〈
p(t)
∥p(t)∥

−
η

∥p(t)∥
∇L(p(t)),

pmm(α)
∥pmm(α)∥

〉
≥ 1 − µ −

η

∥p(t)∥

〈
∇L(p(t)),

pmm(α)
∥pmm(α)∥

〉
≥ 1 − µ +

ηρ(1 − ϵ)
∥p(t)∥

.

(61a)

Note that from Lemma 3, we have ⟨∇ f (p(t)), p(t)⟩ < 0 which implies that ∥p(t + 1)∥ ≤ ∥p(t)∥ −885
η
∥p(t)∥ ⟨∇ f (p(t)), p(t)⟩ + η2∥∇ f (p(t))∥2. Hence, ∥p(t + 1)∥ ≥ ∥p(t)∥, and886

p(t + 1)
∥p(t)∥

≤ 1 − η
〈
∇ f (p(t)),

p(t)
∥p(t)∥

〉
+ η2 ∥∇L(p(t))∥2

∥p(t)∥

≤ 1 −
η

1 − ϵ

〈
∇L(p(t)),

pmm(α)
∥pmm(α)∥

〉
+ η2 ∥∇L(p(t))∥2

∥p(t)∥

≤ 1 +
ηρ

∥p(t)∥
+
η2∥∇L(p(t))∥2

∥p(t)∥
=: C(η, ρ).

(61b)
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Here, the second inequality follows from (60).887

Now, it follows from (61a) and (61b) that888 〈
p(t + 1)
∥p(t + 1)∥

,
pmm(α)
∥pmm(α)∥

〉
≥

1
C(η, ρ)

(
1 − µ +

ηρ(1 − ϵ)
∥p(t)∥

)
≥

1
C(η, ρ)

(
1 − µ +

ηρ(1 − ϵ)
∥p(t)∥

)
≥ 1 − µ +

η

C(η, ρ)

(
ρ(µ − ϵ)
∥p(t)∥

− η(1 − µ)
∥∇L(p(t))∥2

∥p(t)∥

)
≥ 1 − µ,

(62)

where the last inequality uses η ≤ (µ−ϵ)ρ
1−µ

1
∥∇ f (p(t))∥2 .889

Hence, p(t + 1) ∈ coneµ(pmm)
⋂
{p | ∥p∥ ≥ Rµ}.890

Step 4: The correlation of p(t) and pmm(α) increases over t. The reminder is similar to the proof of891

Theorem 1. Note that it follows from Lemma 4 that ⟨∇L(p), pmm(α)/∥pmm(α)∥⟩ < 0, for any finite p.892

Hence, there are no finite critical points p, for which ∇L(p) = 0 which contradicts Lemma 6. This893

implies that ∥p (t)∥ → ∞. Hence, we can choose t0 such that for any t ≥ t0, it holds that ∥p(t)∥ > R894

for some R ≥ Rµ ∨ Rϵ ∨ 1/2. Now, following similar steps in (56) and (57), we obtain895 〈
p(t)
∥p(t)∥

,
pmm(α)
∥pmm(α)∥

〉
≥ 1 − ϵ +

C(ϵ, η)
∥p(t)∥

,

for some finite constant C(ϵ, η).896

Consequently,897

lim inf
t→∞

〈
p(t)
∥p(t)∥

,
pmm(α)
∥pmm(α)∥

〉
≥ 1 − ϵ.

Since ϵ ∈ (0,min(µ, 1)) is arbitrary, we get p(t)/∥p(t)∥ → pmm(α)/∥pmm(α)∥.898

B.6 Proof of Theorem 4: Regularization Path Fails for Non-Locally-Optimal Tokens899

The theorem below is essentially a restatement of Theorem 4 and shows that regularization path does900

not converge to the max-margin solution if token indices α does not satisfy Definition 2. The only901

difference is that, Theorem 4 replaces the second condition below with a cleaner statement which902

assumes the linear-independence of the support vectors.903

Theorem 8 (Failure of Local Regularization Path) Fix token indices α = (αi)n
i=1 with904

SVM-neighbors (Ti)n
i=1. Suppose for some j ∈ [n], there exists an SVM-neighbor β ∈ T j satis-905

fying the following:906

• x jβ has a higher score than x jα j : Y j · v⊤x jβ > Y j · v⊤x jα j .907

• Recall pmm = pmm(α) be the solution of (ATT-SVM) and let pβ be the solution of908

(ATT-SVM) where the constraint (k jα j − k jβ)⊤ p ≥ 1 is not enforced. β is an active909

SVM-neighbor in the sense that pβ violates the constraint i.e. (k jα j − k jβ)⊤ pβ < 1.910

For any ε > 0, there exists Rε > 0 as follows: Consider the neighborhood of pmm: Cε = coneε(pmm)911 ⋂
{p | ∥p∥ ≥ Rε}. Define the local path p̄(R) = minp∈Cε,∥p∥≤RL(p). Then lim

R→∞

p̄(R)
∥ p̄(R)∥ ,

pmm

∥pmm∥
.912

Proof of Theorem 4: Using the above theorem we can now conclude the proof of Theorem 4 by913

showing that, second bullet of Theorem 4 implies the second bullet of Theorem 8. We are given914

solution pmm and pβ. Suppose that pβ in Theorem 4 does not violate the constraint (k jα j − k jβ)⊤ pβ ≥ 1.915

Then, it would imply that pβ = pmm because pβ satisfies all margin constraints and ∥pβ∥ ≤ ∥pmm∥916

(because it solves the problem with less constraints), thus, if pβ , pmm, it would contradict with the917

optimality of pmm. Since the active constraints are linearly independent, their Lagrange multipliers918

are unique. Since pβ is missing a linearly independent constraint, the solution pβ expressed in terms919

of Lagrange-weighted constraints cannot equate to the solution pmm expressed in terms of its own920

Lagrange-weighted constraints that also include the constraint induced by k jα j − k jβ.921

27



B.6.1 Proof of Theorem 8922

Proof strategy: Without losing generality, let us prove the result for 2ε (to simplify the downstream923

notation). To accomplish the proof, we will follow the following strategy. Fix p̄mm
ε =

εpβ+(1−ε)pmm

∥εpβ+(1−ε)pmm∥
924

and p̄mm = pmm/∥pmm∥. Using ∥pβ∥ ≤ ∥pmm∥, we observe that p̄mm
ε obeys the correlation inequality925

( p̄mm
ε )⊤ p̄mm ≥

(1 − ε)∥pmm∥2 − ε∥pmm∥∥pβ∥
∥pmm∥((1 − ε)∥pmm∥ + ε∥pβ∥)

≥
(1 − 2ε)∥pmm∥2

∥pmm∥2
≥ 1 − 2ε.

This establishes that r · p̄mm
ε ∈ cone2ε(pmm). Thus, we will use p̄mm

ε to show that it is a superior926

direction to pmm. Concretely, for all R ≥ Rε, suppose that, there exists δ = δ(ε) such that,927

L(R · p̄mm
ε ) < inf

∥p∥=R,p∈coneδ(pmm)
L(p). (63)

In words, suppose that R · p̄mm
ε achieves strictly better loss than all points of ℓ2-norm R within928

coneδ(pmm). Establishing this would imply the desired result lim
R→∞

p̄(R)
∥ p̄(R)∥ ,

pmm

∥pmm∥
. Since for any choice929

of R ≥ Rε, (63) implies that the optimal direction p̄(R)
∥ p̄(R)∥ is at least δ bounded away from pmm

∥pmm∥
. In930

what follows, we will prove this by establishing (63).931

First, let us establish the critical properties of pβ. Set K = n(T − 1) and gather the set of margin932

equalities pmm := pmm(α) satisfies: These inequalities are given by vectors (vK
k=1) where vk is the933

form kαi − kt for t , αi. Also let v1 = k jα j − k jβ be the active constraint described in the theorem.934

Note that ∥pβ∥ ≤ ∥pmm∥ since pβ is solving a max-margin problem with strictly less constraints (over935

k ≥ 2). Secondly, we claim that pβ achieves a strictly larger margin compared to pmm over k ≥ 2,936

namely setting Γ = ∥pmm∥ and Γβ = ∥pβ∥937

min
k≥2

v⊤k pβ/∥pβ∥ = 1/Γβ > min
k≥2

v⊤k pmm/∥pmm∥ = 1/Γ.

If not, it would imply that ∥pβ∥ = ∥pmm∥ and that mink≥2 v⊤k pmm = mink≥2 v⊤k pβ. Since theorem’s938

statement guarantees pmm , pβ, this contradicts with the unique optimality of pβ when satisfying939

constraints k ≥ 2 as pmm would achieve the same objective.940

Finally, using same argument, we also note that, pβ achieves strictly less margin over v1, namely941

v⊤1 pβ/∥pβ∥ < v⊤1 pmm/∥pmm∥ = 1/Γ. (64)

If not, it would imply that pβ achieves a better or equal margin at all constraints which would942

contradict with the optimality of pmm over constraints k ≥ 1.943

Now, let us define pmm
ε = εpβ + (1 − ε)pmm and observe that pmm

ε also satisfies the discussion above.944

Namely, using ∥pmm
ε ∥ ≤ ε∥pβ∥ + (1 − ε)∥pmm∥ < Γ we find945

mink≥2 v⊤k pmm
ε

∥pmm
ε ∥

≥
1

ε∥pβ∥ + (1 − ε)∥pmm∥
>

1
Γ
. (65)

Similarly, on constraint v1, we have that946

v⊤1 pmm
ε /∥pmm

ε ∥ := 1/Γε < 1/Γ. (66)

If not, it would imply that pmm
ε achieves a better or equal margin on all constraints which would947

contradict with the unique optimality of pmm over constraints k ≥ 1.948

We will use Γε > Γ, (66), and (65) to conclude that pmm
ε is a strictly better direction compared to a949

δ = δ(ε) conic neighborhood of p̄mm := pmm/∥pmm∥. Pick the δ neighborhood of pmm such that, all950

pmm
δ it satisfies951

v⊤k pmm
δ /∥pmm

δ ∥ ≥ 1/Γδ = 0.5(1/Γε + 1/Γ) > 1/Γε for all k ∈ [K]. (67)

In words, we choose a neighborhood with correlation profile dominated by pmm
ε (on k = 1 and k ≥ 2).952

We now lower bound the loss function over δ-neighborhood and upper bound over pmm
ε . Specifically,953

we will compare a pmm
δ within the δ neighborhood of pmm with ∥pmm

δ ∥ = R and p̃mm
ε := R · p̄mm

ε . To954

proceed, define:955

q⋆i = 1 − S(Ki p̃mm
ε )αi , q̂i = 1 − S(Ki pmm

δ )αi
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Also define qβ = S(K j p̃mm
ε )β which is the j’th softmax likelihood at token β. We will use the fact that956

margin at β is small for j’th example to lower bound qβ carefully. We next bound these as follows957

based on (66), (65), (67) (e.g. following derivation of (109))2
958

log(q⋆i ) ≤ −(R/Γ) + log T for all i , j (68)

log(qβ) ≥ −(R/Γε) − log T for all i , j (69)

log(q⋆j − qβ) ≤ −(R/Γ) + log T for all i , j (70)

log(q̂i) ≤ −(R/Γδ) + log T for all i ∈ [n]. (71)

• Lower bounding L(pmm
δ ): Using the last inequality, on pmm

δ (within the δ neighborhood of pmm),959

we have the following lower bound: Set xδi = X⊤i S(Ki pmm
δ ) and M := supi∈[n],t,τ∈[T ] ∥xit − xiτ∥ and960

note that ∥xδi − xαi∥ ≤ Mq̂i. Also let B and A be the lower and upper bound of −ℓ′ over [−M∥v∥,M∥v∥]961

interval. Finally, define L⋆ = 1
n
∑n

i=1 ℓ(v⊤xiαi ). We find962

|L(pmm
δ ) − L⋆| =

1
n

n∑
i=1

|ℓ(Yi · v⊤xδi ) − ℓ(Yi · v⊤xiαi )| (72)

≤ Bq̂maxM∥v∥ (73)

≤ T BM∥v∥e−R/Γδ . (74)

This implies L(pmm
δ ) ≥ L⋆ − T BM∥v∥e−R/Γδ . Note that this holds for all pmm

δ within the conic963

neighborhood coneδ(pmm) ∩ {p
∣∣∣ ∥p∥ = R} (defined above (63)).964

• Upper bounding L( p̃mm
ε ): On pmm

ε , we upper bound the loss as follows. Define the loss L− j(p) =965
1
n
∑

i, j ℓ(Yi · f (Xi)) i.e. loss over all training data except the j’th one. Repeating the argument identical966

to (72), we find that967

|L− j( p̃mm
ε ) − L− j

⋆ | ≤ T BM∥v∥e−R/Γ.

The critical term is the j’th loss which we need to upper bound as follows. Set xεj = X⊤j S(K j p̃mm
ε )968

and define the score improvement by β to be γgap = Y j · v⊤(xiβ − x jα j ) > 0. We note that969

Y j · v⊤xεj − Y j · v⊤xα j = qβY j · v⊤(xiβ − xα j ) +
∑

t<{α j,β}

S(K j p̃mm
ε )tY j · v⊤(xit − xα j ) (75)

≥ qβγgap − (q⋆j − qβ)M∥v∥ (76)

≥ T−1γgape−R/Γε − T BM∥v∥e−R/Γ. (77)

Combining these into L( p̃mm
ε ) = L− j( p̃mm

ε ) + n−1ℓ(Y j · v⊤xεj) and using A ≤ −ℓ′ ≤ B, we obtain the970

lower bound971

L( p̃mm
ε ) − L⋆ ≤ 2T BM∥v∥e−R/Γ − An−1T−1γgape−R/Γε . (78)

In conclusion, we find that L( p̃mm
ε ) > L(pmm

δ ) whenever972

An−1T−1γgape−R/Γε > 2T BM∥v∥(e−R/Γ + e−R/Γδ ).

Using the relationship Γε ≥ Γδ ≥ Γ and noticing 1/Γδ − 1/Γε = (1/Γ − 1/Γε)/2, this is implied by973

eR(1/Γδ−1/Γε) > 4T 2nBMA−1∥v∥ ⇐⇒ R >
2ΓεΓ
Γε − Γ

log(4T 2nBMA−1∥v∥).

Thus, as advertised, we found that, for any ε > 0, there exists Rε such that, over the set974

coneε(pmm)
⋂
{p

∣∣∣ ∥p∥ ≥ Rε}, p̃mm
ε with ∥ p̃mm

ε ∥ = R > Rε achieves smaller loss compared to L(pmm
δ )975

for all pmm
δ ∈ coneδ(pmm)

⋂
{p

∣∣∣ ∥p∥ = R}. This in turn implies (63) for all R > Rε concluding the976

proof.977

2We are essentially following identical arguments developed in the proofs of Theorem 7 or Theorem 5.
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C Addendum to Section 3978

C.1 Proof of Theorem 5979

Proof. Suppose the claim is incorrect and either pR/R or vr/r fails to converge as R, r grows. Set980

Ξ = 1/∥pmm∥, p̃mm = RΞpmm and ṽmm = rΓvmm. The proof strategy is obtaining a contradiction by981

proving that (ṽmm, p̃mm) is a strictly better solution compared to (vr, pR) for large R, r. Without losing982

generality, we will set αi = 1 for all i ∈ [n] as the problem is invariant to tokens’ permutation. Define983

qp
i = 1 − sp

i1 to be the amount of non-optimality (cumulative probability of non-first tokens) where984

sp
i = S(Ki p) is the softmax probabilities.985

• Case 1: pR/R does not converge. Under this scenario there exists δ, γ = γ(δ) > 0 such that we can986

find arbitrarily large R with ∥pR/R − p̃mm/R∥ ≥ δ and margin induced by pR/R is at most Ξ(1 − γ)987

(from strong convexity of (ATT-SVM)). Following qp
i definition above, set q̂max = supi∈[n] qpR

i to be988

worst non-optimality in pR and q⋆max = supi∈[n] q p̃mm

i to be the same for p̃mm. Repeating the identical989

argument in Theorem 7 (specifically (109)), we can bound the non-optimality amount q⋆i of p⋆R as990

q⋆i =
∑

t,αi
exp(k⊤it p⋆R)∑

t∈[T ] exp(k⊤it p⋆R)
≤

∑
t,αi

exp(k⊤it p⋆R)
exp(k⊤iαi

p⋆R)
≤ T exp(−RΞ). (79)

Thus, q⋆max = maxi∈[n] q⋆i ≤ T exp(−RΞ). Next without losing generality, assume first margin991

constraint is γ-violated by pR and mint,α1 (k1α1 − k1t)⊤pR ≤ ΞR(1 − γ). Denoting the amount of992

non-optimality of the first input as q̂1, we find993

q̂1 =

∑
t,αi

exp(k⊤1t pR)∑
t∈[T ] exp(k⊤1t pR)

≥
1
T

∑
t,αi

exp(k⊤1t pR)
exp(k⊤1α pR)

≥ T−1 exp(−(1 − γ)RΞ). (80)

We similarly have q⋆max ≥ T−1 exp(−RΞ) to find that994

log(q̂max) ≥ −(1 − γ)ΞR − log T, (81)

−ΞR − log T ≤ log(q⋆max) ≤ −ΞR + log T. (82)

In words, p̃mm contains exponentially less non-optimality compared to pR as R grows. The remainder995

of the proof differs from Theorem 7 as we need to upper/lower bound the logistic loss of (ṽmm, p̃mm)996

and (vr, pR) respectively to conclude with the contradiction.997

First, let us upper bound the logistic loss of (ṽmm, p̃mm). Set ri = X⊤i S(Ki p̃mm). Observe that998

if ∥ri − xi1∥ ≤ εi, we have that vmm satisfies the SVM constraints on ri with Yi · r⊤i vmm ≥ 1 −999

εi/Γ. Consequently, setting εmax = supi∈[n] εi, vmm achieves a label-margin of Γ − εmax on the1000

dataset (Yi, ri)i∈[n]. With this, we upper bound the logistic loss of (ṽmm, p̃mm) as follows. Let1001

M = supi∈[n],t∈[T ] ∥xit∥. In what follows, let us recall the fact (81) that worst-case perturbation is1002

εmax ≤ M exp(−ΞR + log T ) = MT exp(−ΞR).1003

L(ṽmm, p̃mm) ≤ max
i∈[n]

log(1 + exp(−Yir⊤i ṽmm)). (83)

≤ max
i∈[n]

exp(−Yir⊤i ṽmm) (84)

≤ exp(−rΓ + rεmax) (85)

≤ erMT exp(−ΞR)e−rΓ. (86)

Conversely, we obtain a lower bound for (vr, pR). Set ri = X⊤i S(Ki pR). Using Assumption C, we find1004

that solving (CLS-SVM) on (Yi, ri)i∈[n] achieves at most Γ − νe−(1−γ)ΞR/T margin. Consequently, we1005

have1006

L(vr, pR) ≥
1
n

max
i∈[n]

log(1 + exp(−Yir⊤i vr)) (87)

≥
1

2n
max
i∈[n]

exp(−Yir⊤i vr) ∧ log 2 (88)

≥
1

2n
exp(−r(Γ − νe−(1−γ)ΞR/T )) ∧ log 2 (89)

≥
1

2n
er(ν/T ) exp(−(1−γ)ΞR)e−rΓ ∧ log 2. (90)
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Observe that, this lower bound dominates the previous upper bound when R is large, namely, when1007

(ignoring the multiplier 1/2n for brevity)1008

(ν/T )e−(1−γ)ΞR ≥ MTe−ΞR ⇐⇒ R ≥ R0 :=
1
γΞ

log(
MT 2

ν
).

Thus, we indeed obtain the desired contradiction since such large R is guaranteed to exist when1009

pR/R↛ pmm.1010

• Case 2: vr/r does not converge. This is the simpler scenario: There exists δ > 0 such that we1011

can find arbitrarily large r obeying ∥vr/r − vmm/∥vmm∥∥ ≥ δ. If ∥pR/R − Ξpmm∥ ↛ 0, then “Case1012

1” applies. Otherwise, we have ∥pR/R − Ξpmm∥ → 0, thus we can assume ∥pR/R − Ξpmm∥ ≤ ε for1013

arbitrary choice of ε > 0.1014

On the other hand, due to the strong convexity of (CLS-SVM), for some γ := γ(δ) > 0, vr achieves1015

a margin of at most (1 − γ)Γr on the dataset (Yi, xi1)i∈[n]. Additionally, since ∥pR/R − Ξpmm∥ ≤ ε,1016

pR strictly separates all optimal tokens (for small enough ε > 0) and q̂max := f (ε) → 0 as R → ∞.1017

Consequently, setting ri = X⊤i S(Ki pR), for sufficiently large R > 0 setting M = supi∈[n],t∈[T ] ∥xit∥, we1018

have that1019

min
i∈[n]

Yiv⊤r ri ≤ min
i∈[n]

Yiv⊤r xi1 + sup
i∈[n]
|ri − xi1|v⊤r (91)

≤ (1 − γ)Γr + M f (ε)r (92)
≤ (1 − γ/2)Γr. (93)

This in turn implies that logistic loss is lower bounded by (following (90)),1020

L(vr, pR) ≥
1

2n
eγΓr/2e−Γr ∧ log 2.

Going back to (86), this exponentially dominates the upper bound of ( p̃mm, ṽmm) whenever1021

rMT exp(−ΞR) < rγΓ/2, (that is, whenever R, r are sufficiently large), again concluding the proof.1022

C.2 Proof of Theorem 61023

We first restate Theorem 6 for ease of reference.1024

Theorem 9 Consider the path of (vr, pR) as r,R→ ∞ as in Theorem 5. Suppose S(Ki pR)αi → 1, i.e.,1025

the tokens (αi)n
i=1 are asymptotically selected. Then, vr/r → vmm/∥vmm∥ where vmm is the solution1026

of (CLS-SVM) with ri = xiαi , N is the set of non-support vectors for (CLS-SVM), and pR
R →

prelax

∥prelax∥
1027

where prelax is the solution of (7) with αi choices.1028

We will prove this result in two steps. Our first claim restricts the optimization to the particular1029

quadrant induced by mint,αi (kiαi − kit)pR under the theorem’s condition S(Ki pR)→ eαi .1030

Lemma 7 Suppose S(Ki pR)→ eαi . Then, there exists R0 such that for all R ≥ R0, we have that,1031

min
t,αi

(kiαi − kit)pR ≥ 0 for all i ∈ [n]. (94)

Proof. Suppose the claim does not hold. Set sR
i = S(Ki pR). Fix R0 such that sR

iαi
≥ 0.9 for all R ≥ R0.1032

On the other hand, there exists arbitrarily large R for which (kiαi − kit)pR < 0 for some t , αi ∈ [T ]1033

and i ∈ [n]. At this (R, i, t) choices, we have that sR
it ≥ sR

iαi
. Since sR

it + sR
iαi
≤ 1, we find sR

iαi
< 0.51034

which contradicts with sR
iαi
≥ 0.9.1035

Let Q be the set of p satisfying the quadrant constraint (94) – i.e. indices (αi)n
i=1 are selected. Let1036

hR be the solution of regularization path of (v, p) subject to the constraint p ∈ Q. From Lemma1037

7, we know that, for some R0 and all R ≥ R0, hR = pR. Thus, if the limit exists, we have that1038

limR→∞ hR/R = limR→∞ pR/R.1039

To proceed, we will prove that limR→∞ hR/R exists and is equal to prelax/∥prelax∥ and simultaneously1040

establish vr/r → vmm/∥vmm∥.1041
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Lemma 8 limR,r→∞ hR/R = prelax/∥prelax∥ and limR,r→∞ vr/r = vmm/∥vmm∥.1042

Proof. The proof will be similar to that of Theorem 5. As usual, we aim to show that SVM-solutions1043

constitute the most competitive direction. Set Ξ = 1/∥prelax∥.1044

• Case 1: hR/R does not converge. Under this scenario there exists δ, γ = γ(δ) > 0 such that we can1045

find arbitrarily large R with ∥hR/R − Ξprelax∥ ≥ δ. This implies that margin induced by hR/R is at1046

most Ξ(1 − γ) over the support vectors [n] − N (from strong convexity of (7)). The reason is that, hR1047

satisfies h⊤R (kiαi − kit) ≥ 0 for all t , αi by construction as hR ∈ Q. Thus, a constraint over the1048

support vectors have to be violated (when normalized to the same ℓ2 norm as ∥prelax∥ = 1/Ξ).1049

As usual, we will construct a solution strictly superior to hR and contradicts with its optimality.1050

Construction of competitor: Rather than using prelax direction, we will choose a slightly deviating1051

direction that ensures the selection of the correct tokens over non-supports N . Specifically, consider1052

the solution of (7) where we tighten the non-support constraints by arbitrarily small ε > 0.1053

pε-rlx = min
p
∥p∥ such that p⊤(kiαi − kit) ≥

{
1 for all t , αi, i ∈ [n] − N
ε for all t , αi, i ∈ N

. (95)

Let pmm be the solution of (ATT-SVM) with α = (αi)n
i=1 (which was assumed to be separable).1054

Observe that pmm
ε = εpmm + (1 − ε)prelax satisfies the constraints of (95). Additionally, pmm

ε would1055

achieve a margin of 1
(1−ε)/Ξ+ε/∆ =

∆Ξ
∆+ε(Ξ−∆) where ∆ = 1/∥pmm∥. Using optimality of pε-rlx, this1056

implies that the reduced margin Ξε = 1/∥pε-rlx∥ (by enforcing ε over non-support) over the support1057

vectors is a Lipschitz function of ε. That is Ξε ≥ Ξ − εM for some M ≥ 0. To proceed, choose an1058

ε > 0 such that, it is strictly superior to margin induced by hR, that is,1059

Ξε ≥ Ξ(1 −
γ

2
).

To proceed, set p̃ε-rlx = RΞε pε-rlx. Let us recall the following notation from the proof of Theorem1060

5: sp
i = S(Ki p) and qp

i = 1 − siαi . Set q̂max = maxi q̂i∈[n]−N to be worst non-optimality of hR over1061

support set. Similarly, define q⋆max = maxi∈[n]−N q⋆i to be the same for p̃ε-rlx. Repeating the identical1062

arguments to (79), (80), (81), and using the fact that pε-rlx achieves a margin Ξ(1 − γ
2 ) ≤ Ξε ≤ Ξ, we1063

end up with the lines1064

log(q̂max) ≥ −(1 − γ)ΞR − log T, (96a)

−ΞR − log T ≤ log(q⋆max) ≤ −Ξ(1 − 0.5γ)R + log T. (96b)

In what follows, we will prove that p̃ε-rlx achieves a strictly smaller logistic loss contradicting with1065

the optimality of pR (whenever ∥hR/R − Ξprelax∥ ≥ δ).1066

Upper bounding logistic loss. Let us now upper bound the logistic loss of (ṽmm, p̃ε-rlx) where1067

ṽmm = rΓvmm with vmm being the solution of (CLS-SVM) with ri ← xiαi and Γ = 1/∥vmm∥. Set1068

ri = X⊤i S(Ki p̃ε-rlx). Set υ = mini∈N Yi · x⊤iαi
vmm − 1 to be the additional margin buffer that non-support1069

vectors have access to. Also set M = supi∈[n],t,τ∈[T ] ∥xit − xiτ∥. Observe that we can write1070

xiαi − ri =
∑
t,αi

sit(xiαi − xit) =⇒ ∥xiαi − ri∥ ≤ qiM.

Non-supports achieve strong label-margin: Using above and (95) for all i ∈ N and t , αi, we have1071

that sit ≤ e−εΞεRsiαi ≤ e−εΞ(1−γ/2)Rsiαi . Consequently, whenever R ≥ R̄0 := (εΞ(1 − γ/2))−1 log( T M
Γυ

),1072

q⋆i ≤
∑

t,αi
sit

siαi

≤ Te−εΞ(1−γ/2)R ≤
Γυ

M
.

This implies that, on i ∈ N1073

Yi · r⊤i vmm ≥ 1 + υ + Yi · (ri − xiαi )
⊤vmm ≥ 1 + υ − qiM∥vmm∥ ≥ 1. (97)

In words: Above a fixed R̄0 that only depends on γ = γ(δ), features ri induced by all non-support1074

indices i ∈ N achieve margin at least 1. What remains is analyzing the margin shrinkage over the1075

support vectors as in Theorem 5.1076
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Controlling support margin and combining bounds: Over [n] − N , suppose vmm satisfies the SVM1077

constraints on ri with Yi · r⊤i vmm ≥ 1 − εi/Γ. Consequently, setting εmax = supi∈[n] εi, vmm achieves1078

a label-margin of Γ − εmax on the dataset (Yi, ri)i∈[n]. Next, we recall the fact (96b) that worst-case1079

perturbation is εmax ≤ M exp(−Ξ(1 − 0.5γ)R + log T ) = MT exp(−Ξ(1 − 0.5γ)R). With this and (97),1080

we upper bound the logistic loss of (ṽmm, p̃ε-rlx) as follows.1081

L(ṽmm, p̃mm) ≤ max
i∈[n]

log(1 + exp(−Yir⊤i ṽmm)). (98)

≤ max
i∈[n]

exp(−Yir⊤i ṽmm) (99)

≤ exp(−rΓ + rεmax) (100)

≤ erMT exp(−Ξ(1−0.5γ)R)e−rΓ. (101)

Conversely, we obtain a lower bound for (vr, hR). Set ri = X⊤i S(KihR). Recall the lower bound (96a)1082

over the support vector set [n] − N . Combining this with our Assumption C over the support vectors1083

of (CLS-SVM) implies that, solving (CLS-SVM) on (Yi, ri)i∈[n] achieves at most Γ − νe−(1−γ)ΞR/T1084

margin. Consequently, we have1085

L(vr, hR) ≥
1
n

max
i∈[n]

log(1 + exp(−Yir⊤i vr)) (102)

≥
1

2n
max
i∈[n]

exp(−Yir⊤i vr) ∧ log 2 (103)

≥
1

2n
exp(−r(Γ − νe−(1−γ)ΞR/T )) ∧ log 2 (104)

≥
1

2n
er(ν/T ) exp(−(1−γ)ΞR)e−rΓ ∧ log 2. (105)

Observe that, this lower bound dominates the previous upper bound when R is large, namely, when1086

(ignoring the multiplier 1/2n for brevity)1087

(ν/T )e−(1−γ)ΞR ≥ MTe−Ξ(1−0.5γ)R ⇐⇒ R ≥ R0 :=
2
γΞ

log(
MT 2

ν
).

Thus, we obtain the desired contradiction since p̃ε-rlx is a strictly better solution compared to pR = hR1088

(once R is sufficiently large).1089

• Case 2: vr/r does not converge. This is the simpler scenario: There exists δ > 0 such that we can1090

find arbitrarily large r obeying ∥vr/r − vmm/∥vmm∥∥ ≥ δ. First, note that, due to the strong convexity1091

of (CLS-SVM), for some γ := γ(δ) > 0, vr achieves a margin of at most (Γ − γ)r on the dataset1092

(Yi, xi1)i∈[n]. By theorem’s condition, we are provided that S(Ki pR)αi → 1. This immediately implies1093

that, for any choice of ε = γ/3 > 0, above some sufficiently large (r0,R0), we have that ∥xpR
i − ri∥ ≤ ε.1094

Following (101), this implies that, choosing ṽmm = rvmm/∥vmm∥ achieves a logistic loss of at most1095

erγ/3e−rΓ. Again using ∥xpR
i − ri∥ ≤ ε, for sufficiently large (r,R) we have that1096

min
i∈[n]

Yiv⊤r ri ≤ min
i∈[n]

Yiv⊤r xi1 + sup
i∈[n]
|ri − xi1|v⊤r (106)

≤ (Γ − γ)r + εr (107)
≤ (Γ − 2γ/3)r. (108)

This in turn implies that logistic loss is lower bounded by (following (105)),1097

L(vr, pR) ≥
1
2n

e2γr/3e−rΓ ∧ log 2.

This dominates the above upper bound erγ/3e−rΓ of ṽmm whenever 1
2n eγr/3 > 1 ⇐⇒ r > 3

γ
log(2n),1098

(that is, when r is sufficiently large), again concluding the proof.1099

D Addendum to Section 41100

D.1 Proof of Theorem 71101

Proof. The key idea is showing that, thanks to the exponential tail of softmax-attention, (harmful)1102

contribution of the non-optimal token with the minimum margin can dominate the contribution of1103
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all other tokens as R→ ∞. This high-level approach is similar to earlier works on implicit bias of1104

gradient descent with logistic loss.1105

Pick pmm ∈ Pmm and set p⋆R = R pmm

∥pmm∥
. This will be the baseline model that pR has to compete against.1106

Also let p̄R = Γ
pR
R . Now suppose dist ( p̄R,P

mm)↛ 0 as R→ ∞. Then, there exists δ > 0 such that,1107

we can always find arbitrarily large R obeying dist ( p̄R,P
mm) ≥ δ.1108

Since p̄R is δ > 0 bounded away from Pmm, p̄R and ∥ p̄R∥ = ∥pmm∥, p̄R strictly violates at least1109

one of the inequality constraints in (ATT-SVM’). Otherwise, we would have p̄R ∈ P
mm. Without1110

losing generality, suppose p̄R violates the first margin constraint, that is, for some γ := γ(δ) > 0,1111

maxα∈O1 minβ∈Ō1
p⊤(k1α − k1β) ≤ 1 − γ. Now, we will argue that this will lead to a contradiction as1112

R→ ∞ since we will show that L(p⋆R) < L(pR) for sufficiently large R.1113

First, let us control L(p⋆R). We study s⋆i = S(Ki p⋆R) and let αi ∈ Oi be the index α in (ATT-SVM’) for1114

which margini = maxα∈Oi minβ∈Ōi
(kiα − kiβ)⊤ pmm ≥ 1 is attained. Then, we bound the non-optimality1115

amount q⋆i of p⋆R as1116

q⋆i =

∑
t∈Ōi

exp(k⊤it p⋆R)∑
t∈[T ] exp(k⊤it p⋆R)

≤

∑
t∈Ōi

exp(k⊤it p⋆R)
exp(k⊤iαi

p⋆R)
≤ T exp(−R/Γ).

Thus, q⋆max = maxi∈[n] q⋆i ≤ T exp(−R/Γ). Secondly, we wish to control L(pR) by lower bounding the1117

non-optimality in pR. Focusing on the first margin constraint, let α ∈ O1 be the index in (ATT-SVM’)1118

for which margin1 ≤ 1 − γ is attained. Denoting the amount of non-optimality of the first input as q̂1,1119

we find3
1120

q̂1 =

∑
t∈Ō1

exp(k⊤1t pR)∑
t∈[T ] exp(k⊤1t pR)

≥
1
T

∑
t∈Ō1

exp(k⊤1t pR)
exp(k⊤1α pR)

≥ T−1 exp(−R(1 − γ)/Γ).

We similarly have q⋆max ≥ T−1 exp(−R/Γ). In conclusion, for pR, p⋆R , denoting maximum non-1121

optimality by q̂max ≥ q̂1 and q⋆max, we respectively obtained1122

log(q̂max) ≥ −(1 − γ)(R/Γ) − log T, (109)

−(R/Γ) − log T ≤ log(q⋆max) ≤ −(R/Γ) + log T. (110)

The above inequalities satisfy Assumption D as follows where p ← p⋆R and p′ ← pR: Set R0 =1123

3γ−1Γ log T so that log T ≤ γR0
3Γ . Secondly, set ρ0 = −(R0/Γ) − log T . This way, ρ0 ≥ log(q⋆max)1124

implies R ≥ R0 and log T ≤ γR
3Γ . Using the latter inequality, we bound the log T terms to obtain1125

• log(q̂max) ≥ −(1 − 2γ/3)(R/Γ).1126

• log(q⋆max) ≤ −(1 − γ/3)(R/Γ).1127

To proceed, we pick 1+∆ = 1−γ/3
1−2γ/3 implying ∆ := γ

3−2γ . Finally, for this ∆, there exists ρ(∆) which we1128

need to ensure log(q̂max) ≤ ρ(∆). This can be guaranteed by picking sufficiently large R that ensures1129

log(q⋆max) ≤ −(1 − γ/3)(R/Γ) ≤ ρ(∆) to satisfy all conditions of Assumption D. Since such large R1130

exists by initial assumption dist ( p̄R,P
mm)↛ 0, Assumption D in turn implies that L(p⋆R) < L(pR)1131

contradicting with the optimality of pR in (8).1132

D.2 Application to Linearly-mixed Labels1133

The following example shows that if non-optimal tokens result in reduced score (in terms of the1134

alignment of prediction and label), Assumption D holds. The high-level idea behind this lemma is1135

that, if the optimal risk is achieved by setting qp
max = 0, then, Assumption D will hold.1136

Lemma 9 (Linear label mixing) Recall qp
i =

∑
t∈Ōt

sp
it from Assumption D. Suppose Yi ∈ {−1, 1}1137

and1138

Yi · ψ(X⊤i sp
i ) = νi(1 − qp

i ) + Zi,

3Here, we assumed margin is non-negative i.e. k⊤1α pR ≥ supt∈Ō1
k⊤1t pR. Otherwise, supt∈[T ] k⊤1t pR is attained in

Ō1 which implies q̂1 ≥ T−1. Thus, we can still use the identical inequality (109) with the choice γ = 1.
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for some (νi)n
i=1 > 0. Here Zi = Zi(p) is the contribution of non-optimal tokens to prediction. For1139

some C, ε > 0 and for all p ∈ Rd, assume1140

−Cqp
max ≤ Zi ≤ (1 − ε)νiq

p
i . (111)

Then, Assumption D holds for L(p) = 1
n
∑n

i=1 ℓ(Yi · ψ(X⊤i sp
i )) when ℓ(·) is a strictly decreasing loss1141

function with continuous derivative.1142

Proof. Recall the assumption Yi · ψ(X⊤i sp
i ) = νi(1 − qp

i ) + Zi with Zi obeying (111). Let us also write1143

the loss function1144

L(p) =
1
n

n∑
i=1

ℓ(νi(1 − sp
i ) + Zi).

Define qp
max = supi≤[n] qp

i . Let M be the maximum absolute value of score over tokens. Let B =1145

max|x|≤M −ℓ
′(x) ≥ A = min|x|≤M −ℓ

′(x) > 0. Through Taylor’s Theorem (integral remainder), we have1146

that1147

B(qp
i νi − Zi) ≥ ℓ(νi(1 − qp

i ) + Zi) − ℓ(νi) ≥ A(qp
i νi − Zi) ≥ εAνiq

p
i .

Set L⋆ = 1
n
∑n

i=1 ℓ(νi). Set C+ = B(C +maxi∈[n] νi) and C− = n−1Aεmini∈[n] νi. This also implies1148

C+qp
max ≥

1
n

∑
i∈[n]

B(qp
i νi − Zi) ≥ L(p) − L⋆ ≥

1
n

∑
i∈[n]

A(qp
i νi − Zi) ≥

1
n

∑
i∈[n]

εAνiq
p
i ≥ C−qp

max.

Thus, to prove L(p′) > L(p), we simply need to establish the stronger statement C−qp′
max > C+qp

max.1149

Going back to the condition of Assumption D, any log(qp
max) ≤ (1 + ∆) log(qp′

max) obeys qp
max ≤1150

(qp′
max)1+∆ i.e. qp′

max ≥ (qp
max)(1+∆)−1

. Following above, we wish to ensure qp′
max > Θqp

max for such (p, p′)1151

pairs where Θ = C+/C− > 1. This is guaranteed by1152

(qp
max)(1+∆)−1−1 > Θ ⇐⇒

∆

1 + ∆
log(qp

max) < − log(Θ).

The above is satisfied by choosing a ρ(∆) := −2(1 + ∆−1) log(Θ) in Assumption D. Thus, all p, p′1153

with log(qp
max) ≤ ρ = ρ(∆) satisfies the condition of Assumption D finishing the proof.1154

E Experimental Details1155

In this section, we provide additional implementation details for the experiments.1156

1. We build one attention layer using PyTorch, and set input and embedding dimensions to1157

be 3. During training, we use SGD optimizer with learning rate 1 in Figure 1 and 0.1 in1158

Figure 2 and train the model for 1000 iterations. To better visualize the generalization path,1159

we normalize the gradient of p (and v) at each iteration.1160

2. Next, given the solution p̂, we determine locally-optimal indices to be those with the highest1161

softmax scores. Using these optimal indices, we utilize python package cvxopt to build1162

and solve (ATT-SVM), and then get solution pmm. After obtaining pmm, we also verify that1163

these indices satisfy our local-optimal definition. The examples we use in the paper are all1164

trivial to verify (by construction).1165

3. In Fig. 2(b) and Fig. 2(c), vmm is solved using python package sklearn.svm based on the1166

given label information, and pmm is the solution of (7) instead.1167

F Addendum to Section 51168

We provide an overview of the current literature on implicit regularization and attention mechanism.1169
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F.1 Related Work on Implicit Regularization1170

The introduction of Support Vector Machines (SVM), which utilize explicit regularization to choose1171

maximum margin classifiers, represents one of the earliest relevant literature in this field [55]. The1172

concept of maximizing the margin was later connected to generalization performance [56]. From a1173

practical perspective, exponential losses with decaying regularization exhibit asymptotic behavior1174

similar to SVMs, as demonstrated in [19]. While the analysis of the perceptron [57] originally1175

introduced the concept of margins, the method itself does not possess an inherent bias as it terminates1176

with zero classification error. However, establishing a meaningful lower bound for the attained margin1177

is not possible. Initial empirical investigations highlighting the implicit bias of descent methods1178

focused on ℓ1-regularization, revealing that coordinate descent, when combined with the exponential1179

loss, exhibits an inherent inclination towards ℓ1-regularized solutions [58].1180

This work draws extensively from the literature on implicit bias and regularization, which has provided1181

valuable techniques and inspiration. A common observation in these studies is the convergence to1182

a specific optimal solution over the training set. This phenomenon has been observed in various1183

approaches, including coordinate descent [59, 60], gradient descent [25, 19], deep linear networks1184

[61, 62], ReLU networks [63, 64, 24, 65, 66, 67], mirror descent [20], and many others. The implicit1185

bias of gradient descent in classification tasks involving separable data has been extensively examined1186

by [19, 20, 21, 22, 23, 24]. These works typically utilize logistic loss or exponentially-tailed losses to1187

establish connections to margin maximization. The results have also been extended to non-separable1188

data by [25, 26, 27]. Furthermore, there have been notable investigations into the implicit bias in1189

regression problems and losses, utilizing techniques such as mirror descent [28, 20, 29, 30, 31, 32].1190

Additionally, several papers have explored the implicit bias of stochastic gradient descent [33, 34, 35,1191

36, 37, 38], as well as adaptive and momentum-based methods [39, 40, 41, 42].1192

While there are some similarities between our optimization approach for v and existing works, the1193

optimization of p presents notable differences. Firstly, our optimization problem is nonconvex and1194

involves a composition of loss and softmax, which introduces new challenges and complexities. The1195

presence of softmax adds a nonlinearity to the problem, requiring specialized techniques for analysis1196

and optimization. Secondly, our analysis introduces the concept of locally-optimal tokens, which1197

refers to tokens that achieve locally optimal solutions in their respective attention cones. This concept1198

is crucial for understanding the behavior of the attention mechanism and its convergence properties.1199

By focusing on the cones surrounding locally-optimal tokens, we provide a tailored analysis that1200

captures the unique characteristics of the attention model. Overall, our work offers novel insights into1201

the optimization of attention-based models and sheds light on the behavior of the attention mechanism1202

during training.1203

F.2 Related Work on Attention Mechanism1204

As the backbone of Transformers [6], the self-attention mechanism [68] plays a crucial role in1205

computing feature representations by globally modeling long-range interactions within the input.1206

Transformers have achieved remarkable empirical success in various domains, including natural1207

language processing [4, 2], recommendation systems [69, 70, 71], and reinforcement learning1208

[72, 73, 74]. With the introduction of Vision Transformer (ViT) [75], Transformer-based models1209

[76, 77, 78] have gradually replaced convolutional neural network (CNN) architectures and become1210

prevalent in vision tasks. To train ViT efficiently, several techniques have been developed, among1211

which token sparsification [79, 80, 81, 82, 83] remove redundant tokens (image patches) from the1212

data, improving computational complexity while maintaining comparable learning performance.1213

However, the theoretical foundation of Transformers and self-attention mechanisms has remained1214

largely unexplored. Some studies have established important results, including the Lipschitz constant1215

of self-attention [84], properties of the neural tangent kernel [85, 86], and the expressive power1216

and Turing-completeness of Transformers [87, 88, 89, 47, 51, 90, 91, 92] with statistical guarantees1217

[93, 94].1218

Focusing on the self-attention component, Edelman et al. [47] theoretically proved that a single1219

self-attention head can represent a sparse function of the input with a sample complexity for the1220

generalization gap between the training loss and the test loss. However, they did not delve into1221

the algorithmic aspects of training Transformers to achieve desirable loss. Sahiner et al. [48] and1222

Ergen et al. [49] further explored the analysis of convex relaxations for self-attention, investigating1223
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potential optimization techniques and properties. In terms of expressive ability, Baldi and Vershynin1224

[50] investigated the capacity of attention layers to capture complex patterns and information, while1225

Dong et al. [51] provided additional insights into the expressive power of attention layers in various1226

contexts. Likhosherstov et al. [90] studied the model complexity for function approximation of the1227

self-attention module, and Cordonnier et al. [91] provided sufficient and necessary conditions for1228

multi-head self-attention structures to simulate convolution layers.1229

Recent works have made progress in characterizing the optimization and generalization dynamics of1230

attention. Jelassi et al. [52] studied gradient-based methods from random initialization and provided a1231

theoretical analysis of the empirical finding that Vision Transformers learn position embeddings that1232

recapitulate the spatial structure of the training data, even though this spatial structure is no longer1233

explicitly represented after the image is split into patches. Li et al. [53] provided theoretical results on1234

training three-layer ViTs for classification tasks. They quantified the importance of self-attention in1235

terms of sample complexity for achieving zero generalization error, as well as the sparsity of attention1236

maps when trained by stochastic gradient descent (SGD). In another related work, Nguyen et al.1237

[95] proposed a primal-dual optimization framework that focuses on deriving attention as the dual1238

expansion of a primal neural network layer. By solving a support vector regression problem, they1239

gained a deeper understanding and explanation of various attention mechanisms. This framework1240

also enables the creation of novel attention mechanisms, offering flexibility and customization in1241

designing attention-based models. In another closely related work, Oymak et al. [17] analyzed the1242

same attention model as ours, denoted by (ERM). However, it is important to note that all of these1243

works make certain assumptions about the data. Specifically, they assume that tokens are tightly1244

clusterable or can be clearly split into relevant and irrelevant sets. Additionally, Li et al. [53] require1245

specific assumptions on the initialization of the model, while Jelassi et al. [52] consider a simplified1246

attention structure where the attention matrix is not directly parameterized with respect to the input.1247

In contrast, our work offers a comprehensive optimization-theoretic analysis of the attention model,1248

establishing a formal connection to max-margin problems. This analysis allows us to gain a deeper1249

understanding of the attention mechanism and its behavior during the training process. Notably, our1250

work presents the first theoretical understanding of the implicit bias exhibited by gradient descent1251

methods in the context of the attention model. By uncovering the underlying optimization principles,1252

we provide valuable insights into the dynamics and generalization properties of attention-based1253

models.1254
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