
Under review as a conference paper at ICLR 2022

A LOSS FLATTENING

Figure 3: Logistic loss becomes small and flat
if the logit crosses a threshold of 2.5 or more.
Training becomes less adaptive when the losses
of most examples fall in the flat zone.

Consider a binary classification problem. Figure 3
depicts the logistic loss as a function of logit. Notice
that loss becomes extremely small once the logit value
crosses a certain threshold (say 2.5). A small value
of loss yields small gradients, making it difficult for
neural network training to be adaptive. We define this
as loss flattening. Multiclass classification is slightly
more complex. The difference between the score of
the target class and the largest score of the remaining
classes plays the role of the logit and, when it becomes
large enough, loss flattening occurs.

B EXPERIMENTS

We now describe the detailed experimental setup used in §4.

B.1 CIFAR EXPERIMENTAL SETUP

Dataset Details Both CIFAR-10 and CIFAR-100 contain the same set of 50k images for training and
10k images for the test set. CIFAR-10 uses 10 labels, whereas CIFAR-100 uses 100 labels.

Dataset Pre-Processing For both CIFAR-10 and CIFAR-100, we employ data augmentation
techniques for training. We use RandomCrop(32, padding = 4) and RandomHorizontalF lip.
Additionally, for CIFAR-100, we also use RandomRotation(15). We mean center all the training
and test samples.

Network Architecture We used VGG-19 network with a single fully connected layers for all CIFAR
experiments. The network is almost homogeneous except for the batch normalization layer. Link to
the code used will be released once the paper is accepted.

Hyperparameters Etotal is fixed at 300 epochs. Ewarmup is searched over [5, 20, 40, 60]. Weight
decay is swept over [1e-5, 1e-4, 1e-3]. Efree is searched over [1, 5, 20, 40]. Gradient clipping was
used for all optimizers with the gradient norm clipped to a maximum value of 1.0.

Results with standard error are shown in Table 7. Figure 4(a) shows the effect of LAWN switch
point Efree on CIFAR-10 when Adam-LAWN is used. Small values for Efree usually result in good
generalization performance.

Method CIFAR-10 CIFAR-100
256 4k 10k 256 4k 10k

SGD 93.99 (0.05) 93.48 (0.09) 92.99 (0.20) 73.49 (0.43) 71.68 (0.26) 71.07 (0.14)
Adam 93.48 (0.11) 92.93 (0.01) 92.63 (0.06) 70.84 (0.23) 68.91 (0.05) 68.61 (0.28)
Adam-L 93.91 (0.04) 93.74 (0.04) 93.84 (0.08) 72.99 (0.02) 73.12 (0.11) 72.97 (0.10)

LAMB 93.76 (0.07) 93.27 (0.08) 92.91 (0.03) 71.29 (0.11) 69.39 (0.06) 67.76 (0.22)
LAMB-L 93.67 (0.04) 93.22 (0.05) 92.92 (0.03) 71.25 (0.17) 69.68 (0.16) 69.16 (0.09)

Table 7: Test accuracy on CIFAR-10 and CIFAR-100 with standard error. Highlighted values indicate the better
performing method between x and x-L.

B.2 RECOMMENDATION SYSTEMS EXPERIMENTAL SETUP

Dataset Details Table 8 contains statistics about the three datasets used.

Dataset Pre-Processing Following the experimental setup used in He et al He et al. (2017), we first
remove all users in the 3 datasets that have less than 20 interactions. We then binarize the data by
treating any interactions as 1s (positives) and the absence of an interaction as 0s (negatives). While
training, we sample four negatives for every positive. The negatives are refreshed every epoch.

13

Under review as a conference paper at ICLR 2022

100 101

93.6

93.8

94

94.2

94.4

Epochs

Te
st

A
cc

ur
ac

y

Batch size = 256
Batch size = 4k

Batch size = 10k

(a) CIFAR-10

100 101 102
0.62

0.64

0.66

0.68

Epochs

Te
st

H
R

@
10

Batch size = 1k
Batch size = 10k

Batch size = 100k

(b) MovieLens-100k

Figure 4: Effect of Efree on Adam-LAWN.

Dataset n(samples) n(users) n(items)
MovieLens-100k ⇠100k 943 1682
MovieLens-1M ⇠1M 6040 3706
Pinterest ⇠1.5M 54906 9909

Table 8: Datasets for item recommendation.

Network Architecture We adopt the multi-layer perceptron (MLP) architecture used by He et al He
et al. (2017). The MLP is used in conjunction with user and item embeddings. The embeddings are
concatenated and pushed through the MLP. The MLP follows a tower pattern, and results in a scalar
output prediction yui for a user u and item i, which can then be compared to the ground truth label y
using the binary cross entropy loss for training and evaluation purposes. The number of units in each
layer of the MLP are 256-128-64-1, where the first layer takes a 256-dimensional vector as input.
Consequently, user and item embeddings are of 128 dimensions each.

Evaluation Details For each user in the datasets, we consider the latest interaction with an item for
test performance evaluation. Specifically, we use the hit ratio@10 metric, where the test item is part
of 100 randomly sampled items that the user has not interacted with in the past. The metrics records
whether the test item occurs in the top 10 of the predicted ranking of the 100 items.

Hyperparameters
Etotal was fixed at 300 epochs, and Ewarmup was fixed at 30 epochs. Weight decay is swept over
[1e-4, 1e-3, 1e-2, 1e-1, 0]. Efree is searched over [0.1, 1, 5, 20, 50, 100].

Results with standard error can be found in Tables 9, 10 and 11. Figure 4(b) shows the effect of
Efree on MovieLens-100k when Adam-LAWN is used.

Method MovieLens-100k
1k 10k 100k 400k

SGD 66.33 (0.24) 65.58 (0.17) Fail Fail
Adam 66.01 (0.25) 66.03 (0.15) 63.20 (0.24) 63.98 (0.25)
Adam-L 66.81 (0.17) 66.91 (0.15) 66.24 (0.16) 66.14 (0.22)

LAMB 65.45 (0.25) 65.34 (0.16) 64.23 (0.16) 62.57 (0.17)
LAMB-L 66.56 (0.22) 66.54 (0.20) 66.52 (0.25) 66.14 (0.23)

Table 9: Test HR@10 on MovieLens-100k with standard error. Highlighted values indicate the better performing
method between x and x-L.

14

Under review as a conference paper at ICLR 2022

Method MovieLens-1M
1k 10k 100k 1M

SGD 70.91 (0.18) 69.31 (0.17) Fail Fail
Adam 69.87 (0.07) 70.12 (0.11) 69.28 (0.10) 68.99 (0.21)
Adam-L 70.80 (0.09) 70.41 (0.20) 70.77 (0.04) 70.66 (0.22)

LAMB 69.91 (0.12) 69.77 (0.09) 69.44 (0.10) 68.95 (0.12)
LAMB-L 70.86 (0.21) 70.86 (0.04) 70.68 (0.08) 70.34 (0.19)

Table 10: Test HR@10 on MovieLens-1M with standard error. Highlighted values indicate the better performing
method between x and x-L.

Method Pinterest
1k 10k 100k 1M

SGD 86.62 (0.05) 85.57 (0.20) Fail Fail
Adam 87.27 (0.07) 85.97 (0.01) 85.81 (0.01) 85.30 (0.20)
Adam-L 86.85 (0.10) 86.61 (0.10) 86.04 (0.10) 86.06 (0.20)

LAMB 86.63 (0.10) 85.91 (0.10) 85.80 (0.10) 85.65 (0.20)
LAMB-L 86.83 (0.10) 86.25 (0.10) 85.99 (0.10) 86.07 (0.10)

Table 11: Test HR@10 on Pinterest with standard error. Highlighted values indicate the better performing
method between x and x-L.

B.3 IMAGENET EXPERIMENTAL SETUP

Dataset Details The ImageNet dataset consists of about 1.2 million training images and 50,000
validation images.

B.3.1 DATA PRE-PROCESSING

This model uses the following data augmentation:

For training:

• Normalization (0 mean, 1 std. dev.)
• Random resized crop to 224⇥ 224

• Scale from 8% to 100%

• Aspect ratio from 3/4 to 4/3

• Random horizontal flip

For inference:

• Normalization (0 mean, 1 std. dev.)
• Scale to 256⇥ 256

• Center crop to 224⇥ 224

B.3.2 MODEL

We used the ResNet-50-v1.5 model for ImageNet classification, which differs slightly from
the original ResNet50 modelHe et al. (2015). For more details, the reader can refer to this
open source code repository https://github.com/NVIDIA/DeepLearningExamples/
tree/master/PyTorch/Classification/ConvNets/resnet50v1.5.

B.3.3 THE LAMB+ ALGORITHM

The LAMB algorithm uses a ratio consisting of a transformation of the network weight norm in the
numerator and the update (including contribution of weight decay) in the denominator. This is known

15

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5

Under review as a conference paper at ICLR 2022

as the trust ratio. Without any or small weight decay, the trust ratio can grow to a large value and
cause the training to become unstable. To counter this, we cap the trust ratio to have a max value of
1.0. We found this to make training more stable, and to have better generalization performance. We
refer to this algorithm as LAMB+.

B.3.4 HYPERPARAMETER TUNING

All optimizers were tuned with a fixed epoch budget of 90 epochs regardless of batch size. For
optimizers that use weight decay, we did not apply weight decay to batch normalization parameters.

Momentum for SGD was fixed at 0.875. Gradient clipping was used for all optimizers except SGD,
with the gradient norm clipped to a maximum value of 1.0.

Small batch size
For SGD at a batch size of 256, we fixed weight decay to 10�4. Following Goyal et al. (2018), we
allow 0.5 epochs for Ewarmup.

For Adam, we did not use any L2 regularization or weight decay. We used 0.16 epochs for Ewarmup.
For Adam-LAWN, we tuned Efree and Ewarmup over a small grid of {1, 5, 10}.

For LAMB and LAMB+, we bootstrapped using suggestions in literature and fixed weight decay
to 0.01 and Ewarmup to 0.16 epochs. For LAMB-LAWN, we fixed Efree to match learning rate
warmup of LAMB to 0.16 epochs. We tuned Ewarmup over a grid of {1, 5, 10}.

Large batch size
For SGD for large batch size, we retain the weight decay value to be 10�4. Since learning rate
warmup is important for large batch sizes (Goyal et al., 2018), we tune Ewarmup over a grid of
{0.16, 1, 5, 10} epochs.

For Adam at a batch size of 16k, we tuned weight decay over {0, 1e � 3, 1e � 2} and duration of
learning rate warmup over {5, 10, 20}. Similar to Adam-LAWN at small batch sizes, we tuned Efree

and Ewarmup over a small grid of {1, 5, 10}.

For LAMB and LAMB+, we again fixed weight decay to 0.01. We grid searched Ewarmup over
{5, 10, 20}.

For LAMB-LAWN, we retained the best settings of learning rate and weight decay from LAMB and
tuned Efree and Ewarmup over a small grid of {5, 10, 20}.

C EXPLAINING ESCAPE

Recent theoretical and empirical analysis (Jastrzebski et al., 2020; Wu et al.; Zhou et al., 2020) have
pointed out the following. (a) For deep nets to generalize well, escaping regions of attraction of "sharp"
minima with sub-optimal generalization performance is important. (b) The escape mechanism is
influenced by the training paradigm (the type of formulation, regularization, normalizations employed,
etc.) and the training hyperparameters (⌘, the learning rate, and B, the batch size are the two crucial
ones). The proposed theories have differences in explaining the nature of escape, but they broadly
align in terms of how the various mentioned parameters influence the escape. Here we will use the
theory of Wu et al (Wu et al.).

Two matrices - ⌃, the covariance of the noise associated with minibatch gradient, and H , the Hessian
of the training loss - combine with ⌘ and B to dictate what happens in the basin of one minimum of
the loss. To give a rough guidance, Wu et al (Wu et al.) conduct a rough theoretical analysis around
the minimum and require that the following condition is met for escape from that minimum:

�max

⇢
(I � ⌘H)2 +

⌘
2(m�B)

B(m� 1)
⌃

�
> 1 (4)

where �max(A) denotes the largest eigenvalue of A, m is the total number of training examples and,
⌃ and H are evaluated at the minimum. The following are useful to note.

• As we move to large batch sizes and hence get B closer to m, the effect of the second term
diminishes significantly, causing the escaping to become difficult. This is a key reason why

16

Under review as a conference paper at ICLR 2022

normal training methods suffer from a loss of generalization performance with large batch
sizes.

• When the target class logit values become very large and hence training loss starts moving
very close to zero, H and ⌃ themselves become very small, thus severely hampering the
escape. A careful scheduling of ⌘ to very large values to cause the escape and then come
back to smaller ⌘ values to continue the training to a better minimum are needed. But
designing such a schedule is hard.

LAWN, by keeping weights (and hence logits) well bounded and hence keeping most examples away
from regions where loss flattens to zero, ⌃ and H are kept large and hence escape from sub-optimal
minima is made easier. In fact, even with large batch sizes where B comes close to m, the largeness
of H can make escape still possible.

D GRADIENT FLOW WITH WEIGHT NORM CONSTRAINTS

Let g = rwL, and ẇ denote dw
dt . Unconstrained gradient flow corresponds to the ordinary differential

equation (ODE), ẇ = �g. We know that dL(w(t))
dt 0, i.e., the loss descends along any trajectory,

and, a w is an equilibrium point of the gradient flow ODE iff g = 0 at w.

Let us now consider the constrained phase of LAWN, which solves

min
w

L(w) s.t kw`k2 = (c`)2 8` (5)

At a given weight vector, w let g be the gradient vector. The gradient of the `-th constraint function,
kw`k2 is simply 2w`. Let us define the projected gradient gp as the projection of the gradient g to the
linear space defined by {d : (2w`)T d` = 0 8`}. Given the decoupling over `, this corresponds to
individually projecting, for each `, g` to {d` : (2w`)T d` = 0}. The projection is easy to compute as:

g
`
p = g

` � (w`)T g`

kw`k2 w
` 8` (6)

The g
`
p, all combined together, yield the full projected gradient, gp. Let ✓` be the angle between g

`

and w
`, i.e.,

(w`)T g` = kw`k kg`k cos(✓`) (7)
The gradient flow of the constrained phase of LAWN is given by the ODE,

ẇ = �gp (8)

Along any trajectory, w(t) of (8), we have, using (6) and (7),

dL(w(t))

dt
=

X

`

(g`)T ẇ` = �
X

`

(g`)T (g`p) = �
X

`

(1� cos2 ✓`)kg`k2 0 (9)

Also,
dkw`(t)k2

dt
= 2(w`)T ẇ` = �2(w`)T (g`p) = 0 8` (10)

Thus, the trajectory stays on the constraint set and descends along any trajectory of (8). Further, an
equilibrium point of (8) corresponds to cos ✓` = 0 8`, which is same as (w`)T g` = 0 8`, which is
equivalent to saying that w is a KKT point of (5). In fact, using (6), the term, (w`)T g`

2kw`k2 can be seen as
the lagrangian multiplier corresponding to the constraint, kw`k2 = (c`)2.

Therefore, for training the constrained phase of LAWN, any gradient based optimizer simply has to
use the projected gradient, gp instead of the gradient, g. The only additional point to note is that,
when an optimizer takes a discrete step that leads to a w violating the constraints, we need to rescale
that w to satisfy the constraints of (5).

17

	Introduction
	The Need for LAWN
	When does LAWN work?
	Issue of loss of adaptivity
	Current methods for dealing with loss of adaptivity

	The LAWN Method
	Experiments
	LAWN vs. other methods for controlling loss of adaptivity
	Image Classification for CIFAR-10 and CIFAR-100
	Recommendation Systems
	Image Classification for ImageNet
	LAWN works with other loss functions
	LAWN improves calibration

	Conclusion
	Loss Flattening
	Experiments
	CIFAR Experimental Setup
	Recommendation Systems Experimental Setup
	ImageNet Experimental Setup
	Data Pre-processing
	Model
	The LAMB+ algorithm
	Hyperparameter tuning

	Explaining escape
	Gradient flow with weight norm constraints

