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Supplementary Material

In this supplementary material, we provide detailed de-
scriptions of our implementation, dataset processing pro-
cedures, and additional experimental results. The docu-
ment is organized as follows. We first outline the im-
plementation details in Sec. 6, then the overall dataset
processing workflow in Sec. 7, followed by the dataset-
specific pre-processing steps applied to the Aria Digital
Twin (ADT) [35] and HD-EPIC [38] datasets. Next, in
Sec. 8, we present several failure cases arising from com-
plex motion patterns, along with additional qualitative re-
sults.

6. Implementation Details

Our model is implemented in PyTorch [36] and is trained on
a single NVIDIA A6000 GPU. The training process utilizes
the AdamW optimizer with a learning rate of 1 x 1074,
weight decay of 5 x 10~%, and exponential learning rate
decay with a factor of 0.99.

For data usage, 90% of the available sequences are used
for training, with the remaining 10% split equally between
validation and testing. Each training sample consists of a
full scene point cloud, semantic fixture bounding boxes and
labels, and a 6-DOF object trajectory. Trajectories are uni-
formly resampled to 200 frames, and the first 30% of the
sequence is used as the input history. layers dimension

The multimodal Transformer encoder consists of 6 layers
with 8 attention heads per layer. The input trajectory is em-
bedded in a 128-dimensional feature space; the global scene
point cloud feature has 128 dimensions, and per-point fea-
tures have 64 dimensions. Semantic fixture bounding boxes
are projected to 128 dimensions, while CLIP [42] embed-
dings for object categories and semantic labels are linearly
projected to the same dimension. The goal state feature is
also projected to 128 dimensions to ensure compatibility in
the fusion space. The latent array within the Transformer is
256-dimensional.

During training, the loss function combines translation,
orientation, reconstruction, and destination losses, with
weights Agans, Aoris Arecs aNd Agege set to 1.0.

7. Dataset Processing

General Processing. We begin by processing the trajectory
data. Since trajectories in ADT are overly dense, we down-
sample them by retaining one point every five frames to
improve computational efficiency while preserving essen-
tial motion cues. To support training with multiple batches,

we fix the predicted trajectory length to 200. Trajectories
shorter than 200 frames are padded, whereas longer ones are
truncated. An attention mask ensures that only valid trajec-
tory points contribute to the training objective. We further
apply two filtering rules to discard unrealistic motion: an
object is considered to be moving only when its velocity
exceeds 0.05 m/s, and segments are labeled static when an
object remains still for more than three consecutive frames.
These criteria help preserve only meaningful trajectories for
both training and evaluation.

Next, instead of using the full scene point cloud, we ex-
tract only the local region around each trajectory to reduce
computational overhead. For every trajectory point, we de-
fine a spherical neighborhood with a radius of 1 m and col-
lect all points within this region, ensuring that only relevant
scene geometry is retained. Similarly, fixture information
is extracted only from regions near the trajectory, as dis-
tant geometry has limited influence on downstream tasks.
These extracted fixture features are then incorporated into
the model input. We now describe dataset-specific process-
ing procedures for ADT and HD-EPIC.

Aria Digital Twin Dataset. Since ADT does not include
action-level semantic annotations, we use only object cat-
egories as descriptive information. Certain trajectories are
removed because they do not meet the requirements of our
robotic manipulation setting. For example, trajectories in
which an object is held or moved within an extremely lim-
ited spatial region for extended periods are excluded, as they
lack meaningful interaction patterns and do not reflect prac-
tical robotic behaviors.

HD-EPIC Dataset. In contrast to ADT, the HD-EPIC
dataset does not provide bounding boxes or semantic labels
for scene objects. Large static structures such as counter-
tops and drawers are manually reconstructed in Blender and
aligned with the scene point cloud to serve as static bound-
ing boxes. For small manipulable objects such as coffee
machines and knives, HD-EPIC provides start/end times-
tamps of object motion, 2D masks, and 3D object centers.
Using this information, we first align the timestamps with
SLAM data and obtain sparse 2D-3D correspondences us-
ing MPS data collected with Aria glasses. We then es-
timate monocular depth using UniK3D [39], perform lin-
ear depth alignment with the correspondences to recover
the true scale, and reconstruct 3D object bounding boxes.
These dynamic bounding boxes, together with static ones,
are used for model training. Fig. 5 illustrates the full pro-
cessing pipeline.
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Figure 5. 3D bounding box reconstruction in the HD-EPIC dataset. (a): input RGB frame with object mask. (b): mask filtering and
sparse 2D-3D correspondences from SLAM and MPS data. (c): monocular depth estimation from UniK3D. (d): final 3D bounding box
recovered after depth alignment and scaling. This pipeline enables accurate localization of small objects (e.g., bowls, cups) in cluttered
scenes.

Since the dataset provides only pick-up and drop-off an- The hand trajectory extraction pipeline integrates mul-
notations for each object, we generate dense object trajecto- tiple perception systems to process egocentric video. The
ries using hand-tracking. We compute the transformations pipeline begins with a bootstrap stage that establishes hand—
of the manipulating hand over time and apply these trans- object correspondence by computing the 3D Euclidean dis-
formations to the provided initial object position, producing tance between detected hand positions and the annotated

a complete trajectory for each object. object center in world coordinates to identify the primary



manipulating hand. Subsequent hand positions are obtained
using Project Aria’s MPS [13]. For frames in which both
hands are confidently detected, we leverage Hands23 [9] to
disambiguate which hand is physically interacting with the
object. Hands23 infers binary contact states for each hand,
enabling reliable determination of the manipulating hand
even when both hands appear in view. When Hands23 out-
puts are ambiguous (e.g., both hands detected in contact),
the system maintains temporal consistency by defaulting to
the initially selected primary hand. Temporal coherence is
further enforced via a sliding-window filter (window size =
3), which suppresses spurious frame-to-frame switching.

For orientation estimation, we construct a 6D rotation
representation [64] derived from the geometric structure of
the hand. Specifically, we use Singular Value Decomposi-
tion (SVD) to compute the hand coordinate frame, where
the primary axis aligns with the wrist-to-palm vector and
the palm normal defines the facing direction, both obtained
from MPS. This 6D parameterization ensures continuity
across the rotation manifold and avoids the singularities
present in Euler angles and quaternions.

We demonstrate the effectiveness of the reconstructed
object trajectories in Fig. 6, where the recovered 3D object
location is projected onto the input RGB frames for visual
verification.

8. Additional Qualitative Results

To complement the results presented in the main paper, we
provide additional qualitative examples for both the ADT
and HD-EPIC datasets. Figures 7 and 8 illustrate represen-
tative failure cases and their likely causes, while Figs. 9 and
10 present additional successful predictions.



Figure 6. Object Position computation using hand-tracking We demonstrate the object positions. depicted as Yellow along with the
orientation and the hand that is interacting with the object at the particular frame sampled at intervals during the entire period of the moving

object.
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Figure 7. Failure Cases in the ADT dataset. We can observe that sometimes, despite being goal-conditioned, the generated trajectory

may be longer than the ground truth trajectory and may overshoot the destination.
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Figure 8. Failure cases in the HD-EPIC dataset. Our method suffers from adding redundant motion for inputs don’t have significant
change in their positions. Such motion os observed for small object trajectories that are often interacted with for a very small duration.
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Figure 9. Qualitative results in the ADT dataset.
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Figure 10. Qualitative results in the HD-EPIC dataset.
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