
A Formalization of Multi-Agent Interaction

Many studies adopt Partially Observable Stochastic Games (POSG) to model the LLM interaction in
MAS Slumbers et al. [2024], Park et al. [2025], Liu et al. [2025], Sarkar et al. [2025]. In this section,
we show that Dec-POMDP offers special merits compared to POSG in the solution concept in the
cooperative settings, thus more suited to model LLM collaboration.

A.1 Dec-POMDP

A Dec-POMDP is defined by ⟨I,S, {Oi}, {Ai}, R, T,H⟩. At each step t, since an agent can-
not directly observe the state st, it usually maintains local observation-action history hi,t =
(oi,0, ai,0, . . . , oi,t) to infer a belief over the underlying state. Decisions are made according to
a local policy πi : Hi,t → ∆(Ai), which maps histories to probability distributions over actions.
The set of all local policies forms the joint policy π = {π1, . . . , πn}. In cooperative settings, the
objective is to maximize shared cumulative rewards. As proved in Oliehoek et al. [2008], there is
always an optimal joint policy in a Dec-POMDP,

π∗ = argmax
π∈Π

Eπ

[
H−1∑
t=0

R(st, at)

]
. (1)

A.2 POSG

A Partially Observable Stochastic Game (POSG), so-called Partially Observable Markov Game
(POMG), does not assume cooperative behavior among agents. It can be either a cooperative,
competitive, or mixed game. A POSG is defined as ⟨I,S, {Ai}, T, {Oi}, O, {Ri}, H⟩, where each
agent has its own reward function Ri : S × A → R. In POSG, each agent seeks to maximize its
individual return under the fixed policies of all others π−i. The optimal policy π⊛

i for each agent
i ∈ I is,

π⊛
i = argmax

πi∈Πi

Eπi,π−i

[
H−1∑
t=0

Ri(st, at)

]
, (2)

The solutions for POSG are Nash Equilibria (NE), where no agents can unilaterally improve their
returns by deviating from their policies. Formally, for all i ∈ I and any alternative policy πi ∈ Πi,
NE satisfy

E

[
H−1∑
t=0

Ri(st, at) | π⊛
i ,π

⊛
−i

]
≥ E

[
H−1∑
t=0

Ri(st, at) | πi,π
⊛
−i

]
. (3)

Like Dec-POMDP, the decision-making in POSG is still concurrent (as stochastic games), where all
agents act synchronously at each time step. In contrast, turn-based interactions, where agents take
turns to act (e.g., chess, Kuhn Poker, tic-tac-toe), are typically modeled as extensive-form games.

A.3 Non-Optimality of POSG Solutions

We illustrate that the solutions of POSG, i.e., NE, may not necessarily lead to joint optimality in
cooperative settings.

Consider a one-step matrix game involving 2 agents, where each agent selects an action from the
action space A = {A(1),A(2)}. The joint action profile determines the utility as presented in Table 1.

a1\a2 A(1) A(2)

A(1) 10 7
A(2) 7 0

Table 1: Joint utility matrix of 2 agents.

This matrix game can be potentially decomposed into 2 POSG in Table 2 through reward shaping.

1

a1\a2 A(1) A(2)

A(1) (5, 5) (3, 4)
A(2) (4, 3) (0, 0)

(a) POSG 1

a1\a2 A(1) A(2)

A(1) (5, 5) (1, 6)
A(2) (6, 1) (0, 0)

(b) POSG 2

Table 2: Return tables of 2 POSG.

In the POSG presented in Table 2a, (A(1),A(1)) is a Nash equilibrium (blue triangle in Fig-
ure 1a). When a1 = A(1), U2(A(1),A(1)) > U2(A(1),A(2)); when a1 = A(2), U2(A(2),A(1)) >
U2(A(2),A(2)). Therefore, the best response for agent 2 is a⊛2 = A(1). Similarly, since
U1(A(1),A(1)) > U1(A(2),A(1)), we obtain a⊛1 = A(1). This NE also achieves joint optimal-
ity with the maximum utility 5 + 5 = 10 (red square in Figure 1a).

0 2 4 6 8
Agent 2 Return

2

4

6

8

Ag
en

t 1
 R

et
ur

n

Joint Return
Deterministic NE
Joint Optima

(a) POSG 1

0 2 4 6 8
Agent 2 Return

2

4

6

8

Ag
en

t 1
 R

et
ur

n

Joint Return
Deterministic NE
Probabilistic NE
Joint Optima

(b) POSG 2

Figure 1: Utility spaces of 2 POSG.

However, certain reward decompositions may yield non-optimal solutions for cooperative games in
Table 2, even when POSG solutions reach NE. For the POSG shown in Table 2b, the deterministic NE
are (A(1),A(2)), (A(2),A(1)) (blue triangles in Figure 1b). When a1 = A(1), agent 2 prefers A(2)

as U2(A(1),A(2)) > U2(A(1),A(1)); when a1 = A(2), agent 2 prefers A(1) since U2(A(2),A(1)) >
U2(A(2),A(2)). Agent 1 faces the same issue. Thus, neither agent can unilaterally improve their
utilities by deviating. However, the collective utilities obtained from both policies yield 6 + 1 = 7 <
10, which are suboptimal compared to the joint optimum (red square in Figure 1b).

In Table 2b, even the probabilistic NE under stochastic policies is still non-optimal. Suppose
agent 1 selects A(1) with probability p, and agent 2 selects A(1) with probability q, R1(A(1), ·) =
5q + (1 − q) = 4q + 1, R1(A(2), ·) = 6q, R1(A(1), ·) = R1A(2), ·) yields q = 0.5; similarly,
R2(·,A(1)) = 5p+ (1− p) = 4p+ 1, R2(·,A(2)) = 6p, R2(A(1), ·) = R2A(2), ·) yields p = 0.5.
This probabilistic NE, π⊛

1 (A(1)) = π⊛
1 (A(2)), π⊛

2 (A(1)) = π⊛
2 (A(2)) leads to overall utilities

3 + 3 = 6 < 10 (orange circle in Figure 1b).

Although appropriate reward shaping techniques can transform a cooperative game into a POSG like
Table 2a to make the NE also jointly optimal, this becomes more challenging when more agents
are involved and episodes become longer. We employ Dec-POMDP to avoid the intricate reward
engineering and seek the joint optimality.

B Cooperation Schemes

By training the auxiliary and main coders to cooperate under minimal constraints (with only the
problem description and their respective roles provided), diverse cooperation schemes naturally
emerge. We present 4 representative schemes observed in our models.

2

B.1 Fallback

The most commonly observed cooperation scheme is the main agent providing a fallback for the
auxiliary function. Although prompted to use the auxiliary output, the main agent may still doubt its
completeness and reimplement the solution as a backup in case of potential errors.

Listing 1: compare_one(a,b)
1 def aux(x, y):
2 # Convert x to a float
3 if isinstance(x, str):
4 x = float(x.replace(",", "."))
5
6 # Vulnerable if y in different types
7 if x < y:
8 return y
9 else:

10 return x
11
12 def compare_one(a, b):
13 try:
14 return aux(a, b)
15 except Exception:
16 # Robust implementation
17 if type(a) == type(b):
18 if a > b:
19 return a
20 elif a < b:
21 return b
22 else:
23 return None
24 elif type(a) == float and type(b) == str:
25 b_float = float(b.replace(",", "."))
26 if a > b_float:
27 return a
28 elif a < b_float:
29 return b_float
30 else:
31 return None
32 elif type(a) == str and type(b) == float:
33 a_str = str(a.replace(",", "."))
34 a_float = float(a_str)
35 if a_float > b:
36 return a_str
37 elif a_float < b:
38 return b
39 else:
40 return None
41 else:
42 return None

For example, the problem compare_one(a,b) asks to return the larger of 2 values in its original type
(string, float, or int), or None if equal. Listing 1 demonstrates how the fallback mechanism provides an
alternative in case of runtime errors in the auxiliary implementation. The aux(x,y) function converts
variable x to a float, resulting in an operand type mismatch if y is a string. The main agent handles the
type error by falling back to its secondary implementation. While the main implementation may still
be vulnerable, this mechanism benefits small models that commonly encounter syntax and runtime
errors. Despite some redundancy, a proper fallback can enhance code robustness.

3

B.2 Decorator

When the main agent trusts the auxiliary to accurately handle the core logic, it typically acts as
a decorator, adding complementary features to enhance the output. The main agent could handle
edge cases for improved robustness or reformat the outputs (e.g., sorting, rounding, and adjusting
units). The necessity of such decorating logic depends on the auxiliary agent’s functionality and
completeness.

Listing 2: is_palindrome(text)
1 def aux1(text):
2 if len(text) == 1:
3 return True
4 else:
5 return aux1(text [1: -1])
6
7 def aux2(text):
8 if len(text) <= 1:
9 return True

10 else:
11 return aux2(text [1: -1])
12
13 def is_palindrome(text):
14 if not text:
15 return True
16
17 # Edge case handler
18 return text [0] == text[-1] and aux1(text)
19
20 # Redundant decorator
21 return text [0] == text[-1] and aux2(text)

Listing 2 illustrates a decorator main function and how its utility varies depending on the completeness
of the auxiliary implementation. In this problem, 2 agents generate codes together to check if a
given string is a palindrome. When paired with aux1 that only handles the recursion boundary
condition of single-character strings, the empty string check of the main serves as a necessary edge
case handler. However, when working with aux2, which already has a more comprehensive edge
case consideration, this handle becomes redundant.

B.3 Coordinator

In large-scale software systems, it would be beneficial to have pipelines for repeated or data-parallel
operations (e.g., batch processing, stream transformations). This corresponds to the coordinator
cooperation scheme in our models, where the main agent divides the tasks into parts and assigns them
to the auxiliary agent.

A simple example involves the main agent acting as an iterator, using a loop (e.g., a for loop) to
structure the problem. The auxiliary function generates partial solutions within each iteration. These
partial results are then aggregated to form the final output. However, this cooperation scheme is
unstable, as it depends heavily on the correct functionality of the auxiliary agent. When the auxiliary
agent fails to complete its subtask, the entire solution breaks down.

4

Listing 3: flip_case(string)
1 def aux(string: str) -> str:
2 result = ""
3 for char in string:
4 if char.islower ():
5 result += char.upper ()
6 elif char.isupper ():
7 result += char.lower ()
8 else:
9 result += char

10 return result
11
12 def flip_case(string: str):
13 flipped = ""
14 for char in string:
15 flipped += aux(char)
16 return flipped

Listing 3 demonstrates a solution to flip the case of characters in a string. The auxiliary function flips
the case of each character, while the main function calls this auxiliary function for each character and
appends it to the result. This scheme can be extended to more complex scenarios, where subtasks are
assigned in a hierarchical structure.

B.4 Strategy Filter

When handling complex problems, the main agent may need to implement logic based on multiple
conditions. In such cases, the auxiliary agent can act as a filter for specific branches of logic, often
appearing within conditional blocks (e.g., following an if statement). This scheme resembles the
adaptive control flow in practice. In rule-based pipelines, an auxiliary agent evaluates preconditions
(e.g., task types, system status, configurations) and directs workers to execute appropriate subroutines,
thereby enhancing project modularity.

Listing 4: x_or_y(n,x,y)
1 def aux(n):
2 if n < 2:
3 return False
4 if n == 2:
5 return True
6 if n % 2 == 0:
7 return False
8 for i in range(3, int(n**0.5) + 1, 2):
9 if n % i == 0:

10 return False
11 return True
12
13 def x_or_y(n, x, y):
14 # Check if n is prime
15 if aux(n):
16 return x
17 else:
18 return y

Listing 4 presents a solution for x_or_y(n,x,y) problem, which returns x if n is prime and y
otherwise. The auxiliary function handles the primality checking, while the main function is respon-
sible for returning results. The same pattern can also be found in the solutions of prime_fib(n),
factorize(n), and largest_prime_factor(n).

5

C Broader Impacts

Prompt-based coordination is often brittle Estornell and Liu [2024], as agents may fail to follow
instructions they were not explicitly trained to interpret. Our method builds on a solid theoretical
foundation in cooperative MARL, explicitly optimizing agents for joint optimality. Our work also
opens opportunities to enhance existing test-time multi-agent interaction methods by integrating
MARL techniques Du et al. [2023], Lifshitz et al. [2025], Wu et al. [2023a], particularly in settings
that involve task decomposition and iterative feedback integration.

This work also explores a new perspective on accelerating LLM inference through cooperative MARL.
While mainstream acceleration techniques (e.g., knowledge distillation, pruning, and quantization)
improve efficiency at the cost of information loss Wang et al. [2024], Zhao et al. [2024], our approach
suggests decentralized coordination among specialized agents, thereby alleviating the burden of
long-context memory and joint decision-making on a single model. Each agent can focus on a
specific subtask, enabling more modular and robust reasoning.

D Limitations and Future Works

Nevertheless, this study is subject to several limitations. First, we focus on homogeneous agents for
simplicity, assuming they perform similar tasks despite being assigned different roles, e.g., both the
auxiliary agent and main agent are generating Python functions. Future research could explore LLM
collaboration among heterogeneous agents with diverse capabilities and functionalities.

Due to computational constraints, we train LLMs with MAGRPO on limited datasets using relatively
small-scale language models. When LLM-based coding agents are deployed in larger-scale projects
involving multiple files and modules, more diverse and complex cooperation schemes are likely to
emerge, which would further demonstrate the potential of decentralized coordination in MAS.

The simplicity of our reward model inevitably leads to narrow reward signals and potential reward
hacking. As suggested by many research studies and industrial practice Uesato et al. [2022], Wu
et al. [2023b], designing more expressive and fine-grained reward models (e.g., multi-aspect re-
wards, process-supervised rewards) is essential for better aligning agent cooperation with human
preferences.

References
Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving

factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

Andrew Estornell and Yang Liu. Multi-llm debate: Framework, principals, and interventions. In
Neural Information Processing Systems (NeurIPS), 2024. URL https://openreview.net/
forum?id=sy7eSEXdPC.

Shalev Lifshitz, Sheila A. McIlraith, and Yilun Du. Multi-agent verification: Scaling test-time
compute with multiple verifiers, 2025. URL https://arxiv.org/abs/2502.20379.

Bo Liu, Leon Guertler, Simon Yu, Zichen Liu, Penghui Qi, Daniel Balcells, Mickel Liu, Cheston
Tan, Weiyan Shi, Min Lin, Wee Sun Lee, and Natasha Jaques. Spiral: Self-play on zero-sum
games incentivizes reasoning via multi-agent multi-turn reinforcement learning, 2025. URL
https://arxiv.org/abs/2506.24119.

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approximate q-value functions for
decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, May 2008. ISSN
1076-9757. doi: 10.1613/jair.2447. URL http://dx.doi.org/10.1613/jair.2447.

Chanwoo Park, Seungju Han, Xingzhi Guo, Asuman Ozdaglar, Kaiqing Zhang, and Joo-Kyung Kim.
Maporl: Multi-agent post-co-training for collaborative large language models with reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.18439.

6

https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://openreview.net/forum?id=sy7eSEXdPC
https://openreview.net/forum?id=sy7eSEXdPC
https://arxiv.org/abs/2502.20379
https://arxiv.org/abs/2506.24119
http://dx.doi.org/10.1613/jair.2447
https://arxiv.org/abs/2502.18439

Bidipta Sarkar, Warren Xia, C. Karen Liu, and Dorsa Sadigh. Training language models for social
deduction with multi-agent reinforcement learning, 2025. URL https://arxiv.org/abs/2502.
06060.

Oliver Slumbers, David Henry Mguni, Kun Shao, and Jun Wang. Leveraging large language
models for optimised coordination in textual multi-agent reinforcement learning, 2024. URL
https://openreview.net/forum?id=1PPjf4wife.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Bichen Wang, Yuzhe Zi, Yixin Sun, Yanyan Zhao, and Bing Qin. Rkld: Reverse kl-divergence-based
knowledge distillation for unlearning personal information in large language models, 2024. URL
https://arxiv.org/abs/2406.01983.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023a.
URL https://arxiv.org/abs/2308.08155.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A. Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training, 2023b. URL https://arxiv.org/abs/2306.01693.

Pu Zhao, Fei Sun, Xuan Shen, Pinrui Yu, Zhenglun Kong, Yanzhi Wang, and Xue Lin. Pruning
foundation models for high accuracy without retraining, 2024. URL https://arxiv.org/abs/
2410.15567.

7

https://arxiv.org/abs/2502.06060
https://arxiv.org/abs/2502.06060
https://openreview.net/forum?id=1PPjf4wife
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2406.01983
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2306.01693
https://arxiv.org/abs/2410.15567
https://arxiv.org/abs/2410.15567

	Formalization of Multi-Agent Interaction
	Dec-POMDP
	POSG
	Non-Optimality of POSG Solutions

	Cooperation Schemes
	Fallback
	Decorator
	Coordinator
	Strategy Filter

	Broader Impacts
	Limitations and Future Works

