
A ENVIRONMENT DETAILS

In this section, we introduce the details of the environments used in the experiments. We build all
the Meta-RL environments by modifying the origin environments of OpenAI Gym1. We describe
these environments as follows:

• Walker2d-params: This environment is built by modifying the OpenAI gym Walker2d,
in which a two-dimensional two-legged robot should move forward. For each task, the
dynamics parameters of the environment are randomly initialized. The horizon length is
set as 200. For the experiment, we sample 40 training tasks and 10 test tasks.

• Cheetah-vel-ood: This environment is built by modifying the OpenAI gym Half Cheetah.
In the modified environment, a 2-dimensional robot with nine links should achieve a target
velocity running forward. For a training task, the target velocity is sampled uniformly from
[0, 2.5]. For a test task, the target velocity is sampled uniformly from [2.5, 3.0]. The
horizon length is set as 200. For the experiment, we sample 50 training tasks and 15 test
tasks.

• Hopper-params: This environment is built by modifying the OpenAI gym Hopper, in which
a two-dimensional one-legged robot should move forward. For each task, the dynamics
parameters of the environment are randomly initialized. The horizon length is set as 200.
For the experiment, we sample 40 training tasks and 10 test tasks.

• LunarLander-params: This environment is built by modifying the OpenAI gym Lunar Lan-
der, in which a rocket should land on the landing pad. For each task, we randomly initialize
the gravity. The horizon length is set as 1000. For the experiment, we sample 40 training
tasks and 10 test tasks.

• InvDoublePend-params: This environment is built by modifying the OpenAI gym Inverted
Double Pendulum. In this environment, there is a cart that can move linearly. A pole is
fixed on it, and a second pole is fixed on the other end of the first pole. For each task, the
dynamics parameters of the environment are randomly initialized. The horizon length is
set as 200. For the experiment, we sample 40 training tasks and 10 test tasks.

• Cartpole-fl-ood: This environment is built by modifying the OpenAI gym Cart Pole2. In
the environment, there is a cart that can move linearly with a pole fixed on it. For each
task, we randomly initialize the force magnitude and the length of the pole. For a training
task, the force magnitude and the length of the pole are sampled uniformly from [7.5, 12.5]
and [0.3, 0.7]. For a test task, the force magnitude and the length of the pole is sampled
uniformly from [5, 7.5] ∪ [12.5, 15] and [0.2, 0.3] ∪ [0.7, 0.8]. The horizon length is set as
200. For the experiment, we sample 40 training tasks and 10 test tasks.

B IMPLEMENTATION DETAILS

In this section, we first introduce the implementation details of the symbolic operators. Then we
provide more details of training and the pseudo-code of the training process.

B.1 SYMBOLIC OPERATORS

To ensure the numerical stability of the proposed symbolic learning framework, we regularize the
operators and employ a penalty term to keep the input from the ”forbidden” area. We show the
operators and the corresponding penalty terms as follows:

• Multiplying operator:

y = min(max(x1,−100), 100) ∗min(max(x2,−100), 100),

the penalty term can be formulated as:

Lmul = max(x1−100, 0)+max(−100−x1, 0)+max(x2−100, 0)+max(−100−x2, 0)

1We build our environments based on the random-param-env https://github.com/dennisl88/rand param envs.
2We use a continuous version from an open-source implementation https://gist.github.com/iandanforth.

1

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

Hopper-params

CSP
0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps
10−3

10−2

10−1

100

pe
na

lty
 lo

ss

Walker2d-params

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

Cheetah-vel-ood

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps

10−3

10−1

101

103

pe
na

lty
 lo

ss

Lunarlander-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

InvDoublePend-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

10−5

10−4

10−3

10−2

10−1

100

pe
na

lty
 lo

ss

Cartpole-fl-ood

Figure 1: Learning curves of the penalty loss function. The shaded area spans one standard devia-
tion.

• Division operator:

y =

 0, x2 < 0.01,
x1

x2
, x2 ≥ 0.01.

the penalty term can be formulated as:

Ldiv = max(0.01− x2, 0)

• Sine operator: y = sin(x), the penalty term is set as zero: Lsin = 0.

• Cosine operator: y = cos(x), the penalty term is set as zero: Lcos = 0.

• Exponential operator:
y = exp(min(max(x,−10), 4)),

the penalty term can be formulated as:

Lexp = max(x− 4, 0) +max(−10− x, 0)

• Log operator:
y = log(max(x, 0.001)),

the penalty term can be formulated as:

Llog = max(0.001− x, 0)

• Identity operators: y = x, the penalty term is set as zero: Lidentity = 0.

• Condition operator: y = sigmoid(x1) ∗ x2 + (1 − sigmoid(x1)) ∗ x3, the penalty ter is
set as zero: Lcondition = 0.

In practice, we only use the identity operator in the plain structure. For all the environments, we use
the same symbolic network structure described 4.1. Especially, for Cheetah-vel-ood, we add one
Condition operator in each layer. We think the Condition operator will be useful for environments
where the reward function changes. During training, we involve a penalty loss function Lpenalty

which is the sum of the penalty terms of regularized operators in symbolic networks:

Lpenalty(θΦ, θΨ) =

i=M∑
i=1

j=L∑
j=1

k=Nj∑
k=1

Lgi,j,k(xi,j,k), (1)

2

Algorithm 1 The training process of CSP.
Input: Batch of training tasks {κi}i=1,...m. The number of iterations of temperature and target L0

norm schedule te. Target temperature τt. The target L0 norm of the mask at the end of training le.
The scale of the penalty loss α1. The scale of the loss to regularize the sum of score α2. The scale
of the loss for the KL divergence β.

1: Initialize replay buffers Bi for each training tasks.
2: for training iteration t = 0 to T − 1 do
3: τ = (1− τt) ∗ (1− min(t,te)

te
) + τt

4: for each task κi do
5: Initialize context ci = {}
6: for k = 0 to K − 1 do
7: Sample z ∼ qθq (z|ci)
8: Generate symbolic policy S with Φ(z) and Ψ(z, τ)
9: Collect data with a ∼ N(S(s), F (s, z)) and add to buffer Bi.

10: Update ci = {(sj , aj , s′j , rj)}j=1,··· ,N ∼ Bi

11: end for
12: end for
13: for steps in training step do
14: Sample a batch of tasks.
15: for each κi in the batch do
16: Sample context ci and RL Batch bi from the buffer Bi

17: Sample context variables z ∼ qθq (z|ci)

18: ltarget = le + (1− le) ∗
(
1− min(t,te)

te

)2

19: Calculate loss for the critic: Li
critic = Lsac

critic(z, bi)
20: Calculate loss for the Actor:

Li
actor = Lsac

actor(z, bi) + α1Lpenalty(z, bi) + α2Lselect(z, bi, ltarget)
21: Calculate the KL divergence Li

KL = DKL(qθq (z|ci)|N(0, 1))
22: end for
23: Update the Critic with

∑i=m
i=1 Li

critic

24: Update the context encoder with
∑i=m

i=1 (Li
critic + βLi

KL)

25: Update the path collector and the parameter generator with
∑i=m

i=1 Li
actor

26: end for
27: end for

where θΦ, θΨ is the parameters of the parameter generator and the path selector, M is the dimen-
sion of action, L is the number of layers in a symbolic network, Nj is the number of regularized
operators in layer j, xi,j,k is the input of operator gi,j,k. We show the learning curves of the penalty
loss function in Figure 1. During the training process, for all environments, the penalty loss func-
tion remains on a very small order of magnitude, which indicates that most of the operators in the
symbolic network work the same as the original unregularized operators.

B.2 TRAINING DETAILS

In practice, we build up our off-policy learning framework on top of the soft actor-critic algorithm
(SAC)(Haarnoja et al., 2018) following PEARL. To construct a stochastic policy, we also employ
a small neural network F to output the standard deviation. The neural network has two hidden
layers with 64 hidden units. Note that this neural network is only used during training. During the
evaluation, we only use the produced symbolic policy to infer the action. Besides, to limit the score
s produced by Ψ(z) in the range of (0, 1), we employ the sigmoid tanh function. We initialize the
bias of the last layer in Ψ(z) as 3.0. As sigmoid(3.0) = 0.9526, we will have most of the paths
of the symbolic network active at the beginning of training and ensure that the input of the sigmoid
function is not too large to prevent the gradient from disappearing during training. For the details of
the training process, we give the pseudo-code in Algorithm 1.

3

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.038

Hopper-params

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.081

Walker2d-params

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.023

Cheetah-vel-ood

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

env steps
0.0

0.2

0.4

0.6

0.8

l0
 re

tio

0.017

Lunarlander-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps
0.0

0.2

0.4

0.6

0.8

1.0

l0
 re

tio

0.028

InvDoublePend-params

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps
0.0

0.2

0.4

0.6

0.8

l0
 re

tio

0.009

Cartpole-fl-ood

Figure 2: Learning curves of the average L0 norm ratio of the mask for the sampled tasks.

C EXPERIMENT DETAILS

C.1 HYPERPARAMETERS

In this section, we give the main hyperparameters for our experiments. We show the common
hyperparameters of CSP in Table 1. We also list the environment specific hyperparameters in
Table 2. The meta batchsize is the number of sampled tasks per training step. We set it ac-
cording to the number of training tasks. For the scale of Lselect, we choose the best one from
{0.1, 0.15, 0.2, 0.25, 0.5, 1.0, 2.0}. The target l0 norm ratio is the ratio of the target L0 norm of the
mask at the end of training le to the number of parameters of the symbolic network. We set the value
according to the complexity of the task and do not tune the value. We show the learning curves of
the average L0 norm ratio of the mask for the sampled tasks in Figure 2. The L0 norm ratio at the
end of training is always higher than the target l0 norm ratio. Thus, the L0 norm ratio at the end
of training is more affected by the scale of Lselect. The schedule iterations mean the number of
iterations of temperature and target L0 norm schedule. We end the schedule near the end of training
but for Cartpole-fl-ood in which the policy converges quickly, we reduce the number of schedule
iterations. We run all the experiments with five random seeds and average the results to plot the
learning curve.

C.2 PLATFORM AND DEVICE

The implementation of our CSP is based on the pytorch(Paszke et al., 2019). Besides, we train
the proposed CSP with Nvidia V100 GPU. When evaluating the inference time, we use Intel(R)
Xeon(R) Gold 5218R @ 2.10GHz CPU.

D EXPERIMENTS RESULTS FOR SINGLE TASK RL

The gradient-based symbolic policy learning framework can also be used for single task reinforce-
ment learning. For single task RL, we remove the parameter generator and the path selector. We
define the parameters of symbolic network w and the score s as parameters that can be updated
with gradient. The score s are all initialized as one and clipped to [0,1] after each training step. We
compare the symbolic policy with the original neural network SAC and show the results in Figure 3.
We also plot the learning curves of the average L0 norm of the mask for the sampled tasks in Figure
4. The results show that the compact symbolic policy achieves comparable or higher performance
compared with the neural network policy.

4

Table 1: Hyperparameters for the CSP.
Parameter Value

optimizer Adam(Kingma & Ba, 2015)
number of samples per minibatch 256
scale of the reward 5
learning rate 3 · 10−4

scale of the kl divergence loss 1
discount 0.99
sac target smoothing coefficient 0.005
target temperature 0.2
training steps per iteration 2000
scale of the penalty loss 1

Table 2: Environment Specific Hyperparameters.
Environment Meta batchsize Scale of Lselect Target l0 norm ratio Schedule iterations

Walker2d-params 10 0.25 0.01 450
Hopper-params 10 0.25 0.01 300
InvDoublePend-params 10 2.0 0.01 150
Cartpole-fl-ood 10 0.25 0.002 25
Lunarlander-g 10 0.25 0.01 60
Cheetah-vel-ood 16 2.0 0.01 300

E DISCUSSION

In this paper, we propose to learn a contextual symbolic policy for Meta-RL. In our gradient-based
learning framework, we train the contextual symbolic policy efficiently without any pre-trained
model. For unseen tasks, the CSP can produce symbolic policies which achieve higher general-
ization performance. Besides, the compact symbolic policies are more efficient to be deployed and
easier to understand compared with pure neural network policy. However, there are some limita-
tions. For too complex tasks, CSP may generate complex symbolic policies, which may be hard to
understand directly. A solving strategy is to learn a modularized symbolic policy and analyze each
module to understand the whole policy. For tasks with high dimension observation like images, the
CSP can not directly generate a symbolic policy. But we can employ a neural network to extract
the environment variables and generate symbolic policy based on these environment variables. We
leave these improvements talked about above in the future work.

REFERENCES

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps
0

500

1000

1500

2000

2500

3000

3500

4000

re
tu

rn

Hopper

sac
symbolic

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

0

1000

2000

3000

4000

5000

re
tu

rn

Walker2d

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

0

200

400

600

800

1000

1200

re
tu

rn

InvertedPendulum

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

−300

−200

−100

0

100

200

300

re
tu

rn

LunarLander

Figure 3: Comparison of the symbolic policy and the neural network policy.

5

0.00M 0.50M 1.00M 1.50M 2.00M 2.50M 3.00M

env steps
0

100

200

300

400

500

600

700

800

co
un

t l
0

Hopper

symbolic
0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps

200

400

600

800

1000

co
un

t l
0

Walker2d

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps
0

100

200

300

400

500

co
un

t l
0

InvertedPendulum

0.00M 0.20M 0.40M 0.60M 0.80M 1.00M

env steps
0

100

200

300

400

500

600

700

co
un

t l
0

LunarLander

Figure 4: Learning curves of the average L0 norm of the mask for the sampled tasks.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

6

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Environment details
	Implementation details
	Symbolic Operators
	Training Details

	Experiment details
	Hyperparameters
	Platform and Device

	Experiments Results for Single Task RL
	Discussion

