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APPENDIX

A COMPARISON TO PMIk

By assuming Ptest(t) to be a “flatten” version of Ptrain(t), our Equation 7 can interpolate between
scenario 1 (same train and test priors) and 2 (balanced test priors):

Ptest(t) / Ptrain(t)
1�↵ ) Optimal score is

Ptrain(t|i)
Ptrain(t)↵

(11)

In fact, the above equation can be rewritten using the language of PMIk (Role & Nadif, 2011; Daille,
1994), a well-known variant of PMI that controls the amount of debiasing (Li et al., 2016; Li &
Jurafsky, 2016; Wang et al., 2020) in information retrieval:

Ptrain(t|i)
Ptrain(t)↵

=
Ptrain(t, i)

Ptrain(i)Ptrain(t)↵
(12)

/ Ptrain(t, i)
1
↵

Ptrain(i)Ptrain(t)
, as Ptrain(i) is constant in I-to-T (13)

= pmikPtrain
(t, i), where k =

1

↵
� 1 (14)

where

pmiP (t, i) =
P (t, i)

P (t)P (i)
=

P (t|i)
P (t)

=
P (i|t)
P (i)

(15)

PMI is an information-theoretic measure that quantifies the association between two variables (Yao
et al., 2010; Henning & Ewerth, 2017; Shrivastava et al., 2021). In the context of image-text retrieval,
it measures how much more (or less) likely the image-text pair co-occurs than if the two were
independent. Eq. 15 has found applications in diverse sequence-to-sequence modelling tasks (Wang
et al., 2020; Li & Jurafsky, 2016; Li et al., 2016) as a retrieval (reranking) objective. Compared to the
conditional likelihood P (t|i), PMI reduces the learned bias for preferring ”common” texts with high
marginal probabilities P (t) (Li et al., 2016; Li & Jurafsky, 2016; Wang et al., 2020). This can be an
alternative explanation for the effectiveness of our debiasing solutions.

B ABLATION STUDIES ON ↵-TUNING

Estimating Ptrain(t) via null (Gaussian noise) images is more sample-efficient. We use
Winoground to show that sampling Gaussian noise images to calculate Ptrain(t) can be more
efficient than sampling trainset images. As demonstrated in Table 4, a limited number of Gaussian
noise images (e.g., 3 or 10) can surpass the results obtained with 1000 LAION images. Moreover,
using null images produces less variance in the results.

Sample Size Guassian Noise Images Trainset Images
↵=↵⇤

test ↵⇤
test ↵=↵⇤

test ↵⇤
test

3 35.95(0.5) 0.821(0.012) 32.20(1.6) 0.706(0.150)

10 36.25(0.4) 0.827(0.016) 33.60(0.9) 0.910(0.104)

100 36.35(0.1) 0.840(0.010) 34.70(0.6) 0.910(0.039)

1000 36.25(0.0) 0.850(0.000) 35.15(0.3) 0.960(0.033)

Table 4: Comparing sampling of Gaussian noise images and trainset images for estimating Ptrain(t). We
report text scores of ↵-tuning on Winoground I-to-T retrieval task. We ablate 3/10/100/1000 Gaussian noise and
LAION samples and report both mean and std using 5 sampling seeds. The optimal ↵⇤ 2 [0, 1] is searched on
testset via a step size of 0.001. The Gaussian noise images are sampled with a mean calculated from the LAION
subset and a fixed std of 0.25.

Details of Gaussian noise samples. Unless otherwise specified, the Gaussian noise images are
sampled with a mean of 1.0 and a standard deviation of 0.25. By default, we use 100 images for
Winoground, 30 images for EqBen, and 3 images for the rest of the benchmarks. We also fix the
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sampling seed in our code to ensure reproducibility. We leave more advanced techniques of generating
null images to future works.

Alternative approach on COCO/Flickr30k: estimating Ptrain(t) using testset images. For
large-scale retrieval benchmarks like COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014),
we can directly average scores of all candidate images (in the order of thousands) to efficiently
approximate Ptrain(t) without the need to sample additional images. This approach incurs zero
computation cost as we have already pre-computed scores between each candidate image and text.
We show in Table 5 that using testset images indeed results in better performance than sampling 3
Gaussian noise images.

Metric Benchmark Ptrain(t|i) Sampling Method
Ptrain(t|i)
Ptrain(t)↵

↵=1 ↵=↵⇤
val ↵⇤

val

R@1 / R@5
COCO 19.7 / 40.6 Testset Images 46.2 / 73.1 48.0 / 74.2 0.819

Null Images 24.4 / 52.6 40.4 / 66.6 0.600

Flickr30k 34.6 / 59.0 Testset Images 58.7 / 88.0 63.6 / 89.2 0.719
Null Images 27.8 / 62.2 48.5 / 79.0 0.427

Table 5: I-to-T retrieval on COCO/Flickr30k using different sampling methods. Estimating Ptrain(t)
by averaging the scores of testset images (with zero computational cost) demonstrates superior performance
compared to sampling additional Gaussian noise images.

Tuning ↵ with a validation set. In Table 6, similar performance trends are observed across validation
and test splits of COCO and Flickr30k I-to-T retrieval benchmarks using the same ↵ 2 [0, 1].
Furthermore, ↵⇤

test and ↵⇤
val are empirically close. As such, our method can function as a reliable

training-free debiasing method. Future studies may explore fine-tuning methods to further improve
the debiasing performance.

(b) Alpha-tuning on COCO Retrieval (c) Alpha-tuning on Flickr Retrieval

Table 6: ↵-tuning results on both val set and test set for COCO/Flickr30k I-to-T retrieval. We observe that
validation and test performance are strongly correlated while we interpolate ↵ 2 [0, 1].

C IS VISUALGPTSCORE A BIASED ESTIMATOR OF Ptrain(t|i)?

Retrieval performance on trainset (LAION). This paper is built on the assumption that Visual-
GPTScore is a reliable estimator of Ptrain(t|i). However, this simplifying assumption does not
completely hold for the BLIP model we examine. We speculate that such OTS generative scores are
biased towards more common texts. We witness this same phenomenon in Table 7, where we perform
image-text retrieval on random subsets from training distribution LAION-114M (Li et al., 2022).

Modelling the language bias in VisualGPTScore. As evidenced in Table 7, we believe Visual-
GPTScore is biased towards more common texts due to modelling error. To consider this error in our
analysis, we rewrite the VisualGPTScore as:

VisualGPTScore(t, i) := P̂train(t|i) = Ptrain(t|i) · Ptrain(t)
� , (16)

where P̂ represents the (biased) model estimate and P represents the true distribution. The model
bias towards common texts is encoded by an unknown parameter �.

Monte Carlo estimation using P̂ . Because our Monte Carlo sampling method relies on P̂train(t|i),
it is also a biased estimator of Ptrain(t):
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Dataset Size
I-to-T Retrieval T-to-I Retrieval

ITM
Ptrain(t|i)
Ptrain(t)↵ ITM Ptrain(t|i)

↵=0 ↵=1 ↵=↵⇤ ↵⇤

100 96.0 59.0 94.0 95.0 0.535 95.0 97.0
1000 90.9 37.1 71.7 85.7 0.733 92.0 93.1
2000 87.2 32.8 62.3 64.3 0.840 87.8 89.8
5000 79.8 25.1 50.9 54.1 0.727 81.9 84.4

(a) Performance on LAION trainset retrieval (b) Alpha-tuning on LAION

Table 7: Retrieval performance on randomly sampled LAION114M subsets with varied sizes. Table
(a) shows that while OTS generative scores are robust for T-to-I retrieval, its performance degrades on I-to-T
retrieval tasks when the number of candidate texts increases. This implies that OTS generative scores suffer from
language biases towards certain texts even in the training set. Nonetheless, we show that our debiasing solution
using either ↵ = 1 or optimal ↵⇤ 2 [0, 1] with a step size of 0.001, can consistently boost the performance.
Figure (b) visualizes ↵-tuning results on LAION subsets, where each curve represents a different sample size.

P̂train(t) :=
1

n

nX

k=1

P̂train(t|ik) = Ptrain(t)
1+� . (17)

Rewriting optimal I-to-T objective with P̂ . We can rewrite Equation 4 as:

Ptest(t|i) / Ptrain(t|i)
Ptest(t)

Ptrain(t)
(18)

= P̂train(t|i)
Ptest(t)

Ptrain(t)1+�
(19)

= P̂train(t|i)
Ptest(t)

P̂train(t)
(20)

↵-tuning with P̂ . Using Equation 20, we can reformulate ↵-tuning (Equation 7) as follows:

Ptest(t) / Ptrain(t)
1�↵̂ ) Optimal score is

P̂train(t|i)
P̂train(t)↵

(21)

where ↵ = ↵̂+�
1+� . Notably, the above equation has the same structure as before (Equation 7). This

implies that even if Ptrain(t) = Ptest(t), we still anticipate ↵ = �
1+� 6= 0. This accounts for why

the optimal ↵ is not 0 when we perform I-to-T retrieval on trainset in Table 7.

Implication for vision-language modelling. Our analysis indicates that similar to generative
LLMs (Li et al., 2016; Li & Jurafsky, 2016), contemporary image-conditioned language models
also experience issues related to imbalanced learning (Kang et al., 2019). Potential solutions could
be: (a) refined sampling techniques for Monte Carlo estimation of P (t) such as through dataset
distillation (Wu et al., 2023), and (b) less biased modelling of P (t|i) such as through controllable
generation (Keskar et al., 2019).

D EXPERIMENTS WITH BLIP-2

We provide BLIP-2 results for completeness.

BLIP-2 (Li et al., 2023) overview. BLIP-2 leverages frozen pre-trained image encoders (Fang
et al., 2022) and large language models (Chung et al., 2022; Zhang et al., 2022) to bootstrap vision-
language pre-training. It proposes a lightweight Querying Transformer (Q-Former) that is trained
in two stages. Similar to BLIP (Li et al., 2022), Q-Former is a mixture-of-expert model that can
calculate ITC, ITM, and captioning loss given an image-text pair. Additionally, it introduces a set of
trainable query tokens, whose outputs serve as visual soft prompts prepended as inputs to LLMs. In
its first training stage, Q-Former is fine-tuned on the same LAION dataset using the same objectives
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(ITC+ITM+captioning) as BLIP. In the second stage, the output query tokens from Q-Former are
fed into a frozen language model, such as FLAN-T5 (Chung et al., 2022) or OPT (Chung et al.,
2022), after a linear projection trained only with captioning loss. BLIP-2 achieves state-of-the-art
performance on various vision-language tasks with significantly fewer trainable parameters.

BLIP-2 results. We present retrieval performance of the BLIP-2 model that uses ViT-L as the frozen
image encoder. We report results for both the first-stage model (denoted as Q-Former) and the
second-stage model which employs FLAN-T5 (Chung et al., 2022) as the frozen LLM.

Benchmark Dataset Random w. Q-Former w. Flan-T5
ITC ITM Ptrain(t|i) Ptrain(t|i)

ARO

VG-Relation 50.0 46.4 67.2 90.7 89.1
VG-Attribution 50.0 76.0 88.1 94.3 90.9
COCO-Order 20.0 28.5 25.2 96.8 99.3
Flickr30K-Order 20.0 25.3 28.6 97.5 99.7

Crepe
Atom-Foils 16.7 20.8 20.9 74.7 69.7
Negate 16.7 13.4 14.2 79.1 90.0
Swap 16.7 13.4 18.0 79.5 79.1

VL-CheckList Object 50.0 89.7 89.2 90.1 84.1
VL-CheckList Attribute 50.0 76.6 79.3 73.9 70.6
VL-CheckList Relation 50.0 70.5 72.3 89.9 56.7

SugarCrepe Replace 50.0 86.7 88.5 93.0 82.4
SugarCrepe Swap 50.0 69.8 80.9 91.2 80.8
SugarCrepe Add 50.0 86.5 88.0 92.7 76.2

Table 8: BLIP-2 on ARO/Crepe/VL-CheckList/SugarCrepe.

Benchmark Model
I-To-T (Text Score) T-To-I (Image Score)

ITC ITM
Ptrain(t|i)
Ptrain(t)↵ ITC ITM Ptrain(t|i)

↵=0 ↵=1 ↵=↵⇤ ↵⇤

Winoground
BLIP 28.0 35.8 27.0 33.0 36.5 0.836 9.0 15.8 21.5
BLIP2-QFormer 30.0 42.5 24.3 29.3 33.0 0.882 10.5 19.0 20.0
BLIP2-FlanT5 - - 25.3 31.5 34.3 0.764 - - 19.5

EqBen (Val)
BLIP 20.9 26.0 9.6 19.8 19.8 0.982 20.3 20.3 26.1
BLIP2-QFormer 32.1 36.2 12.2 21.9 22.2 0.969 23.4 28.4 26.6
BLIP2-FlanT5 - - 8.5 22.0 22.0 1.000 - - 20.9

Table 9: BLIP-2 on Winoground/EqBen.

E ADDITIONAL REPORTS

Computational resources. All experiments use a single NVIDIA GeForce 3090s GPU.

Details of Table 1. For CLIP, LAION2B-CLIP, and LAION5B-CLIP, we report the results from Hsieh
et al. (2023) using the ViT-B-32, ViT-bigG-14, and xlm-roberta-large-ViT-H-14 models respectively.
The results of NegCLIP, Structure-CLIP, SVLC, SGVL, DAC-LLM, and DAC-SAM are directly
copied from their original papers. We run BLIP-ITC and BLIP-ITM using our own codebase, which
will be released to the public.

Group scores on Winoground/EqBen using BLIP (Table 10).

Method Winoground EqBen
Text Score Image Score Group Score Text Score Image Score Group Score

ITCScore 28.0 9.0 6.5 20.9 20.3 10.6
ITMScore 35.8 15.8 13.3 26.0 20.3 12.6
VisualGPTScore↵

⇤
36.5 21.5 16.8 20.4 26.1 11.7

Table 10: Performance comparison of BLIP’s ITCScore, ITMScore, and ↵-tuned VisualGPTScore↵
⇤

on
Winoground (all) and EqBen (val).

Fine-grained tags on Winoground (Table 11).
Performance on SugarCrepe (Table 12).
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Dataset Size Method Text Score Image Score Group Score

NoTag 171
ITCScore 32.6 11.6 8.1
ITMScore 41.9 21.5 19.2
VisualGPTScore↵

⇤
43.0 28.5 23.8

NonCompositional 30
ITCScore 43.3 16.7 16.7
ITMScore 50.0 23.3 16.7
VisualGPTScore↵

⇤
43.3 33.3 26.7

AmbiguouslyCorrect 46
ITCScore 32.6 8.7 6.5
ITMScore 28.3 6.5 2.2
VisualGPTScore↵

⇤
26.1 19.6 8.7

VisuallyDifficult 38
ITCScore 29.0 7.9 7.9
ITMScore 26.3 10.5 7.9
VisualGPTScore↵

⇤
31.6 13.2 7.9

UnusualImage 56
ITCScore 32.5 8.9 8.9
ITMScore 21.4 10.7 7.1
VisualGPTScore↵

⇤
30.4 10.7 8.9

UnusualText 50
ITCScore 20.0 8.0 6.0
ITMScore 38.0 12.0 12.0
VisualGPTScore↵

⇤
30.0 18.0 12.0

ComplexReasoning 78
ITCScore 16.7 2.6 1.3
ITMScore 21.8 5.1 2.6
VisualGPTScore↵

⇤
21.8 10.3 6.4

Table 11: BLIP performance on Winoground subtags (Diwan et al., 2022). We report the number of test
instances for each subtag and their respective text score, image score, group score.

Method Model SugarCrepe
Replace Swap Add AVG

Human Performance - 98.67 99.50 99.00 99.06
Random Chance - 50.00 50.00 50.00 50.00

Text-Only Baseline Vera 49.46 49.30 49.50 49.42
Grammar 50.00 50.00 50.00 50.00

PLLM (t)
Bart 48.41 51.93 61.16 53.83
Flan-T5 51.41 57.59 40.94 49.98
OPT 58.53 66.58 45.78 56.96

Ptrain(t) BLIP 75.90 77.14 70.89 74.64

ITCScore

CLIP-LAION2B 86.50 68.56 88.37 81.14
CLIP-LAION5B 84.98 67.95 89.62 80.85
BLIP 85.76 73.79 85.66 81.74
BLIP-2 86.66 69.77 86.50 80.98
NegCLIP-SugarCrepe 88.27 74.89 90.16 84.44

ITMScore BLIP 88.68 81.29 87.57 85.85
BLIP2-Qformer 88.45 80.87 87.96 85.76

Ptrain(t|i)
BLIP 93.33 91.00 90.98 91.77
BLIP2-Qformer 93.00 91.24 92.69 92.31
BLIP2-FlanT5 82.44 76.57 76.24 78.42

Ptrain(t|i)
Ptrain(t)↵

⇤

BLIP 95.09 92.39 97.36 94.95
BLIP2-Qformer 94.62 92.27 97.58 94.82
BLIP2-FlanT5 85.69 78.80 91.76 85.42

Table 12: Performance on SugarCrepe (Hsieh et al., 2023). SugarCrepe is the most recent visio-linguistic
compositionality benchmark which improves upon previous Crepe (Ma et al., 2022) by using state-of-the-art
large language models (including ChatGPT), instead of rule-based templates, to generate more natural negative
text captions. We show that text-only baselines and LLM-based methods indeed fail to succeed on SugarCrepe.
However, our OTS generative approaches still achieve competitive results compared against SOTA discriminative
approaches. The results of human performance, text-only baseline, and SOTA CLIP and NegCLIP-SugarCrepe
are directly taken from the Hsieh et al. (2023). For other approaches, we evaluate their performance following
the same procedure as described in main texts.
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F BENCHMARK VISUALIZATION

We include random samples from each benchmark in Table 13.

Dataset Image Positive Caption Negative Caption(s)

VG-Relation the bus is to the right of the trees the trees is to the right of the bus

VG-Attribution the striped zebra and the large tree the large zebra and the striped tree

COCO-Order two dogs sharing a frisby in their mouth in the snow
two frisby sharing a mouth in their snow in the dogs
in dogs the in frisby sharing two mouth their a snow
two dogs sharing in a frisby their mouth in snow the
a frisby in the snow two dogs sharing their mouth in

Flickr30K-Order a white duck spreads its wings while in the water
a white wings spreads its water while in the duck
a white duck the its wings while in water spreads
white a duck spreads its wings in while the water
while in the spreads its wings water a white duck

SugarCrepe
Add-Attribute

They are going to serve pizza for lunch today. They are going to serve pizza topped with pineapple for lunch today.

SugarCrepe
Add-Object A man kisses the top of a woman’s head. A man kisses the top of a woman’s head with a flower in his hand.

SugarCrepe
Replace-Attribute A kid standing with a small suitcase on a street. A kid standing with a big suitcase on a street.

SugarCrepe
Replace-Object A duck floating in the water near a bunch of grass and rocks A swan floating in the water near a bunch of grass and rocks.

SugarCrepe
Replace-Relation A clock tower stands in front of a large mirrored sky scraper. A clock tower stands behind a large mirrored sky scraper.

SugarCrepe
Swap-Attribute A tennis player is taking a swing on a red court. A red player is taking a swing on a tennis court.

SugarCrepe
Swap-Object A woman holding a game controller with a man looking on. A man holding a game controller with a woman looking on.

Crepe-AtomFoils microwave in a kitchen, and sink in a kitchen.

microwave in a cupboard, and sink in a kitchen
microwave in a bar, and sink in a kitchen
line in a kitchen, and sink in a kitchen
microwave in a kitchen, and shower in a kitchen
microwave in a kitchen, and tap in a kitchen

Crepe-Negate a chair next to a table, with the back of the chair visible.

A chair is not next to a table, with the back of the chair visible
A chair next to a table, with the back not of the chair visible
A chair next to a table, with the back of the chair visible
A chair next to a table, with something of the chair visible. There is no back.
There is no chair next to a table, with the back of the chair visible

Crepe-Swap a car driving on a road with a line next to a tree.

a car driving on a bright green leaves with a line next to a tree
a bright green leaves driving on a road with a line next to a tree
a car driving on a tree with a line next to a road
a car driving on a road with a line next to a white car
a car driving on a road with a line next to a street

VL-CheckList
Relation (spatial) person read book person carry book

VL-CheckList
Relation (action) sign near boy sign far from book

Winoground a person on top of the world the world on top of a person

the world on top of a person a person on top of the world

EqBen The person is touching the dish which is in front of him/her. The person is holding the dish which is in front of him/her.

The person is holding the dish which is in front of him/her. The person is touching the dish which is in front of him/her.

Table 13: Visualization of benchmarks. ARO (VG-Relation/VG-Attribution/COCO-Order/Flickr30K-Order),
Crepe (AtomFoils/Negate/Swap), VL-CheckList (Object/Attribute/Relation), SugarCrepe (Replace/Swap/Add)
are constructed by generating hard negative captions for an image-text pair. On the other hand, each sample of
Winoground and EqBen has two image-text pairs.
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