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Abstract

Mixture models serve as one fundamental tool with versa-
tile applications. However, their training techniques, like the
popular Expectation Maximization (EM) algorithm, are no-
toriously sensitive to parameter initialization and often suffer
from bad local optima that could be arbitrarily worse than the
optimal. To address the long-lasting bad-local-optima chal-
lenge, we draw inspiration from the recent ground-breaking
foundation models and propose to leverage their underlying
big learning principle to upgrade the EM. Specifically, we
present the Big Learning EM (BigLearn-EM), an EM up-
grade that simultaneously performs joint, marginal, and or-
thogonally transformed marginal matchings between data and
model distributions. Through simulated experiments, we em-
pirically show that the BiglL.earn-EM is capable of delivering
the optimal with high probability; comparisons on benchmark
clustering datasets further demonstrate its effectiveness and
advantages over existing techniques.

1 Introduction

As a fundamental and prominent tool in statistical ma-
chine learning and data science, mixture models are ubiq-
uitously used in versatile practical applications that are as-
sociated with density estimation (Correia et al. 2023), clus-
tering (Chandra, Canale, and Dunson 2023), anomaly de-
tection (Qu et al. 2020; An, Wang, and Zhang 2022), fea-
ture extraction (Saire and Rivera 2022; Lin et al. 2023),
model explanation (Xie and Chen 2022), flexible multi-
modal prior (Saseendran et al. 2021; Lee et al. 2021), de-
blurring (Guerrero-Colén, Mancera, and Portilla 2007; Yu,
Sapiro, and Mallat 2011), efc. Among many variants of mix-
ture models (Li, Yu, and Mandic 2020; Li et al. 2020), the
most popular one is the Gaussian Mixture Model (GMM),
thanks both to its simplicity and to its capability in approxi-
mating any continuous distribution arbitrarily well (Lindsay
1995; Peel and MacLahlan 2000). In this paper, we focus on
the GMM for presentation, but the presented techniques can
be readily extended to other mixture models.

Although mixture models are widely utilized in practi-
cal applications, most of their training techniques are known
to be sensitive to parameter initialization (Bishop 2006; Jin
et al. 2016; Kolouri, Rohde, and Hoffmann 2018), which
alternatively restricts their actual performance. For exam-
ple, the representative Expectation Maximization (EM) al-
gorithm has been proven to converge to a bad local optimum

that could be arbitrarily worse than the optimal solution with
an exponentially high probability, when the number of mix-
ture components exceeds three (Jin et al. 2016).

To address that long-lasting bad-local-optima challenge,
we draw inspiration from the recent ground-breaking foun-
dation models, by noticing that they benefit significantly
from their massive diverse pretraining tasks, such as mask-
and-predict (Devlin et al. 2018; He et al. 2022) and next-
word-prediction (Radford et al. 2018, 2019; Brown et al.
2020). Specifically, (Cong and Zhao 2022) reveal that most
of those pretraining strategies actually fall under the big
learning principle, i.e., leveraging one foundation model to
simultaneously and consistently implement many/all joint,
conditional, marginal matchings, as well as their trans-
formed matchings, between data and model distributions.

Inspired by that, we propose to leverage the big learn-
ing principle to upgrade the conventional EM algorithm to a
newly presented Big Learning EM (BigLearn-EM), demon-
strating knowledge feedback from cutting-edge foundation
models to conventional machine learning. Specifically, the
Biglearn-EM exhaustively exploits its training data with a
tailored big learning setup, where joint, marginal, and or-
thogonally transformed marginal matchings between data
and model distributions are simultaneously considered. On
simulated data, the BiglLearn-EM delivers the optimal so-
lution with high profitability, manifested as an encouraging
direction to address the bad-local-optima challenge.

Our contributions are summarized as follows.

* We propose the Biglearn-EM, a novel, effective, and
easy-to-use algorithm for training mixture models with
only EM-type analytical parameter update formulas.

* We reveal that marginal/conditional matching could help
joint matching getting out of bad local optima, which
serves as one explanation justifying the successes of
foundation models and the big learning principle.

» Comprehensive clustering experiments are conducted to
demonstrate the superiority of the Bigl.earn-EM and its
robustness to the scarcity of training data.

2 Preliminaries

We briefly review the preliminaries that lay the foundation
of the presented technique, i.e., mixture models, the EM al-
gorithm, and the big learning principle.



Mixture Models

Mixture modeling leverages a mixture (i.e., convex combi-
nation) of K (often simple) distributions p;(x|v;) with pa-
rameters v; and ¢ € {1,---, K} to construct a (more pow-
erful) mixture model pg () for a random variable x € R4,
ie.,

pe(z) = Zilﬂipi(w‘l/i)7 ey

where the mixture weights 7; > 0,7 7, = 1 and 6 =
{mi,v;} | denotes the model’s parameters.

Among various mixture models (Li et al. 2020; Li, Yu,
and Mandic 2020), the Gaussian Mixture Model (GMM),
also called Mixture of Gaussians (MoG), is the most popular
one; its probability density function is

mie) =Y,

where p;, 3; are the mean vector and the covariance matrix
of the 7™ Gaussian component, respectively.

The Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977) is the prominent way of estimating
a (Gaussian) mixture model pg () from a collection of data
sampled from an underlying data distribution g(x).

Based on the variational inference framework with latent
code z € {1,---, K} and an inference arm ¢(z|x) (Bishop
2006; Dieng and Paisley 2019), the EM algorithm (termed
Joint-EM hereafter) maximizes the log-likelihood'

po(z,2)
q(z|z) 3)
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via alternatively updating ¢(z|x) with an E-step and maxi-
mizing over 6 with an M-step, that is,
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Maximizing the log-likelihood in (3) is equivalent
to minimizing the Kullback-Leibler (KL) divergence
KL[g(x)||pe(x)], leading to the KL-based joint matching
in the joint a-space, or informally pg(x) — ¢(x).

Big Learning

Foundation models (Stickland and Murray 2019; Brown
et al. 2020; He et al. 2021; Ramesh et al. 2022; Bao et al.
2023; OpenAlI 2022; Ouyang et al. 2022) have demonstrated

'In practice, E () [-] is estimated with data samples from g(z).

ground-breaking successes across diverse domains, thanks
mainly to their large-scale pretraining on big data.

Observing that the pretraining strategies of foundation
models share the similar underlying principle of compre-
hensively exploiting the data information from diverse per-
spectives, (Cong and Zhao 2022) condenses those diverse
strategies into a unified big learning principle that contains
most of them as special cases. Specifically, the big learning
leverages one universal model with parameters 6 to simulta-
neously match many/all joint, marginal, and conditional data
distributions across potentially diverse domains, as defined
below.

Definition 1 ((Uni-modal) big learning (Cong and Zhao
2022)). Given data samples x € R” from the underlying
data distribution q(x), the index set L. = {1,--- , L}, and
any two non-overlapping subsets S C L.and T C L, T # (),
the (uni-modal) big learning leverages a universal foun-
dation model pg(xr|xs),Y(S,T) to model many/all joint,
conditional, and marginal data distributions simultaneously,
ie.,

po(xr|Xs) — g(xr|xs), V(S,T) € Q, )

where Q is the set that contains the (S, T) pairs of interest.
Given different settings for (S, T), q(x|xs) may represent a
Jjoint/marginal/conditional data distribution, whose samples
are readily available from the training data. The actual ob-
Jjective measuring the distance/divergence (or encouraging
the matching) between both sides of (5) should be selected
base on the application of interest.

Based on Remark 3.5 of (Cong and Zhao 2022), one may
alternatively or additionally do big learning in transformed
domains, e.g., via pg(Zr|&s) — q(Zr|Zs) with transfor-
mation & = g(x).

Below we will combine the above big learning principle
in Definition 1 and Remark 3.5 of (Cong and Zhao 2022) to
upgrade the Joint-EM in (4) into its big-learning extension,
where the universal model pg (zt|xs) has an analytical mix-
ture expression for any (S, T) pair.

3 Big Learning Expectation Maximization

We first reveal a simple but somewhat counter-intuitive fact
that lays the foundation of the proposed Big Learning EM
(BigLearn-EM) algorithm. Then, based on that fact and the
flexible big learning principle, we design a tailored big-
learning task that consists of diverse matchings between data
and model distributions. Finally, we summarizes and present
the easy-to-use Biglearn-EM with only EM-type analytical
parameter update formulas.

Marginal/Conditional Matching Gets Joint
Matching Out of Bad Local Optima

It’s well-known that the Joint-EM in (4) (i.e., joint match-
ing pe(x) — q(x)) often converges to a bad local optimum
that could be arbitrarily worse than the optimal with an ex-
ponentially high probability (Bishop 2006; Jin et al. 2016;
Kolouri, Rohde, and Hoffmann 2018), when the number of
mixture components exceeds three. Fig. 1a illustrates an ex-
ample bad local optimum when implementing the Joint-EM



on simulated data sampled from a GMM with 25 compo-
nents (abbreviated as 25-GMM hereafter).

Next, with notations & € RF and its index set
L = {1,---,L}, let’s consider the relationships among
joint matching with pg(z) — ¢(x), marginal matching
with pg(xr) — ¢(@T), and conditional matching with
po(xr|Ts) — q(xT|TS), where T C L, T # 0, S C L,
SNT = @, and @ is the marginal vector of x indexed by T.

Intuitively, one may anticipate that performing joint
matching (with e.g., the Joint-EM in (4)) will automati-
cally lead to the convergences of both marginal matching
(with e.g., the following Marginal-EM in (6)) and condi-
tional matching (via e.g., maximizing the conditional log-
likelihood in (7)).

Marginal Matching E, (. log pe ()
N (x|, Xo1T)

E-step: q(z|xT) = po(z|xT) =
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(6)
where p,p and 3,77 represent the marginal vector/matrix
of p, and X, respectively.

Conditional Matching E(;)q(z|2s)10gpe(T|T5) (7)

However, we empirically reveal below that the above in-
tuition will not hold true when joint matching (or Joint-EM)
gets stuck at a bad local optimum.

Specifically, we conduct two-stage experiments on sim-
ulated data from a 25-GMM ¢(x) (see Fig. 1a), where the
model pg () is also a 25-GMM with random initialization?,
Stage 1 implements joint matching (with Joint-EM in (4)),
and, directly following Stage 1, Stage 2 either implements
marginal matching (with Marginal-EM in (6)) or conditional
matching (via maximizing the conditional log-likelihood in
(7) with gradient accent.

Fig. 1 demonstrates the results. It’s clear from Fig. 1a that
joint matching gets stuck at a bad local optimum. As shown
in Fig. 1b, the convergence of joint matching in Stage 1 does
not necessarily result in the convergence of marginal match-
ing, because continually performing Marginal-EM in Stage
2 further improves marginal matching. Similar phenomena
are observed in Fig. 1c for conditional matching. That means
bad local optima where joint matching gets stuck are not lo-
cal optima for marginal/conditional matching, as illustrated
in the left and right dashed lines of the schematic diagram
in Fig. 1d. Alternatively, that inconsistency among joint,
marginal, and conditional matchings may be leveraged, e.g.,
to detect bad local optima of each matching or to help each
other get out of bad local optima.

*Different from prior methods initializing parameters { g, }1—;
with uniformly sampled training data, we use the more challenging
Gaussian random initialization for { g, }7<, to highlight the power
of the proposed Bigl.earn-EM.

It’s worth highlighting that the center dashed line in
Fig. 1d is located at a consistent local optimum for joint,
marginal, and conditional matchings; more importantly, that
consistency property is what the optimal solution must sat-
isfy. The above analysis serves as an example justification
for simultaneous joint, marginal, and conditional matchings,
i.e., the big learning principle in (5) that underlies most suc-
cessful foundation models.

On Tailoring a Big-Learning Task to Produce an
Easy-To-Use Bigl.earn-EM

Based on what’s revealed in the previous section, one may
naively follow the vanilla big learning principle in (5) to con-
duct multitasking joint, marginal, conditional matchings in
the original a-space, i.e.,

maxg Eqs,1) Eq(as)q(wr|2:) 108Po (T1|Xs), (8)

where ¢(S,T) represents the sampling process of (S, T).
Note ¢(S,T) actually determines the relative weightings
among joint, marginal, and conditional matchings. However,
it’s not easy to design EM-type analytical update formulas
for conditional matching in (7), even though such formulas
are readily available for both joint and marginal matchings,
as given in (4) and (6), respectively.

To avoid a hybrid algorithm that contain both EM-type
and gradient accent updates and thus may not easy to use, we
leverage the flexibility of big learning discussed in Remark
3.5 of (Cong and Zhao 2022) to further combine marginal
matchings in randomly transformed y domains with the joint
and marginal matchings in the original & domain, to form
the tailored big-learning task.

Specifically, we employ orthogonal transformations y =
Az, where A is a randomly sampled orthogonal matrix.
Correspondingly, the transformed training data y ~ ga (y)
are generated viay = Az, x ~ ¢(x), the model in a trans-
formed domain Pg a (y) is also a GMM with the analytical
expression of

K _
Poa() =po@)| 5o =3 mN (IR, B), O

where 1, = Ap;, X; = AX;AT, and the transformed
marginal matching has EM-type analytical update formulas

Randomly Transformed

Marginal Matching 9 (v:) 108P0.a (Y1)

E-step: ga (z|yr) = Po.a(z|yy) = ZZZZ(?}I‘('Z’;«T’;E,Z;) |
i=1 "1 TIHGT) &44TT
M-step: fip = EI(;Ei(yT)[‘j[IE(Z(|?J|T)!)I]ﬂ
aa(yp) [9A\Z|YT
Srp = EqA<yT>[§A(Z|yT)(yT_— i) (yr — )T
Ega (yn) (74 (zlyr)]
T2 = Eqa(yn) [a(2[y7)]

Update 0: i = ATji., . =ATS.A,

(10)

where i / 2; is the T-partially updated f, /3, after the M-
step. Note any joint matching in the transformed y domain
will deliver the same update formulas as in (4).



l— Joint-KL Stage 2
—— Marginal-KL

08
06
Stage 1 010
04 .
o
S 480

Test KL Divergence

Test KL Divergence

= JointKL Joint Matching
—— Conditional-KL

Stage 2

Stage 1

Ma

(a) (b)

400

oo
Step

(c) (d)

Figure 1: Marginal/Conditional matching gets joint matching out of bad local optima. The simulated data distribution ¢(x) is
set as a GMM with 25 components (i.e., a 25-GMM); the model pg () is also a 25-GMM with random initialization. (a) The
Joint-EM of joint matching converges to a bad local optimum. (b) Continuing joint matching in Stage 1, marginal matching
in Stage 2 may be further improved and get joint matching out of that bad local optima. (c) Similar results are observed when
Stage 2 implements conditional matching. (d) Schematic diagram of what happens in (b) and (c) from the loss perspective.

To summarize, the tailored big-learning task contains
three kinds of matching, that is, joint, marginal, and trans-
formed marginal matchings, each of which has EM-type an-
alytical formulas for parameter updates, i.e., (4), (6), and
(10), respectively.

Finalizing the Bigl.earn-EM

Before finalizing our BigLearn-EM, an issue of the EM-type
updates should be addressed. It’s easy to verify that, during
the EM iterations, once a mixture weight 7, becomes zero, it
stays zero thereafter. Empirically, this issue hinders the EM-
type updates in (4), (6), and (10) from making full use of
the available mixture components, even though the occupied
components have no enough modeling capacity.

To address that issue, we leverage the Maximum a pos-
teriori (MAP) estimate in place of the vanilla maximum
log-likelihood estimate on the mixture weights 7 following
(Bishop 2006). Accordingly, taking Joint-EM in (4) as an
example, the update rule for 7 is replaced by

IEq(m) [q(z|a:)] + 17

z = y 11
m 14+ Kn an

where 17 > 0 is a small constant. Similar modifications are
also applied to (6) and (10), respectively. Detailed deriva-
tions are given in Appendix A.

Based on the aforementioned tailored big-learning task
and the MAP modification on 7r, we finalize the training ob-
jective of the BigLearn-EM as

maxe By m)q(a)Eqa (ys)aa (yrlys)108P0,A (Y1|Ys)

12
+ 7log pa(m), 12

where ¢(S,T) and q(A) represent the sampling process of
(S,T) and the orthogonal matrix A, respectively. p, ()
is the prior for 7. 7 is a hyper-parameter. Joint/Marginal
matching may be recovered with S = (), A = L.

Algorithm 1 summarizes the presented Biglearn-EM,
where only easy-to-use EM-type updates are employed. Be-
sides, it’s worth highlighting that the Bigl.earn-EM can nat-
urally handle incomplete data (via its marginal matchings)
thanks to its big learning nature.

Algorithm 1: Big Learning Expectation Maximization

Input: Training data, the number K of mixture compo-
nents, probabilities [P, P»|, and the number W of local
updates.

Output: A  consistent local optimum 6% =
{ﬂ-z" H’ZF’ 2?}521

1: Randomly initialize @ = {m;, p,;, ¥, } KX,
2: while Not Mixing do
3: With probability P,

4: do Joint-EM with (4)/(11) for W iterations

5: With probability P,

6: (2) uniformly sample an index subset T, and

7: (i7) do Marginal-EM with (6)/(11) for W iters

8: With probability 1 — P, — Ps,

9: () uniformly sample an orthogonal matrix A
10: > scipy.stats.ortho_group
11: (#7) uniformly sample an index subset T, and
12: (#4¢) do Transformed Marginal-EM with
13: (10)/(11) for W iterations

14: end while

4 Related Work

Analysis and Improvements of the EM Algorithm In gen-
eral settings, the EM (i.e., Joint-EM) algorithm only have
local convergence guarantee, that is, it converges to the op-
timal only if the parameters are initialized within a close
neighborhood of that optimal (Yan, Yin, and Sarkar 2017;
Zhao, Li, and Sun 2020; Balakrishnan, Wainwright, and Yu
2017). Although (Xu, Hsu, and Maleki 2016; Daskalakis,
Tzamos, and Zampetakis 2017; Qian, Zhang, and Chen
2019) have established the global convergence for Joint-EM
on learning GMMs with two components, a global conver-
gence guarantee is not generally possible for GMMs with
K > 3 components (Jin et al. 2016), where Joint-EM con-
verges to a bad local optimum with an exponentially high
probability (Jin et al. 2016). To deal with the challenge as-
sociated with bad local optima, many efforts have been made
to improve Joint-EM, most of which focus on clever param-
eter initialization, seeking to help Joint-EM bypass bad local



optima before E-M iterates (Bachem et al. 2016b,a; Scrucca
et al. 2016; Bachem, Lucic, and Krause 2018; Exarchakis,
Oubari, and Lenz 2022; Tobin, Ho, and Zhang 2023). By
contrast, the proposed BigLearn-EM, with random initial-
ization, directly tackle the bad-local-optima challenge with
diverse joint, marginal, transformed marginal EM updates,
empirically delivering boosted performance than the Joint-
EM (see the experiments).

Other Methods for Learning Mixture Models Besides
the popular EM algorithm, many other methods for learn-
ing GMMs have also been developed based on, e.g., Markov
chain Monte Carlo (MCMC) (Rasmussen 1999; Favaro and
Teh 2013; Das 2014), moments (Ge, Huang, and Kakade
2015; Kane 2021; Pereira, Kileel, and Kolda 2022), adver-
sarial learning (Lin et al. 2018; Farnia et al. 2023), and opti-
mal transport (Kolouri, Rohde, and Hoffmann 2018; Li et al.
2020; Yan, Wang, and Rigollet 2023). Specifically, the SW-
GMM (Kolouri, Rohde, and Hoffmann 2018) leverages the
Radon transform to randomly project the high-dimensional
GMM learning task into one-dimensional sliced subspace,
where the sliced Wasserstein distance between the projected
data and model distributions is minimized w.r.tz. GMM pa-
rameters. However, the computational complexity of the
SW-GMM grows exponentially as the number of dimen-
sions, rendering it unsuitable for modeling high-dimensional
data (Li et al. 2020; Deshpande et al. 2019; Kolouri et al.
2019). Different from the aforementioned methods resort-
ing to unstable adversarial learning or complicated Wasser-
stein distances, the presented BiglLearn-EM is both easy-to-
understand and easy-to-use, since it’s a direct big-learning
upgrade of the EM algorithm with only EM-type analytical
formulas for parameter updates (and thus the same compu-
tational complexity as that of the EM).

S Experiments

We first present the detailed ablation study that produces the
BigLearn-EM from the vanilla Joint-EM. Then, we demon-
strate the effectiveness of the Biglearn-EM in compre-
hensive real-world clustering applications. Finally, modified
clustering experiments are conducted to reveal its robustness
to data scarcity.

Ablation Study That Produces the Bigl.earn-EM

Based on the 25-GMM simulation setup shown in Fig. 1,
we first present the detailed ablation study that produces the
Bigl.earn-EM in Algorithm 1. Specifically, we start with the
Joint-EM in (4) and test the performance when gradually in-
troducing additional MAP estimate for 7w (marked “+Pr”),
Marginal Matching in (6) (marked “+MM”), Conditional
Matching in (7) (marked “+CM”), and Randomly Trans-
formed Marginal Matching in (10) (marked “+RTMM”)
with different number W of local updates in Algorithm 1
(marked “+W?”).

The results from 10 different runs (with different random
seeds) are summarized in Table 1, where it’s clear that in-
troducing prior for 7 (i.e., “+Pr”) improves the test joint
KL divergence by 14.4% on average, despite with a dou-
bly worsened standard deviation. By additionally employing

Table 1: Ablation study on the 25-GMM simulated datasets.
“+Pr” means employing the MAP estimate for 7 with
(11). “+MM/+CM/+RTMM” means introducing additional
Marginal Matching, Conditional Matching, and Randomly
Transformed Marginal Matching, respectively. “+W5” indi-
cates employing W = 5 local updates in Algorithm 1.

Test Joint KL Divergence

Method Standard
Mean .

Deviation
Joint-EM 0.263 0.035
+Pr 0.225 0.073
+ Pr+ MM 0.141 0.054
+Pr+ MM + CM 0.124 0.044
+ Pr+ MM + RTMM + W1 0.077 0.034

+ Pr+ MM + RTMM + W5

(BigLearn-EM) 0.030 0.006
+Pr+ MM + RTMM + W10 0.031 0.007

marginal/conditional matching (i.e., “+MM/+CM”), both
the mean and standard deviation improve steadily, highlight-
ing the benefits of the implicit diverse inter-regularization
among various learning objectives of big learning. Further,
boosted performance emerges from employing the Ran-
domly Transformed Marginal Matching (i.e., “+RTMM”),
thanks to its significantly expanded diversity of matching,
highlighting the effectiveness of the big learning principle as
well as the importance of the diversity of big-learning tasks.

For explicit comparisons between the Joint-EM and the
Biglearn-EM, Fig. 2a demonstrates the local optima where
both methods converge. It’s clear that Joint-EM fails to make
full use of the available 25 mixture components, suffering
from bad local optima that could be arbitrarily worse than
the optimal solution (Jin et al. 2016). By contrast, the pre-
sented BigLearn-EM, thanks to its big-learning nature, man-
ages to fully exploit the 25 mixture components by placing
each component to one data mode, delivering global optima
with high probability on this simulation (refer to Fig. 2b). By
considering that the BigLearn-EM merely uses the Gaussian
random initialization for {g,}% |, it’s therefore interesting
to theoretically verify whether big learning could contribute
to a global convergence guarantee for GMMs with K > 3
components; we leave that as future research.

BigLearn-EM for Real-World Data Clustering

Clustering stands as a representative application of GMM,
addressing the task of categorizing unlabeled data into co-
herent and distinct clusters.

To validate the effectiveness of the Biglearn-EM in
real-world clustering applications, we conduct comprehen-
sive experiments on diverse clustering datasets, includ-
ing Connect-4, Covtype, Glass, Letter, Pendigits, Satimage,
Seismic, Svmguide2, and Vehicle (see Appendix B for de-
tails). The presented Bigl.earn-EM is systematically bench-
marked against representative established clustering tech-
niques, i.e., the K-Means (Bottou and Bengio 1994), the SW-
GMM (Kolouri, Rohde, and Hoffmann 2018), and the WM-
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Figure 2: Comparisons between the Joint-EM and the Biglearn-EM. (a) Explicit demonstrations of the local optima from both
techniques w.rt. different random seeds of 5079, 6395, and 3325, respectively. (b) Boxplot of the test joint KL divergences from
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Table 2: Clustering performance on real-world benchmark datasets. All the compared methods share the same settings for the
GMM model pg (). The results are calculated based on 10 runs with different random seeds. Higher is better for all the metrics.

Dataset

Metric

K-Means

WM-GMM

SW-GMM

Joint-EM

Biglearn-EM

Connect-4

NMI
ARI
Joint-LL

0.0027 £ 0.0005
0.0005 =+ 0.0003

0.0017 £ 0.0079
0.0004 £ 0.0018
89.006 £ 4.33

0.0015 £ 0.0086
0.0003 £ 0.0013
84.165 + 8.0472

0.0031 £ 0.0018
0.0028 + 0.0034
91.145 £ 7.680

0.0021 £ 0.0011
0.0019 £ 0.0015
95.320 £ 5.7727

Covtype

NMI
ARI
Joint-LL

0.153 £ 0.0355
0.035 £ 0.0089

0.119 £ 0.0098
0.068 £ 0.00562
72.556 £ 0.029

0.159 £ 0.0219
0.0468 £ 0.0168
72.773 £ 0.6811

0.131 +0.0194
0.065 £ 0.0140
72.967 £ 0.7598

0.181 + 0.0107
0.072 +0.0110
74.311 £ 0.4227

Glass

NMI
ARI
Joint-LL

0.434 £ 0.0503
0.170 £ 0.0508

0.445 £ 0.0794
0.213 £ 0.0587
7.255 + 0.8608

0.450 £ 0.0319
0.192 £ 0.0382
7.387 +1.2482

0.434 £ 0.0487
0.202 £ 0.0367
7.206 + 2.0089

0.461 + 0.0298
0.203 + 0.0420
7.239 +£2.1341

Letter

NMI
ARI
Joint-LL

0.368 £ 0.0067
0.128 £ 0.0045

0.276 £ 0.0037
0.010 £ 0.0021
11.750 = 0.0758

0.478 £ 0.0253
0.188 £ 0.0200
19.03 £ 0.1498

0.502 £ 0.0189
0.203 + 0.0222
19.402 £+ 0.0245

0.526 + 0.0141
0.234 £ 0.0126
19.63 +0.0145

Pendigits

NMI
ARI
Joint-LL

0.714 £ 0.0056
0.587 £0.0214

0.794 £ 0.0168
0.695 £ 0.0314
10.161 + 0.0583

0.756 £ 0.0315
0.622 £ 0.0500
10.008 + 0.2073

0.767 £ 0.0362
0.630 £ 0.0632
9.984 £ 0.0435

0.818 + 0.0221
0.719 + 0.0397
10.283 + 0.0064

Satimage

NMI
ARI
Joint-LL

0.608 £ 0.0008
0.506 £ 0.0004

0.598 £0.0114
0.518 £ 0.0331
39.479 £ 0.0020

0.596 £ 0.0492
0.503 £ 0.1001
39.453 £ 0.070

0.592 £ 0.0294
0.472 +0.0624
39.445 £ 0.0055

0.622 + 0.0151
0.523 + 0.0306
39.492 + 0.0004

Seismic

NMI
ARI
Joint-LL

0.121 4+ 0.0004
0.105 £ 0.0003

0.161 4 0.0008
0.104 +£0.3292
41.525 £ 0.027

0.200 £ 0.071
0.113 +£0.0311
42.317 £ 0.0612

0.193 £ 0.0023
0.045 +£0.0124
42.202 £ 0.0940

0.211 £+ 0.0089
0.127 + 0.0191
42.430 £ 0.0329

Svmguide2

NMI
ARI
Joint-LL

0.102 £ 0.0291
0.076 £ 0.0254

0.099 £ 0.0366
0.056 £ 0.0369
10.270 = 0.5096

0.092 £ 0.0573
0.083 £ 0.0721
10.483 + 0.4825

0.068 £ 0.0531
0.029 £ 0.0560
10.491 + 0.2925

0.204 + 0.0662
0.212 + 0.0932
10.425 4+ 0.2210

Vehicle

NMI
ARI
Joint-LL

0.166 £ 0.0267
0.089 £ 0.0278

0.243 £0.0198
0.129 £ 0.0082
23.008 £ 1.2318

0.189 £ 0.0579
0.089 £ 0.0474
22.232 £ 1.8622

0.222 £ 0.0860
0.115 £ 0.0597
22.623 £ 2.2000

0.278 + 0.0452
0.152 + 0.0361
23.480 +£1.3002
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Figure 3: Demonstration of the Bigl.earn-EM’s robustness
to the scarcity of its training data.

GMM (Li et al. 2020), and the vanilla EM (Joint-EM) al-
gorithm. Three testing metrics are adopted for performance
evaluation, including

1. the normalized mutual information (NMI) (Strehl and
Ghosh 2002), which quantifies how much the predicted
clustering is informative about the true labels;

2. the adjusted rand index (ARI) (Hubert and Arabie 1985;
Steinley 2004), which measures the degree of agreement
between an estimated clustering and a reference cluster-
ing; and

3. the test joint log-likelihood (Joint-LL), which reflects
how well the learned model describes the testing data
from the joint KL divergence perspective.

Table 2 summarizes the results on the tested real-world
clustering datasets. It’s clear that the BiglLearn-EM deliv-
ers overall boosted performance over the compared tech-
niques, especially on the NMI and ARI values. That is ex-
pected because, as demonstrated in Fig. 2a, the presented
Biglearn-EM is capable of making full use of the available
mixture components to deliver precise and accurate local
matching, which alternatively contributes to better NMI/ARI
values. When compared to the Joint-EM, the Biglearn-
EM demonstrates significantly improved performance, even
though both of them are based on E-M iterations; that fur-
ther substantiates the effectiveness of the big learning prin-
ciple in addressing the bad-local-optima challenge inher-
ent in the vanilla Joint-EM algorithm; more importantly,
the Biglearn-EM also delivers smaller standard deviations
across the majority of tested datasets, demonstrating the po-
tential of the big learning to bring better learning stabil-
ity and consistency. When compared to the WM-GMM and
SW-GMM techniques that are developed based on compli-
cated Wasserstein distances, the Biglearn-EM, which yields
better performance, is clearly much easier to understand in
theory and, simultaneously, easier to use in practice.

BigLearn-EM Is More Robust to the Scarcity of Its
Training Data

Noticing that, in scenarios with limited training data, like
the Svmguide?2 dataset with 391 data samples in Table 2, the
Biglearn-EM exhibits remarkably superior NMI/ARI per-
formance than other clustering techniques. We posit that the

p ed
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Figure 4: An example state where Bigl.earn-EM wanders
around for many iterations.

Biglearn-EM is more robust to the scarcity of its training
data, because its big-learning operation is expected to signif-
icantly increase the utilization rate of the information within
each sample. We then design modified real-world clustering
experiments to verify that hypothesis.

Specifically, based on the Pendigits dataset, we randomly
select its 80%, 60%, 40%, 20%, 10%, and 5% training data
to form a series of modified clustering datasets with gradu-
ally increased scarcity, where the BigLearn-EM is compared
to the Joint-EM to highlight the influence of the big learning
principle.

Fig. 3 demonstrates the experimental results, where it’s
clear that the Bigl.earn-EM is more robust to the scarcity of
its training data than the Joint-EM, even though both of them
utilize similar EM-type parameter update formulas, high-
lighting the effectiveness of the big learning.

6 Conclusions

By leveraging the big learning principle that underlies re-
cent groundbreaking foundation models, we upgrade the
vanilla EM algorithm to its big-learning extension that is
termed the Biglearn-EM. The Biglearn-EM simultane-
ously performs joint, marginal, and orthogonal-transformed
marginal matchings between data and model distributions,
empirically demonstrating great potential in addressing the
long-lasting bad-local-optima challenge of the EM algo-
rithm. Comprehensive experiments on real-world clustering
datasets demonstrate its boosted performance and its robust-
ness to data scarcity.

Although the Biglearn-EM perform better than existing
techniques in the tested scenarios, some issues remain un-
solved. For example, (i) whether the Bigl.earn-EM theoret-
ically addresses the bad-local-optima challenge of the EM
is unanswered, (i¢) a suitable stopping criteria, mimicking
that of a MCMC, is still missing in Algorithm 1, and (zi%)
the exploration power of the BiglLearn-EM may need fur-
ther strengthening, as we find it may wander around a state
like the one in Fig. 4 for many iterations.
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Appendix of Big Learning Expectation Maximization

Anonymous Authors

A On Introducing the MAP Estimate of

As the mixture weights 7 is located in a simplex, i.e., m; > 0, Zfil m; = 1, a commonly used prior for 7 is a Dirichlet
distribution
INO DT K o

(S0 1% o, 03
[Tiz) D) = 7=t

where the concentration parameters & = (aq, -+ ,ak). Often, to encourage a full utilization of mixture components, one
would prefer setting o; > 1. We set a; = a;j = o > 1 in this paper.

Taking the Joint-EM in (4) of the main manuscript as a demonstration example, we next elaborate on the the MAP Estimate
of 7, where the objective for 7r is

Pa(m) = Dir(m; o) =

vy Inga (77) + IEq(a:) 10gp0 (CC), (14)

where v > 0 is a hyper-parameter that balances between the prior and the likelihood. Note the first prior term is independent
to {p;, ;1 | ; therefore, the update rules for q(z|z) and {p,;, X;} X, are the same as those of the Joint-EM in (4). One need
only focus on the estimate of 7.

The objective in (14) can be simplified w.x.t. 7 as

K K
Ylogpa () + Eqlogpe(@) = C + )~ (e —1Dlogm + ) Eywla(zlz))logr.
K
sty m=1 =
7. 20,

which is constrained optimization problem that can be readily solved by the method of Lagrange multipliers. Accordingly, we
have the MAP estimate of 7 as

o Ba@) lazl2)] + (e —1)  Eq@)la(zlz)] +7 6
? 1+3Y5 Aa-1) 1+ Knp

where 77 = y(ov — 1) > 0 and we conclude the derivation of (11) of the main manuscript.

B Settings of the Real-World Clustering Experiments

Clustering Datasets We adopt nine representative datasets® that are extensively employed in the context of clustering, with
their statistics summarized in Table 3. We follow () to normalize the data feature-wisely to the interval [0, 1], using the min-max
scaling. For performance evaluation, we use the official testing data set if it’s available; otherwise, we randomly select 20%
data samples to form a testing set.

Table 3: Statistics of the adopted real-world clustering datasets.

Dataset Dimension Number Class
Connect-4 126 67557 3
Covtype 54 581012 7
Glass 9 214 6
Letter 16 20000 26
Pendigits 16 10992 10
Satimage 36 6435 6
Seismic 50 98528 3
Svmguide?2 20 391 3
Vehicle 18 846 4

Performance Evaluation Metrics We adopt three metrics for testing, that is,

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html



* Normalized Mutual Information (NMI) (Strehl and Ghosh 2002). The NMI score rescales mutual information scores using
a generalized mean of the entropy of the true label set €2 and the cluster label set C. This process can be mathematically
formulated as

I1(Q;C)

(H(Q) + H(C))/2’
where I(Q;C) = H(Q) + H(C) — H(Q, C) denotes the mutual information between 2 and C, and H is the information
entropy.

¢ Adjusted Rand Index (ARI) (Hubert and Arabie 1985; Steinley 2004). The ARI score represents an adjusted version of the
Rand Index (RI) that accounts for chance. The RI itself serves as a measure of similarity, evaluating all possible pairs of
samples and quantifying the instances where pairs are assigned to the same or distinct clusters in both predicted and true
label assignments. The formalization of ARI is articulated as

(RI — Expected RI )
(max(RI) — Expected RI)’

NMI(Q,C) = (17)

ARI = (18)

¢ Test Joint Log-Likelihood (Joint-LL). The Joint-LL measures the extent to which the acquired model characterizes the
testing dataset based on the joint KL divergence. It’s calculated based on the testing data x as

K
log p(x) = log Zi:l N (x|p;, ;). (19)

Parameter Settings The primary model parameters, i.e., the number K of mixture components, adopted for each datasets are
listed in Table 4. For all the compared methods, we maintain the numerical stability by preventing the covariance matrices from
being singular; specifically, we restrict the eigenvalues of each covariance matrix to be larger than hyperparameter ¢ > 0. For
the Biglearn-EM in Algorithm 1 of the main manuscript, to sample an index subset T from the full index set L, we first sample
a ratio rp ~ Beta(f1, 82) from the Beta distribution Beta(3;, 82) with hyperparameters (01, 82); then, we uniformly sample
rp-ratio indices from L to yield T; we run the Biglearn-EM for 10000 iterations on all dataset and report the mean NMI, ARI,
and Joint-LL values that are calculated based on the last 200 iterations.

Table 4: Parameter configurations.

Dataset Connect-4  Covtype Glass Letter Pendigits Satimage  Seismic = Svmguide2  Vehicle
K 6 10 6 26 12 8 4 3 6
€ 1x107% 5x107% 1x1072 1x107% 1x107? 1x1072 1x107% 2x107% 1x1073

(b1, 02)  (51) (5,1) (5,1) (5,1) (5, 1) (5, 1) (5,1) (5, 1) (0, 1)




