
7 Supplementary Information (SI)

Recall the following definition 1 from the main text:
Definition 1. Hamming distance of a codebook (denoted as κM) is defined as the minimum hamming
distance between any two distinct pair of codewords (or rows) inM.
κM = min

(i,j)∈{1,...k}2|i<j
dH(M(i, ·),M(j, ·))

7.1 Proofs:

Proposition 1 (Error-Correction Capability). A codebookM with hamming distance κM, can always
correct at-least ⌊κM−1

2 ⌋ errors.

Proof : Note that every codeword inM has a distance of at-least κM from every other codeword
inM. This implies that the closed Hamming balls of radius ⌊κM−1

2 ⌋ are disjoint. Therefore, if a
binary vector q differs from some codeword m ∈M in at-most ⌊κM−1

2 ⌋ places, then m is the unique
codeword inM closest to q . Hence we can safely conclude that the codeM can correct at-least
⌊κM−1

2 ⌋ errors. ■

Lemma 1. McCormick relaxation of IP1, denoted as MC(IP1), is tight:
{
(zijpq, xij , xpq) ∈

R× {+1,−1}2|zijpq = xijxpq

}
≡

{
(zijpq, xij , xpq) ∈ R× {+1,−1}2|(2a), (2b)

}
.

Lower: zijpq ≥ −xij − xpq − 1; zijpq ≥ xij + xpq − 1 (2a)
Upper: zijpq ≤ xij − xpq + 1; zijpq ≤ −xij + xpq + 1 (2b)

Proof : Since xij and xpq are integer variables, therefore the McCormick inequalities in (2) ensure
that zijpq also takes integer values i.e. zijpq ∈ {+1,−1}, thus zijpq = xijxpq and (2) are equivalent.
This can also be verified by simple enumeration as shown below:

x ∈ {−1,+1}
y ∈ {−1,+1}
z ≥ −x− y − 1

z ≥ x+ y − 1

z ≤ −x+ y + 1

z ≤ x− y + 1

Case I:
x = −1; y = −1

z ≥ 1

z ≥ −3
z ≤ 1

z ≤ 1

⇒ z = 1

Case II:
x = −1; y = 1

z ≥ −1
z ≥ −1
z ≤ 3

z ≤ −1

⇒ z = −1

Case III:
x = 1; y = −1

z ≥ −1
z ≥ −1
z ≤ −1
z ≤ 3

⇒ z = −1

Case IV:
x = 1; y = 1

z ≥ −3
z ≥ 1

z ≤ 1

z ≤ 1

⇒ z = 1

Figure 4: Lower and Upper McCormick envelopes for bilinear term zijpq = xijxpq . (Image adapted
from [6]) ■
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Lemma 2. LetM and M̃ be two binary error-correcting code of size k×l and k×(l+ l̃) respectively,
where l̃ ≥ 0, such that all columns inM are also in M̃, i.e.M⊆ M̃. Then, the Hamming distances
(recall definition 1) ofM and M̃ satisfy: κM ≤ κM̃, implying that the error-correcting capability
of M̃ is atleast as good asM.

Proof : Consider a codebookM of size k × l which has a hamming distance of κM, where κM is
defined as :

κM = min
(i,j)∈{1,...k}2|i<j

dH(M(i, ·),M(j, ·))

Now another codebook M̃ of size k× (l+ l̃) is obtained by adding l̃ columns toM. Since Hamming
distance of any (i, j) pair of rows in M̃ can be either greater or equal to the Hamming distance of
corresponding (i, j) pair of rows inM, due the monotonic nature of Hamming distance, we can
write:

dH(M(i, ·),M(j, ·)) ≤ dH(M̃(i, ·),M̃(j, ·)) ∀(i, j) ∈ {1, . . . k}2|i < j

Since the above inequality holds for every pair of rows, therefore:

min
(i,j)∈{1,...k}2|i<j

dH(M(i, ·),M(j, ·))︸ ︷︷ ︸
= κM

≤ min
(i,j)∈{1,...k}2|i<j

dH(M̃(i, ·),M̃(j, ·))︸ ︷︷ ︸
= κM̃

κM ≤ κM̃

■

Proposition 2. For a codebookM, if there exists an assignment of codeword ci ∈ C(l̃) to each vertex
of graph GM such that no two connected vertices receive the same codeword, then the hamming
distance of the codebook κM can be increased by atleast 1 by adding codewords from C(l̃) to the
rows ofM.

Proof : Recall the following two important observations:

1. Increasing the hamming distance of row-pairs in EM by atleast 1 through addition of
columns (or equivalently by appending codewords ci) to M, effectively increases the
minimum hamming distance of the entire codebook by atleast 1.

2. Any pair of distinct codewords in the set C(l̃) differ by at least 1 and atmost l̃, i.e. :
1 ≤ dH(ci, cj) ≤ l̃ ∀ ci, cj ∈ C(l̃), i ̸= j

If we can assign codeword ci from C(l̃) to every row inM such that for every row-pair (i, j) in
EM satisfies dH(ci, cj) ≥ 1, then because of the first observation, it is ensured that the minimum
hamming distance of the entire codebookM increases by at-least 1.

Finally, to ensure that dH(ci, cj) ≥ 1 for all row-pairs in EM, it is sufficient to ensure that ci ̸= cj
for all (i, j) row-pairs in EM because of the second observation. This is same as ensuring that the
vertices of GM are assigned different codewords (colors), since (i, j) pairs in EM forms the edges of
GM. ■

Theorem 1. For any binary code M̃ resulting from adding l̃ columns to an existing binary codeM,
the following holds regarding the hamming distance (recall definition 1) κM̃ of the code M̃:

• If the chromatic number of the graph GM, ξ(GM) is greater than size of the set of possible
codewords C(l̃), i.e. ξ(GM) > |C(l̃)|, then κM̃ = κM.

• In particular, for l̃ ∈ {1, 2} :

κM̃ ≤


κM + l̃, if ξ(GM) = 2

κM + l̃ − 1, if 3 ≤ ξ(GM) ≤ 4

κM. if ξ(GM) ≥ 5

Proof : In proposition 2, we have already established the connection between vertex-coloring of GM
and the increase in Hamming distance ofM, i.e. κM. The first part of the theorem automatically
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follows that since in total we have |C(l̃)| number of codewords (or colors) at our disposal, but if the
minimum number of colors required to color GM is strictly greater than |C(l̃)| , i.e. ξ(GM) > |C(l̃)|,
implies that for at-least one (i, j) row-pair in EM, dH(ci, cj) = 0 as ci = cj . Thus the Hamming
distance of the resulting codebook will not increase, or κM̃ = κM.

To prove second part of the theorem, we only need to take care of the cases when ξ(GM) ≤ |C(l̃)|.

• Case I: ξ(GM) = 2, implies that we need only two colors or codewords.
For l̃ = 1, C(1) = {[−1], [+1]}, using the only possible combination i.e. {[−1], [+1]}, the
hamming distance can be increased by 1.
For l̃ = 2, C(2) = {[−1,−1], [+1,+1], [−1,+1], [+1,−1]}, as we need to pick two
codewords from C(2), therefore there are

(
4
2

)
= 6 possible valid combinations. However

out of these 6 combinations, a maximal gain of 2 can only be achieved by using either
{[−1,−1], [+1,+1]} or {[−1,+1], [+1,−1]}. The remaining 4 combinations will only
lead to a gain of 1.

• Case II: ξ(GM) = 3, implies that we need 3 distinct codewords.
For l̃ = 1, we need to pick 3 codewords from C(1) = {[−1], [+1]}, but since there are only
two codewords, therefore the hamming distance cannot be increased.
For l̃ = 2, C(2) = {[−1,−1], [+1,+1], [−1,+1], [+1,−1]}, we need to pick 3 codewords
from C(2), therefore there are

(
4
3

)
= 4 possible valid combinations. In all the four different

possible combinations there will be codewords with hamming distance of 1, therefore the
maximal gain of only 1 can be achieved.

• Case III: ξ(GM) = 4, implies that we need 4 distinct codewords, similar to previous case
for l̃ = 1 there are only two codewords therefore the hamming distance cannot be increased.
For l̃ = 2, we need to pick 4 codewords from C(2). Since |C(2)| = 4, therefore we need to
all 4 codewords in C(2). Here again there will be codewords with hamming distance of 1,
therefore the maximal gain of only 1 can be achieved. ■

Generalization of Theorem 1 to cases when l̃ ≥ 3:

Following our previous discussion it is not hard to see that we can trivially upper and lower bound
κM̃ as follows:

κM ≤ κM̃ ≤ κM + l̃ (9)

From (9), we know that κM̃ ∈
{
κM, κM +1, . . . , κM + l̃

}
, as κM̃ can only take positive integer

values.
From the first part of theorem 1, we already know that if the chromatic-number of the graph GM is
strictly greater than the size of the set of codewords C(l̃), i.e. ξ(GM) > |C(l̃)|, then κM̃ = κM.
Also, if ξ(GM) = |C(l̃)|, then we need to pick |C(l̃)| number of codewords from C(l̃), i.e. we
need to pick all the codewords in C(l̃), we can only get a maximal gain of 1, therefore we have
κM̃ ≤ κM + 1.
Further, if ξ(GM) = 2, then we need to pick 2 codewords from C(l̃), and by choosing complementary
codewords such as {[1, . . . , 1]︸ ︷︷ ︸

l̃ entries

, [−1, . . . ,−1]︸ ︷︷ ︸
l̃ entries

}, we can get a maximal gain of l̃, thus we have:

κM̃ ≤ κM + l̃.

Therefore we have taken care of the cases when ξ(GM) = 2 and ξ(GM) ≥ |C(l̃)|. Now since ξ(GM)

can only take integer values, therefore the remaining cases are ξ(GM) ∈ {3, . . . , |C(l̃)| − 1}. Now
solving for the remaining cases by enumeration can be quite tedious and prone to human error,
therefore we provide an automated optimization based solution approach.

Recall that we have already discussed earlier that κM̃ ∈
{
κM, κM + 1, . . . , κM + l̃

}
. Consider

the following question: What is the maximum number of codewords that can be selected from C(l̃)
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such that each of these selected codewords are atleast at a Hamming-distance of d̃ apart from each
other? This can be easily answered by solving a integer program which we discuss next. We assign a
binary decision variable xi ∈ {0, 1} ∀ i ∈ {1, . . . , |C(l̃)|} to each codeword ci in C(l̃) representing
the outcome that whether or not the codeword ci is selected. Further to ensure that codewords only
with Hamming-distance of atleast d̃ apart are selected, we add a constraint xi + xj ≤ 1 for every
pair of codewords in C(l̃) for which the Hamming distance is strictly below d̃. Finally, we set the
objective function to

∑
i xi. The IP is given as:

max
x

∑
i

xi (10a)

s.t. (10b)

xi + xj ≤ 1 ∀ (i, j) ∈
{
{1, . . . , |C(l̃)|} × {1, . . . , |C(l̃)|}|dH(ci, cj) < d̃

}
(10c)

xi ∈ {0, 1} ∀ i ∈ {1, . . . , |C(l̃)|} (10d)

For a given l̃ and its corresponding set of codewords C(l̃), we can easily solve the above IP for
different values of d̃ ∈ {1, . . . , l̃}. From the resulting objective function values, we can complete the
earlier remaining cases when ξ(GM) ∈ {3, . . . , |C(l̃)| − 1}. To avoid introduction of new notation
and complexity, we explain on how to complete for the remaining cases, using simple examples.

For l̃ = 3, we solve the above IP with d̃ ∈ {1, 2, 3}, and get 8, 4, 2 as objective function values for
each d̃ respectively. This means that from the set C(3), we can select atmost 8 codewords at a
distance 1, 4 codewords at distance 2 and 2 codewords at a distance 3. Using this information we can
easily infer the following:

κM̃ ≤


κM + 3, if ξ(GM) = 2

κM + 2, if 3 ≤ ξ(GM) ≤ 4

κM + 1, if 5 ≤ ξ(GM) ≤ 8

κM. if ξ(GM) ≥ 9

For l̃ = 4, we solve the above IP with d̃ ∈ {1, 2, 3, 4}, and get 16, 8, 2, 2 as objective function values
for each d̃ respectively. We can easily infer the following:

κM̃ ≤


κM + 4, if ξ(GM) = 2

κM + 2, if 3 ≤ ξ(GM) ≤ 8

κM + 1, if 9 ≤ ξ(GM) ≤ 16

κM. if ξ(GM) ≥ 17

Using the procedure demonstrated above for l̃ = 3 and l̃ = 4, upper bounds on κM̃ can be generated
easily for any l̃.

7.2 Equivalent reformulation of IP1 using L1-norm :

One may be lead to think that the inherent difficulty in solving IP1 comes from bilinear constraints
(1b)-(1c). We now present an alternative formulation of the optimal element-wise codebook design
problem. This formulation, denoted IP3 is a mixed integer linear program (MILP) instead of the
MIQCP IP1. This alternative formulation leverages a useful property of binary vectors: for any
p, q ∈ {+1,−1}r×1, the Hamming distance (i.e. l0-norm), l1-norm and l2-norm are related as
follows: r∑

i=1

1{pi ̸=qi}︸ ︷︷ ︸
l0-norm

=
1

2

r∑
i=1

|pi − qi|︸ ︷︷ ︸
l1-norm

=
1

4

r∑
i=1

(pi − qi)
2

︸ ︷︷ ︸
l22-norm

Thus, by modeling Hamming distances using l1-norm, we can reformulate our codebook design
problem as the following integer program:
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IP3 : max
x

min {d1,2H (x), d1,3H (x), . . . , dk−1,k
H (x)}

di,̂iH (x) =
1

2

L∑
j=1

|xij − xîj | ∀ (i, î) ∈ PN (11a)

ρ1 ≤ 1

2

k∑
i=1

|xij − xiĵ | ≤ ρ2 ∀ (j, ĵ) ∈ PT (11b)

− γ ≤
k∑

i=1

nixij ≤ γ ∀ j ∈ T (11c)

xij ∈ {+1,−1} ∀ (i, j) ∈ N × T (11d)

The absolute value operator | · | in IP3 can be simplified using big-M constraints. Denoting y′ = |y|,
we can lower and upper bound y′ as follows:

Lower: y′ ≥ y ; y′ ≥ −y (12)

Upper: y′ ≤ y +Mz ; y′ ≤ −y +M(1− z) (13)

where M is chosen such that M ≥ 2|y| and z is an auxiliary binary variable (z ∈ {0, 1}). For our
case, choosing M = 4 is sufficient to ensure that (12) and (13) leads to desired linearization of (11a)
and (11b)) in IP2. However, this linearization comes at the cost of introducing additional binary
variables and constraints. Similar to IP1, we here have O(k3) abs-value operators, and therefore
we will have O(k3) additional binary variables. As we already have k × L ≈ k2 binary variables
corresponding to the entries of our codebook, in total we will have O(k3) number of binary variables.
In summary, although IP3 is a linear formulation, it involves O(k3) binary variables in contrast to
O(k2) in the McCormick relaxation i.e.MC(IP1) of IP1.

In practice we observe that IP3 suffers from the same computational challenge as IP1, i.e. its
LP-relaxation is quite loose for tractably solving practical instances of the codebook design problem.

7.3 Choosing values of ρ1, ρ2 & γ:

Choosing ρ1 and ρ2: In our experiments we observed that the final accuracy is not highly sensitive
to as long as ρ1 and ρ2 are defined in a reasonable range. To avoid exactly same columns ρ1 ≥ 1 and
to avoid complementary columns ρ2 ≤ k − 1. We used ρ1 = ⌊k/3⌋ and ρ2 = ⌊2k/3⌋.

Choosing γ: To better understand how γ enforces the balanced column critera, lets consider
a dataset in which each class has same number of data-points i.e. ni = nj ∀ (i, j) ∈
{1, . . . , k}, where i ̸= j and without loss of generality k is even. In this setting, the valid range of γ
is given as 0 ≤ γ ≤ k − 2. If γ = 0, then a hard balanced column criteria will be enforced, i.e. both
the binary classes will have exactly the same number of data-points and if γ = k − 2, then maximum
amount of imbalance is allowed.

A smaller value of γ makes IP2 tighter, consequently faster to solve and overall improves the
error-correcting capability of the final codebook. However, in such cases, as the resulting columns
are highly balanced, therefore training binary classifiers become relatively hard, in particular for
simple linear models [2, 9, 41] and thus overall adversely affecting final classification accuracy. On
the contrary, imbalanced columns are easier to learn for simple (linear) models however can be
challenging for complex models like DNNs (requiring to choose the training loss function carefully).
Therefore while choosing the value of γ, the complexity of the binary classifier should also be
considered.

In in our experiments when k is small, i.e k = 10 for MNIST and CIFAR10, we observed that the
final classification accuracy was not highly sensitive to the value of γ. On large class experiments
i.e. k ≥ 50, we observed that in a very hard balanced column criteria setting, where we set γ to low
values such that only near 50%-50% splits are allowed, in this setting we actually observed a slight
reduction in the final accuracy. Therefore, we used an intermediary value of γ such that splits of at
most 60%-40% or 65%-35% are allowed.
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7.4 Decoding scheme:

We use a class score based decoding scheme same as [16]. We compute a score for each class by
carefully adding the output score of each binary classifier logit depending upon whether the entry
of that class (or row) has +1 or -1. Normalization is not required for binary codes as each row of a
binary code has the same number of entries. 1-vs-1 (a ternary code) is balanced in the sense that each
row has the same number of zero entries hence normalization is not required. In fact we observed
that score based decoding consistently provides slightly better accuracy over Hamming decoding.
Further Hamming decoding has issues as pointed out in [39].

7.5 Integer Programming Formulation to solve vertex-coloring

For the graph GM with set of vertices as V and set of edges as EM, the vertex-coloring problem can
be solved by solving the following integer program:

min
w

H∑
i=1

wi (14a)

s.t.
H∑
i=1

xvi = 1 ∀ v ∈ V (14b)

xui + xvi ≤ wi ∀ (u, v) ∈ EM, i = 1, . . . ,H (14c)
xvi ∈ {0, 1} ∀ v ∈ V, i = 1, . . . ,H

wi ∈ {0, 1} ∀ i = 1, . . . ,H

In the above IP, wi’s are the binary decision variables representing the outcome whether or not the
i-th color is used to color any vertex; xvi’s represent the binary decision whether or not, the vertex
v is colored using i-th color. (14a) computes the chromatic number of the graph; constraint (14b)
ensures that each vertex is assigned only a single color; constraint (14c) ensures that the vertices of
the edge (u, v) are assigned different colors.

Note that H is a pre-computed upper-bound on the chromatic number. A simple upper-bound
on chromatic number is max(deg(GM)) + 1. Therefore, we can solve the above IP with H =
max(deg(GM)) + 1.

7.5.1 Using vertex-coloring solution to generate a feasible solution to IP2

x̃11 x̃12

x̃21 x̃22

x̃31 x̃32

...
...

x̃k1 x̃k2


⇐⇒



c1

c2

c3
...

ck


where ci ∈ C(l̃). For l̃ = 2,

C(2) :=
{

[+1,-1] , [+1,+1] ,

[-1,+1] , [-1,-1]
}

Figure 5: Addition of columns is equivalent to addition of codewords.

Recall that the main motivation behind theorem 1, was that addition of l̃ number of columns to an
existing code can also be viewed as addition of codewords ci to each row of the codebook, where
ci ∈ C(l̃); see figure 5. Thanks to theorem 1, using the optimal objective function value obtained
after solving the vertex-coloring IP, we can obtain an upper bound to IP2. But note that we also
obtain a valid color assignment to each vertex in the graph GM such that no two connected vertices
have the same color. As shown in figure 5 (on the left), to every color, we can assign a codeword
and thus also providing us with the values for the entries x̃ij in the two columns, therefore providing
us with a possibly feasible solution to IP2. However this solution may not always be a feasible
solution to IP2, depending on the hardness of the column separation and balanced column criteria
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constraints. Interestingly, we can refactor this infeasible solution to generate a feasible solution using
the procedure discussed next.

We first make an important observation regarding the structure of GM = (V, EM). In practice, we
observe that a large number of vertices in V have degree 0. We denote the set of zero-degree vertices
with V0 and the remaining set of vertices as Vh.

This also means that any row inM, corresponding to a vertex in V0, already has a hamming distance
of at-least κM + 1 to all other remaining k − 1 rows inM. Further note that vertices in V0 can be
assigned any color out of ξ(GM) number of colors, without violating vertex-coloring.

Since it doesn’t matter which color is assigned to vertices in V0, therefore it also doesn’t matter which
codeword is assigned to the rows corresponding to vertices in V0. We exploit this to refactor the above
discussed infeasible solution into a feasible solution to IP2. Instead of assigning codewords to all k
rows, we assign codewords to only those rows corresponding to vertices in Vh, thus in a way assigning
value to x̃ij ∀ i ∈ Vh, j ∈ T̃ . We therefore do-not assign any value to x̃ij ∀ i ∈ V0, j ∈ T̃ .
We provide this partial solution to Gurobi as a possible initial solution with the optimization model as
IP2. A useful feature of Gurobi solver is that if a partial solution is provided by the user, then instead
of outrightly rejecting this partial solution, Gurobi first tries to complete this solution by trying to fill
the missing values such that all the model constraints are satisfied. If the partial solution results in a
feasible solution then Gurobi may start branch-and-bound (B&B) procedure if this feasible solution
is not optimal. In practice, we observe that in most cases the feasible solution is actually optimal and
therefore Gurobi does not even have to start the B&B procedure. However if the partial solution does
not result in a feasible solution then Gurobi starts (B&B) procedure as usual.

Finally, one thing to note is that different codewords can be assigned to different colors thus resulting
in different initial partial solutions. Few permutation for l̃ = 2 and ξ(GM) = 4 are shown in figure 6.
Therefore if the partial solution from any particular permutation fails to result in a feasible, a different
permutation can be tried.

C(2) :=
{

[+1,-1] , [+1,+1] , [-1,+1] , [-1,-1]
}

C(2) :=
{

[+1,-1] , [+1,+1] , [-1,+1] , [-1,-1]
}

C(2) :=
{

[+1,-1] , [+1,+1] , [-1,+1] , [-1,-1]
}

C(2) :=
{

[+1,-1] , [+1,+1] , [-1,+1] , [-1,-1]
}

Figure 6: Some different permutations of codewords assigned to individual colors.

7.6 Details of different datasets:

Dataset
Number of

classes k

Number of

Training samples

Number of

Test samples

MNIST [27] 10 60,000 10,000

CIFAR10 [25] 10 50,000 10,000

CIFAR100 [25] 100 50,000 10,000

Caltech-101 [10] 101 3,030 5,647

Caltech-256 [15] 257 15,420 15,187
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7.7 Details regarding the network architecture, hyperparameters and training for different
experiments:

7.7.1 MNIST/CIFAR10:

MNIST:
For all our experiments on the MNIST dataset we use the following network architecture, where the
number of output classes is 10 for a multi-class classifier and 2 for any binary classifier.

model =nn.Sequential(
nn.Conv2d(1, 32, 5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d((2, 2), stride=(2, 2), padding=0),
nn.Conv2d(32, 64, 5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d((2, 2), stride=(2, 2), padding=0),
Flatten(),
nn.Linear(64× 7× 7, 1024),

nn.ReLU(),
nn.Linear(1024, n_classes))

In the above model, Flatten() layer is defined using the following class:
class Flatten(nn.Module):

def forward(self, input):
return input.view(input.size(0), -1)

We use a learning rate lr = 0.01, batch size of 128 and train for a total of 50 epochs and reduce
the learning rate by a factor of 10 after 25 epochs. We use cross-entropy as our classification loss
function.

CIFAR10: For all our experiments on CIFAR10 dataset, we use a ResNet-18 network architecture
[19] where the size of output FC-layer is 10 for multi-class classifier and 2 for binary classifiers. We
use a batch size of 128, with an initial learning rate lr=0.1, momentum=0.9 and weight decay =5e− 4.
We train for 200 epochs and reduce the learning rate by a factor of 5 after 60,120 and 160 epochs.
We use the following standard data-augmentation methods during training:

TRAIN_TRANSFORMS=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])

TEST_TRANSFORMS=transforms.Compose([
transforms.ToTensor(),
normalize])

7.7.2 CIFAR100, Caltech-101, Caltech-256 (Transfer Learning):
We now discuss the details of our transfer-learning experiments on CIFAR100, Caltech-101, Caltech-
256. For each of these three datasets we leverage fixed feature transfer-learning. Further, for each
dataset we experiment with two different types of models trained on ImageNet provided by [42]. The
first model is nominally trained while the second model is adversarially trained.

Nominally trained model: A ResNet-50 model trained on ImageNet using SGD with batch size of
512, momentum of 0.9, and weight decay of 1e− 4. It is trained for 90 epochs with an initial learning
rate of 0.1 that drops by a factor of 10 every 30 epochs. We use the same pre-trained model across all
the three datasets. The standard natural accuracy of 75.8% is achieved.
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Adversarially trained Robust model: A ResNet-50 model trained on ImageNet using adversarial
training [31]. It is trained on adversarial examples generated within maximum allowed l2-norm based
ϵ perturbations using 3 attack steps and a step size of 2

3ϵ.
We select ϵ = {3, 1, 0.05} for CIFAR100, Caltech-101 and Caltech-256 respectively [42]. Standard
natural accuracy of 62.83%, 70.43% and 75.59% is achieved for each of the individual models
respectively.

Training multi-class classifier:
For training multi-class classifier, we freeze the weights of all the layers except the last fully-
connected layer. Therefore the final feature layer is of size 2048 as we use ResNet-50 models. We
next replace the last fully-connected (FC) output layer of size 1000 with a small fully connected
deep neural network with 3 hidden layers of size 2000− 1000− 500 and the final output layer of
size k. The weights of the small DNN are randomly initialized. We use multi-class cross-entropy
classification loss. We train only this fully-connected layer for 150 epochs using SGD with batch
size of 64, momentum of 0.9, weight decay of 5e− 4. We tested with different initial learning rate
lr ∈ {0.1, 0.01, 0.001} and the learning rate drops by a factor of 10 after every 50 epochs. For all
the datasets, initial lr = 0.1 yielded best results. We used the following standard data-augmentation
methods:

TRAIN_TRANSFORMS=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
TEST_TRANSFORMS=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
])

Note that we also tested the setting where after removing the final output layer of size 1000 is simply
replaced with a single fully connected layer of size k which is randomly initialized. We did not
observe any change in the final accuracy.
Training binary classifiers for codebooks:
We want to train binary classifiers in exactly the same manner in which the multi-class classifier is
trained, except here the final fully connected layer of size 1000 is replaced with a small deep neural
network with 3 hidden layers of size 2000 − 1000 − 500 and the final output layer of size 2. The
weights of the small DNN are randomly initialized and we use cross-entropy binary classification
loss. However, to reduce the computation time, we make use of the feature-extraction trick which we
describe next.

We note that since the weights of all the previous layers except for the last three hidden layer small
DNN are fixed, therefore the input to the small DNN is exactly same irrespective of the subsequent
small DNN, we therefore first extract and save features along with their class labels as numpy matrices
after every epoch, for a total of 150 epochs. Recall that since we use data-augmentation, therefore
we need to do it for 150 epochs. We use these extracted features along with the class labels as our
new training dataset. Note that for any particular dataset and model type, this computation needs to
be done only once. Next, we define a 3 hidden layer binary neural-network with extracted feature
size as the input size and 2 as output size. We then train this randomly initialized small binary
neural-network using exactly the same hyperparameters and training schedule as described for the
multi-class classifier. Using this procedure, we obtain a speed-up of around 50x-60x.

7.8 Dense Codes:

Another way of generating error-correcting output codes for classification known as Dense codes
was proposed in [2]. Authors in [2] propose generating 10000 matrices, whose entries are randomly
selected. The elements are chosen uniformly at random from {+1,−1} and the resulting codebooks
are called dense codes. Out of the 10000 random matrices generated, after discarding matrices which
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do-not constitute a valid codebook, the one with the largest minimum Hamming distance among rows
is selected. Note that since out of the 10000 matrices the one with the largest minimum Hamming
distance is selected, therefore despite the matrices being generated randomly, the final codebook can
have very high row-separation.

In our IP experiments we have provided two baselines for Dense codes. In the baseline labelled
as Dense (random), we randomly generated 1000 dense codebooks and have provided the average
of their min. Hamming distance. This corresponds to the expected value of the min. Hamming
distance of a randomly generated dense matrix. In the baseline labelled as Dense (best out of 10k),
for each experiment we generated 10000 random dense codebooks, removed the ones which do not
correspond to a valid code, and from remaining chose the one with the Max. min Hamming distance.
We reported the averages of 10 such runs for each k.

Note that [2] also proposed a way to generate random ternary codes known as sparse codes. In all
our experiments sparse codes provided relatively low multi-class classification accuracy. Therefore
in comparison to Dense, Hadamard and OVA, we believe that sparse-codes do-not serve as a good
benchmark to compare classification accuracy.

7.9 Justification for ⌈log2 k⌉

For a binary code with k classes, the minimum numbers of columns (L) it can have, while still
uniquely encoding each class is ⌈log2 k⌉. This can be easily derived using the fact that 2L ≥ k =⇒
L ≥ log2 k. Since L has to be an integer, therefore we get L ≥ ⌈log2 k⌉.

7.10 Scalability to Extreme Multi-Label (XML) Classification tasks:

Extreme multi-label (XML) classification refers to classification tasks where the goal is to predict a
small subset of relevant labels from an extremely large set of labels. The size of the label set (i.e. k)
can be as large as 100 million; typically the range is of the order of 104 − 107. For such large label
spaces deep neural networks (DNNs) have limited applicability as the final fully connected output
layer has order O(k2) number of parameters, and therefore DNN models often do not fit in the GPU
memory [29]. Due to this limitation, the use of 1-vs-All type classifiers is highly predominant for
XML classification tasks [48, 23, 3]. Still, 1-vs-All requires training of k individual binary classifiers,
which can be computationally quite expensive especially if k is of the order of 106, as a large number
of binary classifiers (order of 106) need to be trained. Therefore ECOC-based classifiers can very
useful here. In particular, compact ECOC codebooks with high error-correcting capability can be a
good substitute for 1-vs-All codebook.

In particular, ECOC-based codebooks offer three major advantages in comparison to 1-vs-All
codebook: first, the training time can be significantly reduced if a compact codebook is used. Second,
the prediction time will automatically reduce as the number of binary classifiers on which a data-point
needs to be evaluated is much smaller. Third, as the number of required binary classifiers are small,
therefore the overall model size will also be reduced significantly. Faster prediction times and smaller
model sizes are important for real-world deployment.

The Greedy algorithm developed in this paper can be easily adapted to generate high-quality compact
codebooks for XML classification tasks when k = 104 − 106. The main modification required is that
instead of solving the vertex-coloring problem exactly, an inexact vertex-coloring solution procedure
based on popular heuristics such as DSATUR [4], RLF [28] or ColPack [13] can be used. These
heuristics can scale to very large graphs as their complexity scales logarithmically in the number of
vertices ( equal to k) , i.e. O(|V |logk), where |V | is the number of edges [44]. Once we obtain the
vertex-coloring solution, we can use the color assignment to generate columns as discussed earlier in
section 7.5.1. Therefore, our greedy algorithm can scale to very large problem sizes such as XML
classification tasks.
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7.11 McCormick Inequalities

We provide a general derivation of McCormick inequalities. Consider the bilinear term xy i.e. the
product of two variables x and y . Bounds on both the variable are assumed to known:
xL ≤ x ≤ xU

yL ≤ y ≤ yU

z = xy

Since, x− xL ≥ 0 and y − yL ≥ 0 =⇒ (x− xL)(y − yL) ≥ 0, therefore:

(x− xL)(y − yL) ≥ 0

xy − xyL − yxL + xLyL ≥ 0

z − xyL − yxL + xLyL ≥ 0 as z = xy

z ≥ xyL + yxL − xLyL

Since, xU − x ≥ 0 and yU − y ≥ 0 =⇒ (xU − x)(yU − y) ≥ 0, therefore:

(xU − x)(yU − y) ≥ 0

xUyU − yxU − xyU + xy ≥ 0

xUyU − yxU − xyU + z ≥ 0 as z = xy

z ≥ yxU + xyU − xUyU

Since, xU − x ≥ 0 and y − yL ≥ 0 =⇒ (xU − x)(y − yL) ≥ 0, therefore:

(xU − x)(y − yL) ≥ 0

yxU − xUyL − xy + xyL ≥ 0

yxU − xUyL − z + xyL ≥ 0 as z = xy

yxU − xUyL + xyL ≥ z

Since, x− xL ≥ 0 and yU − y ≥ 0 =⇒ (x− xL)(yU − y) ≥ 0, therefore:

(x− xL)(yU − y) ≥ 0

xyU − xy − xLyU + yxL ≥ 0

xyU − z − xLyU + yxL ≥ 0 as z = xy

xyU − xLyU + yxL ≥ z

Further, since x ∈ [−1, 1] i.e. xL = −1, xU = 1 and y ∈ [−1, 1] i.e. yL = −1, yU = 1, therefore:

z ≥ −x− y − 1 (15a)
z ≥ x+ y − 1 (15b)
z ≤ −x+ y + 1 (15c)
z ≤ x− y + 1 (15d)

Note that if x ∈ {−1,+1} and y ∈ {−1,+1}, and since z = xy, then z should also take integer
values i.e. z ∈ {+1,−1}. However addition of constraint like z2 = 1 or z ∈ {−1,+1} is not
required as the equations (15) are tight and ensures that z ∈ {+1,−1}.
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Figure 7: Vertex-coloring solve time distribution
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7.12 Rank-1 Semidefinite Relaxation:

Any non-convex QCQP can be written in the following standard form:

Q1 : min
x

xTP0x+ qT0 x+ r0

s.t.

xTPix+ qTi x+ ri ≤ 0 i = 1, . . . ,m

Since, xTPx = Tr(P (xxT )), we can re-write the above quadratic program as follows:

Q1 : min
x

Tr(XP0) + qT0 x+ r0

s.t.

Tr(XPi) + qTi x+ ri ≤ 0 i = 1, . . . ,m

X = xxT

We can now relax the above problem into convex problem by replacing the last non-convex equality
constraint X = xxT with a (convex) positive Semi-definiteness constraint X − xxT ⪰ 0. We can
now get a lower bound on the optimal value of Q1 by solving the following convex problem:

min
x

Tr(XP0) + qT0 x+ r0

s.t.

Tr(XPi) + qTi x+ ri ≤ 0 i = 1, . . . ,m

X ⪰ xxT

The last constraint X ⪰ xxT is convex and can be formulated as a Schur complement.

min
x

Tr(XP0) + qT0 x+ r0

s.t.

Tr(XPi) + qTi x+ ri ≤ 0 i = 1, . . . ,m[
X x

xT 1

]
⪰ 0

The above optimization problem is an SDP and is known as the Rank-1 SDP relaxation of the
non-convex QCQP. The optimal value of this SDP is a lower-bound on the optimal value of the
non-convex QCQP, i.e. Q1.
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