
Appendices
A Proofs in Section 3

A.1 Proof of Lemma 1

1. When e 6∈ WΦ, we have E = Rd and WΦ,E = WΦ. By Theorem 1 in [10], we know that the
projected Bellman equation (3.4) has a unique fixed point θ∗. Thus, L = {θ∗}.
2. When e ∈WΦ, θe is a unique solution to Φθ = e as Φ is full column rank. We first show that the
set of solutions to the projected Bellman equation (3.4) takes the form {θ̃ + cθe|c ∈ R}, where θ̃ is
any solution to (3.4). Let θ := θ̃ + cθe for any scalar c. Then,

ΠD,WΦ
T (λ)Φθ = ΠD,WΦ

T (λ)Φ
(
θ̃ + cθe

)
= ΠD,WΦ

T (λ)
(

Φθ̃ + ce
)

= ΠD,WΦT
(λ)Φθ̃ + ce

= Φθ̃ + cΦθe

= Φ
(
θ̃ + cθe

)
= Φθ.

On the other hand, suppose that θ is not of the form θ̃ + cθe. Then,

ΠD,WΦ
T (λ)Φθ = ΠD,WΦ

T (λ)Φ
(
θ − θ̃ + θ̃

)
= ΠD,WΦ

T (λ)Φθ̃ + ΠD,WΦ
P (λ)Φ

(
θ − θ̃

)
= Φθ̃ + ΠD,WΦ

P (λ)Φ
(
θ − θ̃

)
6= Φθ̃ + Φ

(
θ − θ̃

)
= Φθ,

where the "not equal to" is due to Lemma 2 in [10] and the non-expansiveness of the projection
ΠD,WΦ

.

As the set of solutions to Eq. (3.4) is a line parallel to the subspace {cθe|c ∈ R} and E is the
orthogonal complement of {cθe|c ∈ R}, there is a unique solution of Eq. (3.4) that lies in E. We refer
to this particular solution as θ∗. It then follows that θ∗ is also a solution to Φθ = ΠD,WΦ,E

T (λ)Φθ.

Now we just need to show that the solution to Φθ = ΠD,WΦ,E
T (λ)Φθ is unique. We notice that the

equation Φθ = ΠD,WΦ,E
T (λ)Φθ is equivalent to

Π2,EΦ>D
(
P (λ) − I

)
Φ︸ ︷︷ ︸

A′

θ = Π2,EΦ>D

[
r(µ)

1− λ
e−R(λ)

]
︸ ︷︷ ︸

b′

,

whereR(λ) = (1− λ)
∑∞
m=0 λ

m
∑m
k=0 P

kR.

Suppose θ∗ is a solution of the equation Φθ = ΠD,WΦ,E
T (λ)Φθ. Then we know that θ∗ must lie

in the subspace E. Thus, we have Φθ∗ = ΦΠ2,Eθ
∗. By the definition of the projection operator

ΠD,WΦ,E
, we have

ΠD,WΦ,E
V = argminV̄ ∈{Φθ|θ∈E}‖V − V̄ ‖D = argminV̄ ∈{ΦΠ2,Eθ|θ∈Rd}‖V − V̄ ‖D.

Therefore, using Φθ∗ = ΦΠ2,Eθ
∗, the equation Φθ∗ = ΠD,WΦ,E

T (λ)Φθ∗ is equivalent to

ΦΠ2,Eθ
∗ ∈ argminV̄ ∈{ΦΠ2,Eθ|θ∈Rd}‖T

(λ)ΦΠ2,Eθ
∗ − V̄ ‖D.
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Thus, by the first-order optimality condition and the definition of T (λ), we have

Π2,EΦ>D

[
R(λ) − r(µ)

1− λ
e+ P (λ)ΦΠ2,Eθ

∗ − ΦΠ2,Eθ
∗
]

= 0

Using Φθ∗ = ΦΠ2,Eθ
∗ again and rearranging terms, we have

Π2,EΦ>D
(
P (λ) − I

)
Φθ = Π2,EΦ>D

[
r(µ)

1− λ
e−R(λ)

]
.

On the other hand, suppose θ∗ is in the subspace E and satisfies

Π2,EΦ>D
(
P (λ) − I

)
Φθ = Π2,EΦ>D

[
r(µ)

1− λ
e−R(λ)

]
.

Then, following the same arguments above reversely, we can show that θ∗ is a solution of the equation

Φθ = ΠD,WΦ,E
T (λ)Φθ.

For any θ ∈ E, we have

θ>A′θ = θ>Π2,EΦ>D
(
P (λ) − I

)
Φθ

= θ>Π>2,EΦ>D
(
P (λ) − I

)
Φθ

= (Π2,Eθ)
>

Φ>D
(
P (λ) − I

)
Φθ

= θ>Φ>D
(
P (λ) − I

)
Φθ

≤ −∆ ‖θ‖22 ,
where the last inequality is due to Lemma 2. Suppose A′θ1 = b′ and A′θ2 = b′ for some θ1, θ2 ∈ E.
Then, 0 = (θ1 − θ2)>A′(θ1 − θ2) ≤ −∆ ‖θ1 − θ2‖22, which implies θ1 = θ2. Therefore, Φθ =

ΠD,WΦ,E
T (λ)Φθ has a unique solution.

A.2 Proof of Lemma 2

For every θ ∈ E, we have Φθ 6= e. This is because

(1) if e 6∈WΦ, then there is no θ ∈ Rd = E satisfying Φθ = e.
(2) if e ∈WΦ, then θe 6∈ E is the unique solution to Φθ = e.

Thus Vθ := Φθ is a non-constant vector in R|S| for any θ ∈ E. Using the fact proved in Lemma 7 of
[10] that J>D

(
I − P (λ)

)
J > 0 for any non-constant vector J ∈ R|S| , for any non-zero θ ∈ E, we

have

θ>Φ>D
(
I − P (λ)

)
Φθ = V >θ D

(
I − P (λ)

)
Vθ > 0.

Since the set {θ ∈ E|‖θ‖2 = 1} is nonempty and compact, by the extreme value theorem, we have

∆ := min
‖θ‖2=1,θ∈E

θ>Φ>D
(
I − P (λ)

)
Φθ > 0.

Under Assumption 1, the steady-state expectations A := Eπ [A(Xt)] is given by

A =

[
−cα 0

− 1
1−λΦ>De Φ>D

(
P (λ) − I

)
Φ

]
,

We first rewrite the minimization problem min‖Θ‖2=1,Θ∈R×E −Θ>AΘ as

min√
r̄2+‖θ‖22=1,r̄∈R,θ∈E

cαr̄
2 +

r̄

1− λ
θ>Φ>De+ θ>Φ>D

(
I − P (λ)

)
Φθ.
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Since ∣∣∣ r̄

1− λ
θ>Φ>De

∣∣∣ =
|r̄|

1− λ

∣∣∣θ>Φ>De
∣∣∣

=
|r̄|

1− λ

∣∣∣ (Φθ)> π∣∣∣
≤ |r̄|

1− λ
‖π‖1 ‖Φθ‖∞

=
|r̄|

1− λ
‖Φθ‖∞

≤ |r̄|
1− λ

max
i∈S
‖φ(i)‖2 ‖θ‖2

≤
|r̄| ‖θ‖2
1− λ

, ∀r̄ ∈ R, θ ∈ E,

and

θ>Φ>D
(
I − P (λ)

)
Φθ ≥ ∆ ‖θ‖22 , ∀θ ∈ E,

then we have

min√
r̄2+‖θ‖22=1,r̄∈R,θ∈E

cαr̄
2 +

r̄

1− λ
θ>Φ>De+ θ>Φ>D

(
I − P (λ)

)
Φθ

≥ min√
r̄2+‖θ‖22=1,r̄∈R,θ∈E

cαr̄
2 −
|r̄| ‖θ‖2
1− λ

+ ∆ ‖θ‖22

= min
r̄∈[−1,1]

cα|r̄|2 −
1

1− λ
|r̄|
√

1− |r̄|2 + ∆
(
1− |r̄|2

)
= min
x∈[0,1]

cαx−
1

1− λ
√
x(1− x) + ∆ (1− x)

= ∆ + min
x∈[0,1]

(cα −∆)x− 1

1− λ
√
x(1− x).

When cα ≥ ∆ +
√

1
∆2(1−λ)4 − 1

(1−λ)2 , we have

min
x∈[0,1]

(cα −∆)x− 1

1− λ
√
x(1− x) ≥ −∆

2
,

which implies that

min
‖Θ‖2=1,Θ∈R×E

−Θ>AΘ ≥ ∆

2
.

A.3 Proof of Theorem 1

Proof. Part (1): auxiliary algorithm. Suppose the sequence of iterates {(r̄t, θt)} is generated
by Algorithm 1. Then, the sequence of iterates {(r̄t,Π2,Eθt)} can be generated by the following
auxiliary algorithm

r̄t+1 = r̄t + cαβt(R(st)− r̄t) and θt+1 = θt + βtδt(θt)Π2,Ezt, (A.1)

with initial values r̄0 and Π2,Eθ0. Note that the iterates {(r̄t, θt)} uniquely determines the iterates
{(r̄t,Π2,Eθt)}.
The auxiliary algorithm (A.1) can be rewritten in the following vector form

Θt+1 = Θt + βt

[
Ã (Xt) Θt + b̃ (Xt)

]
, (A.2)

where

Ã(Xt) =

[
−cα 0
−Π2,Ezt Π2,Ezt

(
φ(st+1)> − φ(st)

>)]
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and

b̃(Xt) =

[
cαR(st)
R(st)Π2,Ezt

]
.

If we define

Π :=

[
1 0
0 Π2,E

]
,

then we have Ã(Xt) = ΠA(Xt) and b̃(Xt) = Πb(Xt).

Under Assumption 1, the steady-state expectations Ã := Eπ
[
Ã(Xt)

]
and b̃ := Eπ

[
b̃(Xt)

]
are given

by

Ã = ΠA =

[
−cα 0

− 1
1−λΠ2,EΦ>De Π2,EΦ>D

(
P (λ) − I

)
Φ

]
,

and

b̃ = Πb =

[
cαr(µ)

Π2,EΦ>DR(λ)

]
.

Stochastic approximation theory shows that the asymptotic behavior of the sequence {(r̄t,Π2,Eθt)}
generated by (A.1) is closely linked with the corresponding ordinary differential equation Θ̇t =
ÃΘt + b̃ and the limit point of {(r̄t,Π2,Eθt)} should satisfies the equation ÃΘ + b̃ = 0. Solving
this equation, we have the limit point of {(r̄t,Π2,Eθt)} is (r(µ), θ∗).

We notice that

min
‖Θ‖2=1,Θ∈R×E

−Θ>ÃΘ

= min√
r̄2+‖θ‖22=1,r̄∈R,θ∈E

cαr̄
2 +

r̄

1− λ
θ>Π2,EΦ>De+ θ>Π2,EΦ>D

(
I − P (λ)

)
Φθ

= min√
r̄2+‖θ‖22=1,r̄∈R,θ∈E

cαr̄
2 +

r̄

1− λ
θ>Φ>De+ θ>Φ>D

(
I − P (λ)

)
Φθ

= min
‖Θ‖2=1,Θ∈R×E

−Θ>AΘ ≥ ∆

2
.

Furthermore, ∥∥∥Ã (Xt)
∥∥∥

2
= ‖ΠA (Xt)‖2
≤ ‖A (Xt)‖2
≤ ‖A(Xt)‖F

=
√
c2α + ‖zt‖22 + ‖zt [φ(st+1)> − φ(st)>] ‖2F

≤
√
c2α + ‖zt‖22 + ‖zt [φ(st+1)> − φ(st)>] ‖22

≤
√
c2α + ‖zt‖22 + (‖zt‖2 ‖φ(st+1)‖2 + ‖zt‖2 ‖φ(st)‖2)

2

≤

√
c2α +

1

(1− λ)2
+

4

(1− λ)2

=

√
c2α +

5

(1− λ)2
,
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and ∥∥∥b̃ (Xt)
∥∥∥ = ‖Πb (Xt)‖2
≤ ‖b (Xt)‖2

≤
√

(cαR(st))2 +R(st)2‖zt‖22

≤

√
c2α +

1

(1− λ)2
.

Part (2): general finite-time bound. For ease of notation, we let

Et [·] := E
[
·|Θt−τ(βt), Xt−τ(βt)

]
,

and

βt1,t2 :=

t2∑
k=t1

βk.

Note that in this part, Θt :=

[
r̄t

Π2,Eθt

]
, Θ∗ :=

[
r(µ)
θ∗

]
, A(Xt) := Ã(Xt), A := Ã, b(Xt) := b̃(Xt),

b := b̃, Amax :=
√
c2α + 5

(1−λ)2 , bmax :=
√
c2α + 1

(1−λ)2 , η :=
√
c2α + 5

(1−λ)2 .

The step size sequence {βt} satisfies the following conditions: (i) {βt} are positive and non-
increasing; (ii) there exists a smallest positive integer t∗ such that β0,t∗−1 ≤ 1

2η , and for all t ≥ t∗,
βt−τ(βt),t−1 ≤ min{ 1

4η ,
∆

228η2 } and βt−τ(βt),t−1

τ(βt)βt
≤ 2.

For ant t ≥ 0, we have

Et
[
‖Θt+1 −Θ∗‖22 − ‖Θt −Θ∗‖22

]
= Et

[
‖Θt+1 −Θt + Θt −Θ∗‖22 − ‖Θt −Θ∗‖22

]
= Et

[
‖Θt+1 −Θt‖22 + 2 (Θt −Θ∗)

>
(Θt+1 −Θt)

]
= Et

[
‖Θt+1 −Θt‖22

]
+ 2βtEt

[
(Θt −Θ∗)

>
(A(Xt)Θt + b(Xt))

]
= β2

tEt
[
‖A(Xt)Θt + b(Xt)‖22

]
+ 2βtEt

[
(Θt −Θ∗)

>
(A(Xt)Θt + b(Xt)−AΘt − b)

]
+ 2βtEt

[
(Θt −Θ∗)

>
(AΘt + b)

]
step 1. Bounding ‖A(Xt)Θt + b(Xt)‖22
Since A(Xt) and b(Xt) are uniformly bounded by Amax and bmax respectively, we then have

‖A(Xt)Θt + b(Xt)‖2 ≤ ‖A(Xt)‖2‖Θt‖2 + ‖b(Xt)‖2
≤ Amax‖Θt‖2 + bmax

≤ η (‖Θt‖2 + 1) ,

which implies that

‖A(Xt)Θt + b(Xt)‖22 ≤ η2 (‖Θt −Θ∗ + Θ∗‖2 + 1)
2

≤ η2 (‖Θt −Θ∗‖2 + ‖Θ∗‖2 + 1)
2

≤ 2η2
[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]
.

step 2. Bounding (Θt −Θ∗)
>

(AΘt + b)
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Since AΘ∗ + b = 0 and min‖Θ‖2=1,Θ∈R×E −Θ>AΘ ≥ ∆
2

(Θt −Θ∗)
>

(AΘt + b) = (Θt −Θ∗)
>

(AΘt −AΘ∗)

= (Θt −Θ∗)
>
A (Θt −Θ∗)

≤ −∆

2
‖Θt −Θ∗‖22

step 3. Bounding Et
[
(Θt −Θ∗)

>
(A(Xt)Θt + b(Xt)−AΘt − b)

]
Et
[
(Θt −Θ∗)

>
(A(Xt)Θt + b(Xt)−AΘt − b)

]
= Et

[(
Θt −Θt−τ(βt) + Θt−τ(βt) −Θ∗

)>
(A(Xt)Θt + b(Xt)−AΘt − b)

]
= Et

[(
Θt −Θt−τ(βt)

)>
(A(Xt)Θt + b(Xt)−AΘt − b)

]
︸ ︷︷ ︸

(A1)

+ Et
[(

Θt−τ(βt) −Θ∗
)>

(A(Xt)Θt + b(Xt)−AΘt − b)
]

︸ ︷︷ ︸
(A2)

(A1) ≤ Et
[
|
(
Θt −Θt−τ(βt)

)>
(A(Xt)Θt + b(Xt)−AΘt − b) |

]
≤ Et

[
‖
(
Θt −Θt−τ(βt)

)
‖2‖A(Xt)Θt + b(Xt)−AΘt − b‖2

]
≤ 2ηEt

[
(‖Θt‖2 + 1) ‖Θt −Θt−τ(βt)‖2

]
≤ 8η2βt−τ(βt),t−1Et

[
(‖Θt‖2 + 1)

2
]

≤ 8η2βt−τ(βt),t−1Et
[
(‖Θt −Θ∗‖2 + ‖Θ∗‖2 + 1)

2
]

≤ 16η2βt−τ(βt),t−1Et
[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]

The 4th inequality holds because for any 0 ≤ t1 < t2 satisfying βt1,t2−1 ≤ 1
4η , the following

inequality (see lemma 2.3 in [16] for a proof) hold:

‖Θt2 −Θt1‖2 ≤ 4ηβt1,t2−1 (‖Θt2‖2 + 1) .

Since we have assumed that βt−τ(βt),t−1 ≤ 1
4η , then we have

2ηEt
[
(‖Θt‖2 + 1) ‖Θt −Θt−τ(βt)‖2

]
≤ 8η2βt−τ(βt),t−1Et

[
(‖Θt‖2 + 1)

2
]
.

Note that
A(Xt)Θt + b(Xt)−AΘt − b

= A(Xt)Θt−τ(βt) −AΘt−τ(βt) + b(Xt)− b
+A(Xt)Θt −AΘt −A(Xt)Θt−τ(βt) +AΘt−τ(βt)

=
[
(A(Xt)−A) Θt−τ(βt) + b(Xt)− b

]
+ (A(Xt)−A)

(
Θt −Θt−τ(βt)

)
(A2) = Et

[(
Θt−τ(βt) −Θ∗

)> {[
(A(Xt)−A) Θt−τ(βt) + b(Xt)− b

]
+ (A(Xt)−A)

(
Θt −Θt−τ(βt)

)}]
≤ |
(
Θt−τ(βt) −Θ∗

)> Et
[
(A(Xt)−A) Θt−τ(βt) + b(Xt)− b

]
|︸ ︷︷ ︸

(A2,1)

+ |
(
Θt−τ(βt) −Θ∗

)> Et
[
(A(Xt)−A)

(
Θt −Θt−τ(βt)

)]
|︸ ︷︷ ︸

(A2,2)
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Since

(A2,1) ≤ ‖Θt−τ(βt) −Θ∗‖2
(
‖Et [A(Xt)]−A‖2‖Θt−τ(βt)‖2 + ‖Et [b(Xt)]− b‖2

)
≤ βtEt

[
‖Θt−τ(βt) −Θ∗‖2

(
‖Θt−τ(βt)‖2 + 1

)]
= βtEt

[
‖Θt−τ(βt) −Θt + Θt −Θ∗‖2

(
‖Θt−τ(βt) −Θt + Θt −Θ∗ + Θ∗‖2 + 1

)]
≤ βtEt

[(
‖Θt −Θt−τ(βt)‖2 + ‖Θt −Θ∗‖2

) (
‖Θt −Θt−τ(βt)‖2 + ‖Θt −Θ∗‖2 + ‖Θ∗‖2 + 1

)]
≤ βtEt [(‖Θt‖2 + ‖Θt −Θ∗‖2 + 1) (‖Θt‖2 + ‖Θt −Θ∗‖2 + ‖Θ∗‖2 + 2)]

≤ βtEt [(‖Θ∗‖2 + 2‖Θt −Θ∗‖2 + 1) (2‖Θt −Θ∗‖2 + 2‖Θ∗‖2 + 2)]

≤ 4βtEt
[
(‖Θt −Θ∗‖2 + ‖Θ∗‖2 + 1)

2
]

≤ 8βtEt
[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]

≤ 8η2βt−τ(βt),t−1Et
[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]

The 4th inequality holds because for any 0 ≤ t1 < t2 satisfying βt1,t2−1 ≤ 1
4η , the following

inequality (see lemma 2.3 in [16] for a proof) hold:

‖Θt2 −Θt1‖2 ≤ ‖Θt2‖2 + 1.

Since we have assumed that βt−τ(βt),t−1 ≤ 1
4η , then we have ‖Θt−Θt−τ(βt)‖2 ≤ ‖Θt‖2 + 1. Thus,

βtEt
[(
‖Θt −Θt−τ(βt)‖2 + ‖Θt −Θ∗‖2

) (
‖Θt −Θt−τ(βt)‖2 + ‖Θt −Θ∗‖2 + ‖Θ∗‖2 + 1

)]
≤

βtEt [(‖Θt‖2 + ‖Θt −Θ∗‖2 + 1) (‖Θt‖2 + ‖Θt −Θ∗‖2 + ‖Θ∗‖2 + 2)].

(A2,2) ≤ 2ηEt
[
‖Θt−τ(βt) −Θ∗‖2‖Θt −Θt−τ(βt)‖2

]
≤ 8η2βt−τ(βt),t−1Et

[
‖Θt−τ(βt) −Θ∗‖2 (‖Θt‖2 + 1)

]
≤ 8η2βt−τ(βt),t−1Et

[(
‖Θt −Θt−τ(βt)‖2 + ‖Θt −Θ∗‖2

)
(‖Θt‖2 + 1)

]
≤ 8η2βt−τ(βt),t−1Et

[(
‖Θt −Θt−τ(βt)‖2 + ‖Θt −Θ∗‖2

)
(‖Θt‖2 + 1)

]
≤ 8η2βt−τ(βt),t−1Et [(‖Θt‖2 + ‖Θt −Θ∗‖2 + 1) (‖Θt‖2 + 1)]

≤ 8η2βt−τ(βt),t−1Et [(‖Θ∗‖2 + 2‖Θt −Θ∗‖2 + 1) (‖Θ∗‖2 + ‖Θt −Θ∗‖2 + 1)]

≤ 16η2βt−τ(βt),t−1Et
[
(‖Θt −Θ∗‖2 + ‖Θ∗‖2 + 1)

2
]

≤ 32η2βt−τ(βt),t−1Et
[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]
,

then we have
(A2) = (A2,1) + (A2,2)

≤ 40η2βt−τ(βt),t−1Et
[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]
.

Finally,

(A) = (A1) + (A2)

≤ 56η2βt−τ(βt),t−1Et
[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]

step 4. Putting together.

Et
[
‖Θt+1 −Θ∗‖22 − ‖Θt −Θ∗‖22

]
≤ 2η2βtβt−τ(βt),t−1Et

[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]

+ 112η2βtβt−τ(βt),t−1Et
[
‖Θt −Θ∗‖22 + (‖Θ∗‖2 + 1)

2
]

−∆βtEt
[
‖Θt −Θ∗‖22

]
≤
(
114η2βtβt−τ(βt),t−1 −∆βt

)
Et
[
‖Θt −Θ∗‖22

]
+ 114η2 (‖Θ∗‖2 + 1)

2
βtβt−τ(βt),t−1

20



Hence, for any t ≥ t∗, we have

E
[
‖Θt+1 −Θ∗‖22

]
≤
(
1 + 114η2βtβt−τ(βt),t−1 −∆βt

)
E
[
‖Θt −Θ∗‖22

]
+ 114η2 (‖Θ∗‖2 + 1)

2
βtβt−τ(βt),t−1.

Since for any t ≥ t∗ we have assumed

βt−τ(βt),t−1 ≤
∆

228η2
, i.e., 228η2βtβt−τ(βt),t−1 −∆βt ≤ 0,

and
βt−τ(βt),t−1

τ(βt)βt
≤ 2, i.e., βtβt−τ(βt),t−1 ≤ 2τ(βt)β

2
t

then

E
[
‖Θt+1 −Θ∗‖22

]
≤
(

1− ∆

2
βt

)
E
[
‖Θt −Θ∗‖22

]
+
ξ2
2
τ(βt)β

2
t

Recursively using the preceding inequality, we have for all T ≥ t∗

E
[
‖ΘT −Θ∗‖22

]
≤ E

[
‖Θt∗ −Θ∗‖22

] T−1∏
t=t∗

(
1− ∆

2
βt

)
+
ξ2
2

T−1∑
t=t∗

τ(βt)β
2
t

T−1∏
j=t+1

(
1− ∆

2
βj

)
.

Since we have assumed that β0,t∗−1 ≤ 1
2η , then we have

E
[
‖Θt∗ −Θ∗‖22

]
≤ E

[
(‖Θt∗ −Θ0‖2 + ‖Θ0 −Θ∗‖2)

2
]

≤ (‖Θ0‖2 + ‖Θ0 −Θ∗‖2 + 1)
2

= ξ1,

which gives the desired finite-time bound:

E
[
‖ΘT −Θ∗‖22

]
≤ ξ1

T−1∏
t=t∗

(
1− ∆

2
βt

)
+
ξ2
2

T−1∑
t=t∗

τ(βt)β
2
t

T−1∏
j=t+1

(
1− ∆

2
βj

)
.

Part (3): Theorem 1(a). Since
T−1∏
t=τ(β)

(
1− ∆

2
β

)
=

(
1− ∆

2
β

)T−τ(β)

,

and
T−1∑
t=τ(β)

τ(β)β2
T−1∏
j=t+1

(
1− ∆

2
β

)
= β2τ(β)

T−1∑
j=τ(β)

(
1− ∆

2
β

)T−j−1

≤ β2τ(β)

∞∑
j=0

(
1− ∆

2
β

)j
≤ βτ(β)

∆
2

,

then we have for all T ≥ τ(β)

E
[
(r̄T − r(µ))

2
]

+ E
[
‖Π2,E (θT − θ∗)‖22

]
= E

[
‖ΘT −Θ∗‖22

]
≤ ξ1

(
1− ∆

2
β

)T−τ(β)

+ ξ2
βτ(β)

∆
.
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Part (4): Theorem 1(b). We first bound the term
∏T−1
t=t∗

(
1− ∆

2 βt
)
.

T−1∏
t=t∗

(
1− ∆

2
βt

)
=

T−1∏
t=t∗

(
1− ∆

2

c1
t+ c2

)

≤
T−1∏
t=t∗

e−
∆
2

c1
t+c2

= e−
∆
2 c1

∑T−1
t=t∗

1
t+c2

Since

T−1∑
t=t∗

1

t+ c2
≥
∫ T

t∗

1

x+ c2
dx

= ln

(
T + c2
t∗ + c2

)
,

then we have

T−1∏
t=t∗

(
1− ∆

2
βt

)
≤ e−

∆
2 c1 ln

(
T+c2
t∗+c2

)

=

(
t∗ + c2
T + c2

)∆
2 c1

.

Next we bound the term
∑T−1
t=t∗ τ(βt)β

2
t

∏T−1
j=t+1

(
1− ∆

2 βj
)
.

Since τβt ≤ τβT ≤ K ln( 1
βT

) = K [ln(T + c2)− ln(c1)] for all t∗ ≤ t ≤ T − 1, we have

T−1∑
t=t∗

τ(βt)β
2
t

T−1∏
j=t+1

(
1− ∆

2
βj

)
≤ K [ln(T + c2)− ln(c1)]

T−1∑
t=t∗

β2
t

T−1∏
j=t+1

(
1− ∆

2
βj

)
.

Moreover,

T−1∏
j=t+1

(
1− ∆

2

c1
j + c2

)
≤ e−

∆
2 c1

∑T−1
j=t+1

1
t+c2

≤
(
t+ c2 + 1

T + c2

)∆
2 c1

Then,

T−1∑
t=t∗

β2
t

T−1∏
j=t+1

(
1− ∆

2
βj

)
=

T−1∑
t=t∗

c21
(t+ c2)2

T−1∏
j=t+1

(
1− ∆

2

c1
j + c2

)

≤
T−1∑
t=t∗

c21
(t+ c2)2

(
t+ c2 + 1

T + c2

)∆
2 c1

=
c21

(T + c2)
∆
2 c1

T−1∑
t=t∗

(
t+ c2 + 1

t+ c2

)2

(t+ c2 + 1)
∆
2 c1−2

≤ 4c21

(T + c2)
∆
2 c1

T−1∑
t=t∗

(t+ c2 + 1)
∆
2 c1−2
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When ∆
2 c1 > 1, we have

T−1∑
t=t∗

(t+ c2 + 1)
∆
2 c1−2 ≤

∫ T

0

(x+ c2 + 1)
∆
2 c1−2

dx

=
1

∆
2 c1 − 1

[
(T + c2 + 1)

∆
2 c1−1 − (c2 + 1)

∆
2 c1−1

]
≤ 1

∆
2 c1 − 1

(T + c2 + 1)
∆
2 c1−1

Therefore,
T−1∑
t=t∗

β2
t

T−1∏
j=t+1

(
1− ∆

2
βj

)
≤ 4c21

∆
2 c1 − 1

1

T + c2 + 1

(
T + c2 + 1

T + c2

)∆
2 c1

≤ 4c21
∆
2 c1 − 1

1

T + c2 + 1
e

∆
2
c1

T+c2

=
4c21

∆
2 c1 − 1

1

T + c2 + 1
e

∆
2 βT

Since
∆

2
βT ≤

∆

2
β0 < 1,

we have
T−1∑
t=t∗

β2
t

T−1∏
j=t+1

(
1− ∆

2
βj

)
≤ 4ec21

∆
2 c1 − 1

1

T + c2 + 1

Hence,

E
[
(r̄T − r(µ))

2
]

+ E
[
‖Π2,E (θT − θ∗)‖22

]
= E

[
‖ΘT −Θ∗‖22

]
≤ ξ1

(
t∗ + c2
T + c2

)∆
2 c1

+ ξ2
8ec21K

∆c1 − 2

ln(T + c2)− ln(c1)

T + c2 + 1

A.4 Proof of Corollary 1

Proof. For the diminishing step-size βt = c1
t+c2

, we choose c1 := 4
∆ , c2 := 4 and cα := ∆+ 1

∆(1−λ)2 .
Then, from Theorem 1 (b), we have

E
[
(r̄T − r(µ))

2
]

+ E
[
‖Π2,E (θT − θ∗)‖22

]
≤ ξ1

(
t∗ + 4

T + 4

)2

+
64eKξ2

∆2

ln(T + 4)− ln( 4
∆ )

T + 5
.

For any ε > 0, to guarantee that E [|r̄T − r(µ)|] ≤ ε and E
[
‖Π2,E (θT − θ∗)‖2

]
≤ ε, we can set

ξ1

(
t∗ + 4

T + 4

)2

≤ 1

2
ε2,

and
64eKξ2

∆2

ln(T + 4)− ln( 4
∆ )

T + 5
≤ 1

2
.ε2

Then T needs to satisfy

T = Õ

K log
(

1
∆

) (
1 + ‖θ∗‖22

)
∆4(1− λ)4ε2


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B Convergence with respect to Span Lyapunov Function

The main difficulty for analyzing average reward is the existence of some subspace Ē for which the
Bellman operator H is indifferent, i.e.,

H(Q+ x)−H(Q) ∈ Ē, ∀x ∈ Ē

So it is impossible to apply the finite time analysis in the literature to establish the convergence of the
iterates to some fix point. In essence, H operates on sets of points defined by the indifferent subspace
called equivalent classes:

XĒ := {xĒ |x ∈ Rn} ,
where xĒ := {y ∈ Rn : y − x ∈ Ē}. Thus we should analyze those equivalent classes rather than
the points. Towards that end, we propose a new kind of Lyapunov function defined with respect to
XĒ .

B.1 The Semi-Lyapunov Function

We tweak the smooth convex Lyapunov function M introduced in [18] to build a new Lyapunov
function. Recall that M satisfies the following two important properties with respect to a smoothness
norm ‖·‖s and a contraction norm ‖·‖c:

1. Smoothness: M(y) ≤M(x) + 〈∇M(x), y − x〉+ L
2 ‖y − x‖

2
s ,∀x, y for some L ≥ 0.

2. Uniform Approximation: For some constants cl, cu ≥ 0, we have

clM(x) ≤ 1
2 ‖x‖

2
c ≤ cuM(x) ∀x (B.1)

Next we construct a Lyapunov function satisfying the above two properties with respect to equivalent
classes. Consider the fellowing span norm induced by Ē [44]:

‖x‖c,Ē := inf
e∈Ē
‖x− e‖c , ‖x‖s,Ē := inf

e∈Ē
‖x− e‖s .

Clearly they are functions defined on XĒ since any element of an equivalent class xĒ is mapped to
the same value.

A key observation is that they could be expressed equivalently as the infimal convolution with respect
to indicator functions. More specifically, if δĒ denote the indicator function with respect Ē,

δĒ(x) :=

{
0 x ∈ Ē,
∞ otherwise.

(B.2)

Then ‖x‖c,Ē ≡ (‖·‖c2δĒ)(x), ‖x‖s,Ē ≡ (‖·‖s2δĒ)(x). Indeed, our new Lyapunov function MĒ

is defined as
MĒ(x) := inf

y
M(x− y) + δĒ(y) ≡M2δĒ(x). (B.3)

We call it a semi-Lyapunov function because MĒ(x) = 0 ∀ x ∈ Ē. Notice that function MĒ is a
well-defined over XĒ .

Now we show that MĒ is a uniform approximation to the induced contraction norm ‖·‖c,Ē and that
it is smooth with respect to the induced smoothness norm ‖·‖s,Ē . First, the following properties
for infimal convolution of an indicator function can be derived easily from the definition of infimal
convolution.
Lemma 4. Let Ē be a linear subspace in Rn and let δĒ be the indicator function associated with it
(B.2). Then the following properties hold.

a) Monotonicity: If f(x) ≥ g(x), then f2δĒ(x) ≥ g2δĒ(x).

b) Scaling Invariance: (βf)2δĒ ≡ β(f2δĒ) for any non-negative scalar β.

c) Commutativity f2g ≡ g2f .

d) Associativity: (f2g)2h ≡ f2(g2h).
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e) δĒ2δĒ ≡ δĒ .

f) If f is L-smooth with respect to ‖·‖s, then f2δĒ is also smooth with respect to ‖·‖s.

g) If f is convex, then f2δĒ is also convex.

Proof. Properties f) and g) are the smoothing properties of infimal convolution and their derivations
can be found in [45].

Then the uniform approximation property of MĒ follows from that of M .

Proposition 1. If M satisfies clM(x) ≤ 1
2 ‖x‖

2
c ≤ cuM(x) for some constants cl, cu, then MĒ

defined in (B.3) satisfies

clMĒ(x) ≤ 1
2 ‖x‖

2
c,Ē ≤ cuMĒ(x), ∀x. (B.4)

Proof. By the monotonicity of square for positive scalar, we have

‖x‖2c,Ē = (inf
y
‖x− y‖c+δĒ(y))2 = inf

y
(‖x− y‖c+δĒ(y))2 (a)

= inf
y
‖x− y‖2c+δĒ(y) = ‖·‖2c 2δĒ ,

where (a) follows from δĒ being a support function. The monotonicity of the infimal convolution
Lemma 4.a) implies that

(clM)2δĒ(x) ≤ 1
2 ‖·‖

2
c 2δĒ(x) ≤ (cuM)2δĒ(x), ∀x.

So the Lemma 4.b) implies

cl(M2δĒ)(x) ≤ 1
2 ‖·‖

2
c,Ē (x) ≤ cu(M2δĒ)(x), ∀x,

i.e.,

clMĒ(x) ≤ 1
2 ‖x‖

2
c,Ē ≤ cuMĒ(x), ∀x.

Moreover the smoothness of MĒ also follows from that of M .

Proposition 2. If M is L-smooth with respect to ‖·‖s,

M(y) ≤M(x) + 〈∇M(x), y − x〉+ L
2 ‖y − x‖

2
s ,∀x, y,

then MĒ is L-smooth with respect to ‖·‖s,Ē , i.e.,i.e,

MĒ(y) ≤MĒ(x) + 〈∇MĒ(x), y − x〉+ L
2 ‖y − x‖

2
s,Ē ,∀x, y.

Moreover, the gradient of MĒ satisfies 〈∇MĒ(x), e〉 = 0 ∀e ∈ E,∀x.

Proof. 〈∇MĒ(x), e〉 = 0,∀e ∈ E clearly holds because MĒ always have the same value for any
elements of xĒ . Now we show the smoothness property. First, by Lemma 4.f), if M is L-smooth
with respect to ‖·‖s, then MĒ must also be L-smooth with respect to ‖·‖s. Now consider arbitrary
x, y ∈ Rn. Let ê = arg mine∈Ē ‖x− y − e‖s ,i.e., ‖x− y − ê‖s = ‖x− y‖s,Ē . Then

MĒ(x) = MĒ(x+ ê)
(a)

≤ MĒ(y) + 〈∇MĒ(y), x+ ê− y〉+ L
2 ‖x+ ê− y‖2s

= MĒ(y) + 〈∇MĒ(y), x− y〉+ L
2 ‖x− y‖

2
s,Ē ,

where (a) follows from the L-smoothness of MĒ with respect to ‖·‖s .

25



B.2 Recursive Bounds of the General Stochastic Approximation Scheme

Now let’s analyze the iterates generated by the following stochastic approximation scheme for solving
some fixed equivalent class equation H(x)− x ∈ Ē:

xt+1 ← xt + ηt(Ĥ(xt)− xt), (B.5)

We make the following assumptions regarding the function H and its stochastic sample Ĥ .

Assumption 4.

1. H is γ-contractive with respective to ‖·‖c,Ē for some γ < 1, i.e., ‖H(x)−H(y)‖c,Ē ≤
γ ‖x− y‖c,Ē .

2. Let wt := Ĥ(xt)−H(xt) denote the stochastic error associated with Ĥ at iteration t and
let F t := {x1, . . . , xt} denote the filtration up to time t. Then wt satisfies the following
properties,

• Martingale noise: E[wt|F t] = 0.

• Bounded variance: E[‖wt‖2c,Ē |F t] ≤ A+B ‖xt − x∗‖2c,Ē for some fixed constants
A and B.

3. There exist a fixed equivalent class, i.e., x∗ for which ‖H(x∗)− x∗‖c,Ē = 0.

We begin by analyzing the behavior of MĒ for a fixed t using its L-smoothness property shown in
Proposition 2:

MĒ(xt+1 − x∗) ≤MĒ(xt − x∗) + 〈∇MĒ(xt − x∗), xt+1 − xt〉+ L
2

∥∥xt+1 − xt
∥∥2

s,Ē
. (B.6)

First, we show the linear term above induces a negative drift.

Lemma 5. Let MĒ be defined in (B.3). Then conditioned on F t, xt+1 satisfies

E[〈∇MĒ(xt − x∗), xt+1 − xt〉] ≤ −2βηtMĒ(xt − x∗),

with β ≥ (1− γ
√
cu/cl), where cu, cl are the uniform approximation parameters of M defined in

(B.1).

Proof. First, due to the martingale noise assumption for Ĥ , the following relation holds conditioned
on F t,

E[〈∇MĒ(xt − x∗), xt+1 − xt〉] = ηtE[〈∇MĒ(xt − x∗), H(xt)− xt + wt〉] = ηt〈∇MĒ(xt − x∗), H(xt)− xt〉.

Now we study the last term. The convexity of MĒ implies that

〈∇MĒ(xt − x∗), H(xt)− xt〉 = 〈∇MĒ(xt − x∗), H(xt)− x∗ + x∗ − xt〉
≤MĒ(H(xt)− x∗)−MĒ(xt − x∗)
(a)

≤ 1
2cl

∥∥H(xt)−H(x∗)
∥∥2

c,Ē
−MĒ(xt − x∗)

(b)

≤ γ2

2cl

∥∥xt − x∗∥∥2

c,Ē
−MĒ(xt − x∗)

≤ (γ
2cu
cl
− 1)MĒ(xt − x∗) ≤ −(1− γ

√
cu/cl)MĒ(xt − x∗),

where (a) follows from x∗ belonging to a fixed equivalent class with respect to H and (b) follows
from the contraction property of H .

Now let’s focus on the last term in (B.6). In [18], the authors utilize norm equivalence to upper bound
‖x‖2s by some ls ‖x‖2c so that it could be bounded by M . We apply the same technique in the next
lemma. Notice that the monotonicity of infimal convolution (Lemma 4.a) and Lemma 4.b)) implies
that ‖x‖2s,Ē ≤ ls ‖x‖

2
c,Ē .
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Lemma 6. If ‖x‖2s,Ē ≤ ls ‖x‖
2
c,Ē , then conditioned on F t, xt+1 generated by (B.5) satisfies

E[
∥∥xt+1 − xt

∥∥2

s,Ē
] ≤ (16 + 4B)culsη

2
tMĒ(xt − x∗) + 2Alsη

2
t .

Proof. By update rule (B.5), we have

E[
∥∥xt+1 − xt

∥∥2

s,Ē
] = η2

tE[
∥∥H(xt) + wt − xt

∥∥2

s,Ē
]

(a)

≤ 2η2
tE[
∥∥H(xt)− xt

∥∥2

s,Ē
+
∥∥wt∥∥2

s,Ē
]

≤ 2η2
t lsE[

∥∥H(xt)− xt
∥∥2

c,Ē
+
∥∥wt∥∥2

c,Ē
]

≤ 2η2
t lsE[2

∥∥H(xt)−H(x∗)
∥∥2

c,Ē
+ 2

∥∥xt − x∗∥∥2

c,Ē
+
∥∥wt∥∥2

c,Ē
]

≤ η2
t ls(8 + 2B)

∥∥xt − x∗∥∥2

c,Ē
+ η2

t ls2A

(b)

≤ η2
t lscu(16 + 4B)MĒ(xt − x∗) + η2

t ls2A,

where (a) follows from the triangle inequality and (b) follows from the uniform approximation
property of MĒ .

Putting them together, we get the following recursive relation.

Proposition 3. Let xt be generated by (B.5) using Ĥ satisfying Assumption 4 and let ‖x‖2s,Ē ≤
ls ‖x‖2c,Ē ,∀x. Then the following relation holds conditioned on F t,

E[MĒ(xt+1 − x∗)] ≤ (1− 2α2ηt + α3η
2
t )MĒ(xt − x∗) + α4η

2
t , (B.7)

where α2 := (1− γ
√
cu/cl), α3 := (8 + 2B)culsL, α4 := AlsL.

Proof. By substituting Lemma 5 and 6 into (B.6), we get E[MĒ(xt+1 − x∗)] ≤ (1− 2βηt + (8 +
2B)culsLη

2
t )MĒ(xt − x∗) +Alsη

2
t .

Next, we suggest a specific stepsize ηt to calculate the convergence rate.

Theorem 3. Let α2, α3 and α4 be defined in 3. If xt is generated by (B.5) with an Ĥ satisfying
Assumption 4 and stepsizes ηt := 1

α2(t+K) ,K := max{α3/α2, 3},

E[
∥∥xN − x∗∥∥2

c,Ē
] ≤ K2

(N+K)2
cu
cl

∥∥x0 − x∗
∥∥2

c,Ē
+ 8α4cu

(N+K)α2
2
, ∀N ≥ 1. (B.8)

Else if a constant stepsize eta with ηtα3/α2 ≤ 1, then

E[
∥∥xN − x∗∥∥2

c,Ē
] ≤ cu

cl
(1− α2)N

∥∥x0 − x∗
∥∥
c,Ē

+ cuα4
α2

η, ∀N ≥ 1. (B.9)

Proof. Let’s consider the decreasing stepsize first. Since ηt satisfies α3η
2
t ≤ α2ηt, it follows from

(B.7) that
E[MĒ(xt+1 − x∗)] ≤ (1− α2ηt)MĒ(xt − x∗) + α4η

2
t .

By letting Γt :=
∏t−1
i=0(1− α2ηt), we can obtain the N -step recursion relationship

E[MĒ(xt+1 − x∗)] ≤ ΓNMĒ(xt − x∗) + α4

α2
ΓN
∑N−1
t=0 ( 1

Γt+1
)α2η

2
t .

Then the algebraic relationship 1
Γt+1

(α2ηt) = 1
Γt+1

− 1
Γt

implies that

E[MĒ(xt+1 − x∗)] ≤ ΓNMĒ(xt − x∗) + α4

α2
ΓN
∑N−1
t=0 ( 1

Γt+1
− 1

Γt
)ηt.

Moreover a careful computation shows that

Γt = (K−1)(K−2)
(t+K−1)(t+K−2) ,ΓN ≤

K2

(N+K)2 ,ΓN

N−1∑
t=0

ηt(
1

Γt+1
− 1

Γt
) ≤ 4

α2(N+K) .
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Thus we can conclude (B.8) by noting that MĒ is an uniform approximation of ‖·‖c,Ē , i.e.,
clMĒ(x) ≤ 1

2 ‖x‖
2
c,Ē ≤ cuMĒ(x).

Next, for the constant stepsize, again, we can recover from (B.7) that

E[MĒ(xt+1 − x∗)] ≤ (1− α2η)MĒ(xt − x∗) + α4η
2, i.e.,

E[MĒ(xN−x∗)] ≤ (1−α2η)NMĒ(xt−x∗)+α4η
2
N−1∑
t=0

(1−α2η)t ≤ (1−α2η)NMĒ(xt−x∗)+α4

α2
η,

from which (B.9) follows naturally.

B.3 Convergence of the J-step Q-learning Algorithm

We establish the convergence of the J-step Q-learning algorithm in this subsection. With Ē := {ce :

c ∈ R}, the sample J-step Bellman operator ĤJ satisfies Assumption 4:

1. HJ is γ-contractive with respective to span infinite norm with 0 < γ < 1 i.e.,∥∥HJ(Q)−HJ(Q̄)
∥∥
∞,Ē ≤ γ

∥∥Q− Q̄∥∥∞,E .
2. Let wt := ĤJ(Qt)−HJ(Qt) denote the stochastic error associated with ĤJ at iteration
t and let F t := {Q1, . . . , Qt} denote the filtration up to time t. Then wt satisfies the
following properties,

• Martingale noise: E[wt|F t] = 0.

• Bounded variance: E[‖wt‖2∞,E |F t] ≤ 2(J2 + ‖Q∗‖2∞,Ē)︸ ︷︷ ︸
A

+ 2︸︷︷︸
B

‖Qt −Q∗‖2∞,Ē .

3. There exists a gain optimal Q∗ for which
∥∥∥ĤJ(Q∗)−Q∗

∥∥∥
∞,E

= 0.

We choose the following l∞-norm smoothing function introduced in [18] as our base Lyapunov
function

M(x) := 1
2 (‖·‖2∞2

1

µ
‖·‖24 log |S||A|), with µ = ( 1

2 + 1
2γ )2 − 1.

Then the following problem parameters for analyzing the convergence of the SA scheme can be
derived:

cu = (1 + µ), cl = (1 + µ/
√
e), L = 4 log |S||A|

µ , ls =
√
e.

Following the same algebraic manipulation in Section A.6 of [18], we get

α1 = cu/cl ≤
√
e ≤ 3

2 ,

α2 = (1− γ
√
cu/cl) ≥ 1− γ(1 + µ)1/2 = 1−γ

2 ,

α3 = (8 + 2B)culsL = 12 1+µ
µ 4 log(|S||A|)

√
e ≤ 144

(1−γ) log(|S||A|),

α4cu = AculsL ≤ 2(J2 + ‖Q∗‖2∞,Ē) 1+µ
µ 4 log(|S||A|) ≤ 24 log(|S||A|)

(1−γ) (J2 + ‖Q∗‖2∞,Ē).

Then the exact convergence rate of Algorithm 2 can obtained by merely substituting them into
Theorem 3. And the convergence and sample complexity Theorem 2 in the main text is a simple
corollary of the next result.

Proof. Proof of Theorem 2: The result follows from merely substituting the above estimates into
(B.9) and (B.8). In particular, the following conservative estimates are used for calculation

α1 = 3
2 , α2 = 1−γ

2 , α3 = 144
(1−γ) log(|S||A|) and α4cu ≤ 24 log(|S||A|)

(1−γ) (J2 + ‖Q∗‖2∞,Ē).
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C Implementation Detail for Numerical Experiments

C.1 Setup

We consider an MRP with |S| = 100 states, where rewards and transition probabilities are generated
as follows:

Rewards: The rewardR(s) for each state is drawn from the uniform distribution on [0, 1].

Transition probabilities: For each state s ∈ S, the transition probabilities P (s, s′) to each successor
state s′ ∈ S are chosen as random partitions of the unit interval. That is, |S| − 1 numbers are chosen
uniformly randomly between 0 and 1, dividing that interval into |S| numbers that sum to one – the
probabilities of the |S| successor states.

We first compute the stationary distribution π of the MRP, and then obtain the average-reward
r∗ := π>R, and the basic differential value function v∗ by solving the following linear system of
equations:

(I − P ) v∗ = R− r∗e and π>v∗ = 0.

For linear function approximation, we consider a feature matrix Φ with d = 20 features for each
state s ∈ S. We first generate a matrix Φ̃ ∈ R|S|×(d−2), where each element is drawn from the
Bernoulli distribution with success probability p = 0.5. Then, we construct Φ ∈ R|S|×d by stacking
the all-ones vector e and the basic differential value function v∗ as columns into the the matrix Φ̃,
i.e., Φ :=

[
Φ̃ e v∗

]
. We repeat this process until we obtain a full column rank feature matrix. We

further normalize the features to ensure ‖φ(s)‖ ≤ 1 for all s ∈ S . With the above feature matrix, we
can easily compute θe and θ∗ by solving

Φθe = e and Φθ∗ = v∗.

C.2 1st Experiment

In the first experiment, we show that the iterates θt of Alorithm 1 converge to different TD limit
points when the initial points θ0 are different. We set λ = 0, cα = 1, T = 100, 000, βt = 150

t+1000

and r̄0 = 0. We draw 4 d-dimensional vectors from the uniform distribution with lower bound
= −5 and upper bound = 5. We then use each of the samples as the initial guess θ0, and plot
E
[
‖Π2,E (θt − θ∗)‖2

]
and E

[
(θt − θ∗)> θe

‖θe‖2

]
in Figure 1 and 2. Note that, each curve is average

over 100 independent runs with the same θ0.

C.3 2nd Experiment

In the second experiment, we empirically verify the performance upper bounds of Alorithm 1 in
Theorem 1. We set cα = 1, T = 1, 000, 000, βt = 150

t+1000 , r̄0 = 0 and θ0 = 0 and consider

λ ∈ {0, 0.2, 0.4, 0.8}. In Figure 3, we plot E
[
(r̄t − r∗)2

+ ‖Π2,E (θt − θ∗)‖22
]

as a function of t

for t ∈ [0, 105), and in Figure 4, we plot lnE
[
(r̄t − r∗)2

+ ‖Π2,E (θt − θ∗)‖22
]

as a function of ln t

for t ∈ [5× 105, 106). Each curve is average over 100 independent runs with the same λ.
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Figure 1: Convergence of the iterates θt to the
set of TD limit points for 4 different initial
points.

Figure 2: Convergence of the projection of
the iterates θt onto the set of TD limit points
for 4 different initial points.

Figure 3: Convergence of the iterates (r̄t, θt)
for λ ∈ {0, 0.2, 0.4, 0.8}.

Figure 4: Asymptotic convergence rate of the
iterates (r̄t, θt) for λ ∈ {0, 0.2, 0.4, 0.8}.
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