A Appendix

Videos of the experiments can be found on the project website: https://sites.google.com/
view/ariel-berkeley

A.1 Implementation Details and Hyperparameters

We choose advantage-weighted actor-critic (AWAC) as the underlying RL algorithm for both the
online and offline phases of ARIEL and all comparison methods because it addresses the specific
challenges that arise when learning behaviors offline and then fine-tuning them online [1]. AWAC is
an actor-critic method that alternates between a policy evaluation phase (Equation 1), where it trains
a parameteric Q-function, Q4 (s, a), to minimize the error between two sides of the Bellman equation
on the samples from the offline dataset, and a policy improvement phase (Equation 2) where it
improves a parametric policy 7y (a|s) via advantage-weighted updates. Advantage-weighted updates
perform policy improvement by cloning actions that are highly advantageous under the learned Q-
function and are hence, more likely to improve upon the data-collection policy. Denoting the offline
dataset as D = {(s;,a;,s;,r;)}~ ;, where (s;,a;,s],r;) denotes a single transition, the training
objectives for AWAC are given by:

@g —arg m(gn Es,a5~D [(Qos(s,2) — (r +7Qu(s',a")))?] (1)
T < arg max Es.a~D [log mo(als) -exp(zzl\”(s, a))] ,

where g”(s,a) = @g(s,a) —Ea o [@g(s,a’)] .)

Our hyperparameters for AWAC are listed in Table 3. Notably, since AWAC is an off-policy RL
algorithm, we have the option of continuing to train on the prior data during the online phase. We
hypothesize that including the prior data during online adaptation prevents the agent from overfitting
to the new task and improves generalization, so we continue to train on the prior data even during the
online fine-tuning phase. As our goal is to make robotic learning as autonomous as possible, we use
images observations as part of our input to the RL agent. Image observations allow our system to
learn from a diverse range of different tasks without needing to hand-engineer state representations
suitable for each task. Because we are learning from images we use convolutional neural networks
to model the policy and Q-function. (see Figure 5 and Table 4). The observations additionally
consist of the state of the robot’s joints, and the task embedding z. Lastly, during the online phase
the pose of the robot is moved to a neutral position at the beginning of every trial, since there is no
physical limitation that prevents doing this automatically, but the robot must still handle the fact that
the objects in the scene maintain their position across trials. We now provide further details specific
to each method:

* Multi-Task RL: We modify the policy and Q function architectures to accept two addi-
tional one-hot task indices. These task indices go unused during offline learning, but we
use them to label the new data during online training.

* R3L: For the RND networks we use the same CNN architecture as the policy and Q func-
tion networks but set the output dimension to 5.

* Oracle: We learn a single-task policy with a single-task dataset consisting of 512 trajecto-
ries collected in the same manner as the rest of the simulated data.

* ARIEL: For CEM, we use a Gaussian mixture model as the sampling distributions with a
number of components equal to the number of tasks in the prior data. In simulation, we
update the sampling distributions every 10 trajectories, fitting them to the J = 25 most
recent successful task embeddings. In the real world domains, we update the sampling
distributions every 10 trajectories, fitting them to the J = 10 most recent successful task
embeddings.

A.2 Real-World Experiments

In this section, we provide additional details on our real world experiments, the results for which
were presented in Section 5.1. We utilize 3 different robotic setups for our experiments (Figure

12

https://sites.google.com/view/ariel-berkeley
https://sites.google.com/view/ariel-berkeley

Hyperparameter Value
Target Network Update Frequency 1 step

Discount Factor ~ 0.9666
Beta 0.01
Batch Size 64
Meta Batch Size 8
Soft Target 7 5e=3
Policy Learning Rate 3e4
Q Function Learning Rate 3e4
Reward Scale 1.0
Alpha 0.0
Policy Weight Decay le
Clip Score 0.5

Table 3: Hyperparameters for AWAC

- 3X3 3x3 3x3
conv conv conv
Relu 900| Relu pool Relu flatten
fe | ffe ||[fc .
= Action
(16, 16, 16) (256)
RGB Image (16.16.16) o2z 61

(64, 64, 3) (32, 32, 16) (32, 32, 16) concatenate
Gripper pose (3),
(64, 64, 16) Joint positions (6)

Figure 5: CNN architecture we use for our policy and Q-function. Our method learns robotic
manipulation skills from raw image inputs. Here we show the architecture for the policy. For our
Q-functions, we additionally concatenate the action along with the gripper pose and joint positions
and set the output dimension to 1.

Attribute Value
Input Width 48/64/128
Input Height 48/64/128
Input Channels 3
Kernel Sizes [3, 3, 3]
Number of Channels [16, 16, 16]
Strides [1,1,1]
Fully Connected Layers [1024, 512, 256]
Paddings [1,1,1]
Pool Type Max 2D
Pool Sizes [2,2,1]
Pool Strides 2,2, 1]
Pool Paddings [0, 0, 0]
Image Augmentation Random Crops
Image Augmentation Padding 4

Table 4: CNN architecture for policy and Q-function networks. We use 48x48 images in simulation,
64x64 images in the Tray Container and Tray Drawer scenes, and 128x128 images in the Kitchen
scene, however the rest of the architecture is the same across experiments.

13

Figure 6: Robotic environments for real-world experiments

6). The first, denoted Tray Container, consists of a simple tray with objects and one of multiple
containers. The second, denoted Tray Drawer, consists of a tray with objects and a 3D-printed
drawer. The third, denoted Kitchen, is a toy kitchen to showcase the performance of the method
under greater visual diversity.

A.2.1 Real-World Dataset Details

The real-robot dataset consists of picking and placing a variety of objects, including stuffed animals,
rigid shapes, and toys, into a variety of containers, including plates, pots, baskets, and drawers. We
utilize scripted policies in order to collect a large amount of data interacting with these objects.
Since the prior dataset needs to initialize both the forward and backward directions for new tasks,
we perform scripted collection in a reset-free manner, with the robot attempting to move the objects
both into and out of containers. The Tray Container and Kitchen environments contain distractor
objects that are not involved in the tasks so the robot is required to pay attention to the task embed-
ding z to determine which object to interact with. In Table 5 we provide details on number of tasks,
number of trajectories, and other dataset properties.

Attribute Tray Container Tray Drawer Kitchen
Timesteps per Offline Trajectory 15 30 25
Timesteps per Online Trajectory 20 35 25
Forward Tasks 20 4 10
Backward Tasks 20 4 10
Number of Trajectories Per Task 500 150 50
Average Success Rate 0.35 0.93 0.47

Table 5: Real-world data details for the Tray Container, Tray Drawer, and Kitchen scenes.

A.2.2 Backward Controller Performance

In Table 6 we provide additional evaluation of the backward controller for the Tray Container and
Tray Drawer scenes. We find that the performance of the backward controller improves throughout
online training similar to the forward controller.

Task Offline Only 100 Trials 600 Trials
Put Tiger in Drawer 5/10 6/10 7/10
Put Elephant in Pot 1/10 8/10 10/10
Put Tiger on Lid 2/10 6/10 6/10

Table 6: Real-world evaluation of the backward controller in the Tray Container and Tray Drawer
scenes. These tasks use the direct transfer setting. Fine-tuning is mostly autonomous with a reset
every 20-30 trials.

14

ARIEL by # Trials Target Data Only

Target Task Unseen Task
100 360 600 Best Epoch
Put Tiger in Drawer Put Pickle in Drawer 3/5 5§/5 3/5 1/5
Put Tiger in Drawer Put Turtle in Drawer 1/5 4/5 2/5 2/5
Put Tiger in Drawer ~ Put Dog in Drawer 2/5 2/5 4/5 2/5

Table 7: Generalization. We compare the zero-shot generalization performance on unseen objects
of ARIEL and a baseline in the Tray Drawer scene. A policy pretrained on multi-task prior data
and fine-tuned on the put tiger in drawer task (ARIEL) generalizes better than a policy trained on
only put tiger in drawer data (Target Data Only).

Figure 7: Objects used in zero-shot generalization experiments.

A.2.3 Further Generalization Results

In Table 7 we provide further zero-shot generalization results for the Tray Drawer scene. As shown
in the main paper, a policy trained on multi-task prior data and fine-tuned on a target task (ARIEL)
generalizes to unseen objects better than a policy trained on only target task data (Target Data Only).
We evaluate the zero-shot generalization capabilities of the ARIEL policies at different stages dur-
ing the process of fine-tuning on the target task (put tiger in drawer). As in the main paper, ARIEL
policies at earlier stages of fine-tuning (360 vs 600 trials) demonstrate better zero-shot generaliza-
tion capabilities to unseen objects than at later stages. Even if policy is initialized by training on
diverse multi-task prior data, as more updates are made on the target task, the policy becomes more
specialized and less capable of performing the unseen tasks.

A.2.4 Generalization Test Objects

The objects we use to test the zero-shot generalization capabilities of ARIEL are depicted in Fig-
ure 7. Note that although the objects chosen to test generalization in the Tray Drawer scene are
seen in the prior data for the Tray Container scene, they are not contained in the prior data for the
Tray Drawer scene.

A.3 Simulated Experiments

In this section, we provide additional details on our simulation experiments, the results for which
were presented in Section 5.2. We utilize a Pybullet-based simulation [40] with a simulated version
of the WidowX robot we use in the real world. The tasks also involve picking and placing objects
and putting them into a container. We use 3D object models from the Shapenet dataset [41] to test
our method on diverse objects. We utilize a near-convex decomposition of the models in order to
maintain good contact physics. Figure 8 shows the simulated experiment setup.

‘We compare to two prior approaches in our simulated experiments. To evaluate how well our method
enables learning with minimal resets, we compare to R3L [6], which alternates between training
a forward controller to optimize a task-completion reward and training a perturbation controller
that optimizes a novelty exploration bonus. We initialize the forward controller in R3L with the
policy obtained by running offline multi-task RL on the prior data. We also compare to a method

15

Figure 8: (Left) The simulated experiment setup. (Right) Simulation training (upper) and test
(lower) objects. Our offline prior dataset consists of only training objects.

Attribute Value
Timesteps per Offline Trajectory 30
Timesteps per Online Trajectory 40
Forward Tasks 8
Backward Tasks 8
Number of Trajectories Per Task 512
Average Success Rate 0.38

Table 8: Simulated tasks prior data details.

that does not optimize the task embeddings z; and z; over the course of autonomous online fine-
tuning. We refer to this approach as Multi-task RL. This is equivalent to first running multi-task
offline RL on the prior dataset, and then fine-tuning the policy using a fixed task index (that was
unused during pre-training) in an online phase afterwards. This method is conceptually similar to
MT-Opt [2], but adapted to our pre-training and then fine-tuning setup, as opposed to the re-training
from scratch approach followed by Kalashnikov et al. [2]. For instructive purposes, we also compare
to an “oracle” version of our approach, labeled (ARIEL + resets), which assumes access to external
resets at the end of each episode. While resetting every episode is prohibitively expensive in the
real-world, we can still run this method in simulation for our understanding.

The results in Figure 3 show that ARIEL and its oracle reset variant are the only methods that suc-
ceed at learning the new tasks, and the full ARIEL method closely matches final oracle performance.
While the poor performance of prior methods might be surprising, recall that these tasks require us-
ing raw image observations and sparse 0/1 rewards, which present a significant challenge for any
RL approach. While R3L and Multi-Task RL both succeeded at learning the tasks in the offline
phase (see Figure 9), they are unable to make progress during online training of the new task. The
comparison to Multi-task RL indicates the importance of adapting the task embeddings: if the task
embeddings are not adapted to the new task, distributional shift in the task embeddings may severely
hamper effective reset-free learning.

A.3.1 Simulation Dataset Details

Just as in our real world experiments, we perform scripted collection in a reset-free manner, with the
robot attempting to move the objects both into and out of the container. In Figure 8, we show the set
of training and testing objects used in the various pick and place tasks. In Table 8 we provide details
on number of tasks, number of trajectories and other dataset properties.

16

Offline Multitask Pick and Place

0.5

o o
w >

Success Rate
o
N

0.0 T T ™ T T T T
0K 50K 100K 150K 200K 250K 300K 350K 400K

Timesteps

N R3L WM Multi-task RL

Figure 9: We see that the R3L and Multi-task RL baselines show a significant amount of learning
in the offline stage, even though they perform poorly during fine-tuning as seen in Figure 3.

17

	d3e140206a2472bc13726f10c1e196a3b6558601278af5890794a1df40c16a20.pdf
	Appendix
	Implementation Details and Hyperparameters
	Real-World Experiments
	Real-World Dataset Details
	Backward Controller Performance
	Further Generalization Results
	Generalization Test Objects

	Simulated Experiments
	Simulation Dataset Details

