
Supplementary Material for
Dynamic Environments with Deformable Objects

Rika Antonova∗§ Peiyang Shi∗† Hang Yin† Zehang Weng† Danica Kragic†

§Stanford University, CA, USA †KTH, Stockholm, Sweden

Contents

1 Links and Documentation: Items Required by the NeurIPS Instructions 1

2 Architecture Overview 1

3 Reward Function Details for Tasks 2

4 Food Packing Task as an Example of Advanced Customization 3

5 Additional Hyperparameter Search Plots 3

6 NeurIPS Checklist 7

1 Links and Documentation: Items Required by the NeurIPS Instructions
1. Dataset documentation: DEDO repository github.com/contactrika/dedo contains the

README, which serves as a user guide; the Wiki at github.com/contactrika/dedo/wiki
contains architecture overview and further details.

2. Statement of responsibility: We (the authors) agree to bear all responsibility in case of
violation of rights, etc., and confirmation of the data license.

3. Hosting plan: Our code and assets are hosted on github.com.
4. Links to access the dataset and its metadata; openness; long-term preservation; license;

metadata; DOI: DEDO repository is at github.com/contactrika/dedo under MIT license.
DOI: 10.5281/zenodo.5838440

5. Reproducibility: Our repository includes all the training scripts that we used to produce eval-
uations for the paper; the README in our repository contains instructions for installation,
training and visualizing the results.

2 Architecture Overview

Since we provide a customizable simulation suite, we wrote documentation to guide the users
through the available tasks, features and customization options. To avoid duplicating it here, in the
supplementary we only include a screenshot with the overview of the DEDO architecture (Figure 1).

The core of our suite is the DEDO environment (DeformEnv in dedo/envs/deform_env.py). This
class is served by various utilities that help loading built-in and custom meshes, running procedural

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://github.com/contactrika/dedo
https://github.com/contactrika/dedo/blob/main/README.md
https://github.com/contactrika/dedo/wiki
github.com
https://zenodo.org/badge/latestdoi/425197784

Figure 1: DEDO architecture overview from our documentation page.

cloth generation, initializing and updating the physics engine, etc. The top-level part that most
users will interact with are the example demo and training scripts. demo.py gives a succinct
example of loading the tasks and running a simple policy, without any further dependencies / models.
demo_preset.py shows how the tasks can be solved by following a set of pre-defined waypoints.
run_rllib.py and run_rl_sb3.py launch RL training, run_svae.py launches the SVAE training.
In our documentation we have included detailed description of the arguments that these user-facing
scripts accept. For users who would like to extend our environments we provided an explanation of
how to modify existing tasks and add new custom tasks.

3 Reward Function Details for Tasks

The reward functions are all based on the distance between a centroid of a deformable loop to a goal
position on the rigid body. For tasks that involve hanging/dressing/buttoning, at the end of each task,
anchors are released to let objects free fall. If the task is completed successfully, the deformable
object will be supported by the rigid body (e.g. a hanger supporting an apron). For Lasso and Hoop,
an outward pulling force is applied to the deformable object. This is to ensure the object’s center
loop is placed through the target/goal pole, rather than hovering/wrapped around it.

HangBag, HangGarment, Hoop, Lasso – these tasks have a single goal position and a single
annotated loop. This ‘ground truth’ annotation indicates which vertices of the deformable object are
on the loop. This information is only used to compute the reward and is not visible to the learning
algorithms. We compute reward based on the distance of the centroid of the loop to the goal position:

rwd = −||centroid(loop)− goalxyz||.

For HangBag, the loop is the bag handle, the goal is the hook. For HangGarment, the loop is the
apron’s neck loop, the goal is the hanger. For Lasso, the loop is the center of the lasso loop, the goal
is the bottom of the pole. For Hoop, the loop is the center of the hoop; the hoop is initialized to rest at
the bottom of one of 2 poles, and the goal is the center of the 2nd (the other) pole.

2

DressBag, DressGarment, Button, ButtonProc, Mask – these tasks have two annotated loops and
two matching goal positions. The reward is the sum of distances from each of the loop’s centroid to
their respective goal positions:

rwd = −
(
||centroid(loop1)− goal1xyz||+ ||centroid(loop2)− goal2xyz||

)
.

For DressBag and DressGarment tasks, the loops are the the two shoulder straps of the backpack
and the two sleeve holes on the vest. Both have a goal position near the shoulder region of the
humanoid figure. For Button and ButtonProc tasks, the loops are the two openings on the cloth;
the goal positions are below the buttons. For Mask task, the loops are the mask’s ear loops and the
goal positions are behind the ears of the humanoid figure.

HangClothProc – this task has procedurally generated cloth, with up to 2 holes, which are cut out
randomly. The reward is computed based on the distance of the closest cloth hole/opening to the
center of the hanger (goal):

rwd = −min
[
||centroid(procHole1)− goalxyz||, ||centroid(procHole2)− goalxyz||

]
.

Combined/Episode Rewards – for our RL experiments, we used dense rewards described above
combined with the final-step reward: after the last action the anchors were released, and if objects
were not hanged/hooked/put on well – a penalty was added. This penalty indicated that actually
completing the task was a lot more valuable than simply moving towards the goal region. Concretely,
the final-step reward was: rwdfinal = −||centroid(deformable_loop)− goalxyz|| ·MULT , where
MULT =400. Our tasks had episode lengths of 200-700 steps, so a multiplier of 400 was chosen to
make the final-step reward be on par with the cumulative dense reward for the episode. In our earlier
experiments we also tried MULT =50, which yielded similar qualitative RL results.

4 Food Packing Task as an Example of Advanced Customization

Figure 2: Examples of running a FoodPacking task.

DEDO framework can be quickly
adapted to construct other tasks that
might be of interest to vision or
robotics communities. We demon-
strate this with an example of how to
make a FoodPacking task. The goal
in this task is to move various food
items into a small packing area. The
food items include rigid objects, such
as tin cans and packaged food boxes,
as well as deformable objects, such
as fruit. For this illustration we im-
ported object meshes from the YCB
dataset [1], which is a widely used
dataset in robotics, since research
groups can obtain the real counter-
parts of the simulated objects. These meshes and their textures were scanned from real objects.
We first down-sample the meshes to contain ≈1000 vertices and load them into PyBullet. We then
define the reward for the task to be a combination of how close the objects are to the goal region and
how much the deformable fruit objects deform. Figure 4 illustrates the task setup. We also illustrate
executing several preset robot trajectories, the ones labeled ‘Wrong’ squish the deformable fruit
objects, while those labeled ‘Correct‘ show an example of how the robot can move the objects closer
to the goal region without causing large deformation of the fruit object.

We did not consider tasks such as food packing as core tasks for the DEDO suite, since the primary
goal of DEDO is to provide a suite of dynamic tasks with highly deformable objects that have
interesting topologies. Nonetheless, we wanted to give potential users further ideas for tasks and
other research directions that DEDO extensions could facilitate.

5 Additional Hyperparameter Search Plots

Below we show figures visualizing our hyperparameter sweeps for PPO and TD3 RL algorithms.

3

Figure 3: Button-v1 - PPO

Figure 4: Button-v1 - TD3

Figure 5: DressGarment-v1 - PPO

4

Figure 6: DressGarment-v1 - TD3

Figure 7: HangBag-v1 - PPO

Figure 8: HangBag-v1 - TD3

5

Figure 9: Hoop-v1 - PPO

Figure 10: Hoop-v1 - TD3

Figure 11: HangGarment-v1 - PPO (a larger version of the plot from the main paper).

6

Figure 12: HangGarment-v1 - TD3 (a larger version of the plot from the main paper).

6 NeurIPS Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] (See Section 1 in the main paper)
(b) Did you describe the limitations of your work? [Yes] (See discussion in Section 5 of

the main paper)
(c) Did you discuss any potential negative societal impacts of your work? [Yes] (See

Section 5 of the main paper)
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] (We provided
all our code in a repository, which includes a detailed README and scripts to launch
the experiments)

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] (See Section 4 of the main paper for a summary, see the README
and documentation for further details)

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] (All our plots have error bars to show results from
multiple random seeds)

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] (See Section 4 of the main paper,
however, there is no set number for compute resources needed, since we provide a cus-
tomizable simulation suite; thus, compute requirements will depend on the algorithms
that users would like to test using this suite)

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] (See Section 3.5 of

the main paper)
(b) Did you mention the license of the assets? [Yes] (All meshes except those cited in

Section 3.5 of the main paper were made by our team members, so are under our MIT
License as well as our code; the textures were under Creative Commons 0 license, or
similar, that allows redistribution without attribution)

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(We provided the link to the repository that contains the newly added assets)

7

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] (Assets that we use do not contain any personal
information or sensitive content)

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] (No human subject or crowd sourcing used)
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

References
[1] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M

Dollar. The YCB object and model set: Towards common benchmarks for manipulation research.
In International Conference on Advanced Robotics (ICAR), pages 510–517. IEEE, 2015.

8

	Links and Documentation: Items Required by the NeurIPS Instructions
	Architecture Overview
	Reward Function Details for Tasks
	Food Packing Task as an Example of Advanced Customization
	Additional Hyperparameter Search Plots
	NeurIPS Checklist

