
Optimization-Based Algebraic Multigrid Coarsening
Using Reinforcement Learning

Ali Taghibakhshi Scott MacLachlan
Mechanical Science and Engineering Mathematics and Statistics

University of Illinois at Urbana-Champaign Memorial University of Newfoundland
Urbana, IL 61801, USA and Labrador
alit2@illinois.edu St. John’s, NL, Canada

smaclachlan@mun.ca

Luke Olson Matthew West
Computer Science Mechanical Science and Engineering

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA Urbana, IL 61801, USA
lukeo@illinois.edu mwest@illinois.edu

In this document, we provide a convergence plot for all the families with guaranteed convergence A, a
discussion about the choice of the graph neural network and architecture B, a more detailed discussion
about the clustering algorithm we used for our method (Lloyd aggregation C), and the theoretical
guarantees for the AMG coarsening D.

Appendix A Convergence of AMG

Figure 1 shows the convergence factor for all of the families (except for the Aspect Ratio family, for
which the theoretical convergence factor bound does not apply) and the convergence factor for the
different size family against grid size. It is noteworthy that, in this paper, we have directly optimized
the size of the coarse grid, which sacrifices convergence in exchange for achieving smaller coarse
grids, justified by the fact that the guaranteed convergence factor is always 0.977, according to
convergence theory in Appendix D.

0.6 0.8 1.0
Greedy Convergence Factor

0.5

0.6

0.7

0.8

0.9

1.0

RL
 C

on
ve

rg
en

ce
 F

ac
to

r

Different Size
Non-convex
Graded Meshes
Structured Grids
Wide Valence
45 Degree Line

0 10000 20000 30000 40000 50000
Grid Size

0.6

0.7

0.8

0.9

RL
 C

on
ve

rg
en

ce
 F

ac
to

r

Figure 1: Left: Measured convergence factors for different families with guaranteed convergence.
According to the theory in Appendix D, the guaranteed convergence factor is 0.977. Right: measured
RL convergence rate for the Different Size family versus grid size.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

mailto:mwest@illinois.edu
mailto:lukeo@illinois.edu
mailto:smaclachlan@mun.ca
mailto:alit2@illinois.edu

Appendix B Choice of Graph Neural Network and Architecture

We use TAGConv [1] layers as graph convolution in our architecture. This choice is motivated by
the fact that TAGConv has linear time complexity in graph size (assuming a size-independent upper
bound on node degree). Moreover, it is a generalized form of the conventional GCN [2], and it is
scalable, i.e., we can train such a network on certain graph types, yet test them on larger graphs with
different topologies. In this work, we obtain our experiment results using 3 TAGConv layers for the
agent, each consisting of 4-size filters with 32 hidden units. This architecture results in the neural
network output at each node being dependent only on information from nodes up to 12 hops away
from it (3 layers × 4-size). For comparison, we trained another agent, using the same RL algorithm
(i.e. Dueling Double DQN [3]), but this time with 6 TAGConv [1] layers, each consisting of 8-size
filters with 64 hidden units, leading to output of the network at each node being dependent on nodes
within 48 hops away (6 layers × 8-size). Comparing the results of the two networks, we observe that
adding more graph convolution layers does help the agent achieve better results on the training set;
however, when testing on grids noticeably larger than those in the training set, the larger network does
not outperform the smaller network. We conclude that the initial choice of the network parameters
provides the agent with enough information about its local neighborhood to outperform the greedy
algorithm of [4], while there is no substantive benefit to adding more complexity (and cost) to the
network. A more thorough study of the network complexity and training time is left for future work.

Appendix C Lloyd Aggregation

Lloyd aggregation is a k-means-based clustering algorithm which is obtained directly from the general
form of Lloyd’s algorithm [5, 6]. Consider a 2D planar graph, G, the set of all edges E, the set of all
of its nodes V , and Vc ⊆ V . The nodes in the Vc set serve as the centers of the clusters. The regions
are obtained based on the closest center to each graph node, where the distance is measured by the
number of edges covered in the shortest path between two nodes (denote distance between node i
and j by dij). Define the centroid of a region as the farthest node from the boundary, and break the
possible ties by choosing one randomly. The modified Bellman-Ford algorithm is commonly used for
obtaining the nearest center to every node in V and its associated distance [5, 7]. Let N be a list of
graph nodes whose i-th element is the nearest center to the i-th node of the graph, and let D be the
list of its distances; then, the modified Bellman-Ford algorithm is shown in Algorithm 1.

Algorithm 1 Modified Bellman-Ford
1: Input E: The set all edges, V : The set of all nodes, Vc: The set of initial center nodes.
2: D(i) = ∞ ∀i∈{1,2,...,|V |}
3: N(i) = −1 ∀i∈{1,2,...,|V |}
4: for c ∈ Vc do
5: D(c) ← 0
6: N(c) ← c
7: end for
8: while True do
9: Finished ← True

10: for (i, j) ∈ E do
11: if D(i) + dij < D(j) then
12: D(j) ← D(i) + dij
13: N(j) ← N(i)
14: Finished ← False
15: end if
16: end for
17: if Finished then
18: return D, N
19: end if
20: end while

Once the D and N reach their correct values, Algorithm 1 terminates. Given a fixed number of center
nodes, Lloyd’s algorithm modifies the clusters in each iteration by selecting the centroid of every
region as its new center, then using the modified Bellman-Ford algorithm to calculate new distances

2

and nearest centers. Given updated center positions, it reshapes the new clusters. The Full Lloyd
algorithm is shown in Algorithm 2, where we define the set of border nodes, B, as the set of all nodes
that are connected by an edge to a node that has a different nearest center node.

Algorithm 2 Lloyd Aggregation
1: Input K: Number of iterations, E: The set of all edges, V : The set of all nodes, Vc: The set of

initial center nodes.
2: for i = 1, 2, 3, ..., K do
3: D, N ← Modified Bellman-Ford(E, V, Vc)
4: B ← ∅
5: for (i, j) ∈ E do
6: if N(i) =6 N(j) then
7: B ← B ∪ {i, j}
8: end if
9: end for

10: D, X ← Modified Bellman-Ford(E, V, B)
11: Vc ← {i ∈ V : D(i) > D(j) ∀N(i)=N(j)}
12: end for
13: return N

Time Complexity: Assuming each node’s initial distance to a center node is bounded independently
of |V |, and also assuming that each node’s degree is bounded independently of |V |, Algorithm 1 runs
a |V |-independent number of iterations to determine one nearest center node for every point. So, we
conclude that Algorithm 1 is O(|V |) in our case. This is run a |V |-independent number of times in
Algorithm 2 to get the clustering, resulting in an O(|V |) clustering algorithm.

Appendix D Reduction-based AMG

Algebraic multigrid (AMG) methods are a family of iterative solution algorithms for linear systems
of equations. First developed in the 1980’s [8, 9], they have become a commonplace tool in the
solution of discretized elliptic PDEs, particularly for applications such as the modeling of flow
through porous media. As in geometric multigrid, AMG algorithms make use of complementary
processes of relaxation and coarse-grid correction to reduce all modes of error in an approximate
solution. In geometric multigrid methods, the typical approach is to fix the details of the coarse-grid
correction process and develop relaxation schemes that provide sufficient error reduction over the
complementary modes to ensure effective convergence overall. AMG methods take the opposite
approach, fixing the details of the underlying relaxation scheme and constructing a coarse-grid
correction process to complement it.

While commonly implemented recursively, we focus on two-level cycles in this work. In this setting,
the fine-grid relaxation scheme is characterized by its error-propagation operator, where the current
approximation to the solution of Ax = b, x̃, is updated by

x̃ ← x̃+ M(b − Ax̃),

using some matrix M — e.g., M = ωD−1 with some weight and the diagonal of A, in the case
of weighted Jacobi. From this, the error e = x − x̃ is updated as e ← (I − MA)e. Typically, the
coarse-grid correction process in AMG is specified by the choice of an interpolation operator, P , that
maps from the (smaller) coarse space to the given fine space. Then, coarse-grid correction updates an
approximation, x̃, as

x̃ ← x̃+ P (P T AP)−1P T (b − Ax̃),

and updates the error as e ← (I − P (P T AP)−1P T A)e. The main distinction between different
AMG approaches, then, lies in the construction of P . Classical AMG schemes construct P by first
determining its row dimension (the coarsening or partitioning phase), then fixing a sparsity pattern
(to ensure suitable sparsity of P T AP) and computing the nonzero entries.

While AMG methods are well-regarded as among the most efficient solvers available for the large,
sparse, linear systems that come from the discretization of elliptic PDEs, the available theory
governing their convergence often offers only poor prediction of their actual convergence rates

3

(see [10] for an overview). In particular, AMG algorithms are typically driven by heuristic (greedy)
graph algorithms that make achieving guaranteed convergence rates difficult. In practice, there are
only a few AMG frameworks that offer guarantees of even two-level convergence rates, and these
are often limited to specific problems, such as the graph Laplacian [11, 12]. In this paper, we make
use of the reduction-based AMG (AMGr) framework, introduced in [13], which offers guarantees
of convergence for a somewhat wider class of problems, including finite-element discretizations of
isotropic diffusion on some classes of mesh. We emphasize here that, while working in a theoretically
justified setting is attractive, AMG algorithms with guaranteed convergence rates typically attain
worse convergence than those based solely on heuristics. Thus, comparisons of the convergence of
classical (heuristic-based) AMG algorithms directly with AMGr is potentially misleading, since it is
a comparison of heuristics (often tuned for standard test problems) against theoretical guarantees.

A key advantage of the AMGr paradigm (aside from the convergence-rate guarantee) is that it offers
a prescriptive construction of the AMG interpolation operator, P , once the partitioning is determined.
In this area, it is typical to consider the problem in a permuted form, where we split the set of
degrees of freedom (columns) and equations (rows) of A into their “fine” and “coarse” subsets, � �

Aff −Afc writing A = , where symmetry is assumed and we introduce a sign flip for later −AT
fc Acc

convenience. The theoretical foundation of AMGr is the assumption that the submatrix, Aff , can be
written as Aff = D + E , where D is a matrix that has a sparse inverse, while E is, in some sense,
small. This is formalized in the main theorem of [13]. Here, we use the standard notation A ≥ 0 to
denote that matrix A is positive semi-definite (that yT Ay ≥ 0 for all vectors y).� �

Aff −Afc Theorem 1. Let A = ≥ 0 be symmetric and let Aff = D+E for symmetric matrix −AT
fc Acc� � � �

D −Afc D−1Afc D, with 0 ≤ E ≤ �D and ≥ 0. Define interpolation operator P = −AT
fc Acc I

2with coarse-grid operator T = I − P (P T AP)−1P T A and, for σ = , define the relaxation 2+�

D−1
� �

operator to have error propagator G = I − σ 0
A. The two-grid AMGr error propagation

0 0
operator defined by TG satisfies:

� � �� 1

� � 2

kTGkA ≤ 1 + < 1. (1)
1 + � (2 + �)2

As written, this theorem provides a convergence guarantee, but neither a predictive algorithm for
determining the partitioning nor for the choice of D once Aff is known. These were later provided
in [4], where it was realized that diagonal dominance of Aff is sufficient to provide a prescriptive
choice of D.
Theorem 2. Let A be symmetric and positive definite, and let θ ∈ (1 , 1] be given. If 2 Xaii

θ ≤ θi = ∀i ∈ F,
|aij |

j∈F

1and D is the diagonal matrix with entries dii = (2 − θi
)aii for all i ∈ F , then Aff = D + E with

0 ≤ E ≤ �D for � = 22
−
θ−
2θ
1 .

This result guarantees the first of the two conditions on D in Theorem 1, but not the second, that � �
D −Afc ≥ 0. A further result in [4] addresses this. −AT

fc Acc

Theorem 3. Let A be symmetric, positive definite, and diagonally dominant, and let θ ∈ (1 , 1] be2
given. If Xaii

θ ≤ θi = ∀i ∈ F,
|aij |

j∈F � �
D −Afc and D is the diagonal matrix with entries dii = (2 − 1)aii for all i ∈ F , then ≥ 0.θi −AT

fc Acc

4

Motivated by these results, the optimization problem in Section 3.1 of the main paper was proposed
in [4] to determine the partitioning, by maximizing the size of Aff subject to ensuring the condition
on diagonal dominance is met. This problem is shown to be NP-hard, motivating a greedy algorithm
for its solution. It is that greedy algorithm that we compare against in Section 5 of the main paper. We
note that the matrices arising from the aspect ratio family of problems are generally not diagonally
dominant; thus, although they are an interesting and challenging test set, they do not fall into the class
of problems for which convergence guarantees are given by the results above. For this reason, we do
not include convergence results for this class.

References

[1] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. Topology
adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370, 2017.

[2] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[4] Scott MacLachlan and Yousef Saad. A greedy strategy for coarse-grid selection. SIAM Journal
on Scientific Computing, 29(5):1825–1853, 2007.

[5] W. N. Bell. Algebraic multigrid for discrete differential forms. Ph.D. thesis, University of
Illinois at Urbana-Champaign, 2008.

[6] Stuart Lloyd. Least squares quantization in PCM. IEEE transactions on information theory,
28(2):129–137, 1982.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms second edition. The Knuth-Morris-Pratt Algorithm, 2001.

[8] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for sparse matrix
equations. In D. J. Evans, editor, Sparsity and Its Applications. Cambridge University Press,
Cambridge, 1984.

[9] John W Ruge and Klaus Stüben. Algebraic multigrid. In Multigrid methods, pages 73–130.
SIAM, 1987.

[10] Scott P. MacLachlan and Luke N. Olson. Theoretical bounds for algebraic multigrid perfor-
mance: review and analysis. Numerical Linear Algebra with Applications, 21(2):194–220,
2014.

[11] J. Brannick, Y. Chen, J. Kraus, and L. Zikatanov. Algebraic multilevel preconditioners for
the graph Laplacian based on matching in graphs. SIAM Journal on Numerical Analysis,
51(3):1805–1827, 2013.

[12] Artem Napov and Yvan Notay. An algebraic multigrid method with guaranteed convergence
rate. SIAM Journal on Scientific Computing, 34(2):A1079–A1109, 2012.

[13] S. MacLachlan, T. Manteuffel, and S. McCormick. Adaptive reduction-based AMG. Numer.
Linear Alg. Appl., 13:599–620, 2006.

[14] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. (code is MIT
licensed).

[15] L. N. Olson and J. B. Schroder. PyAMG: Algebraic multigrid solvers in Python, 2018. Release
4.0 (MIT licensed).

[16] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008. (code is BSD licensed).

5

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] For the abstract: See the last third of the abstract con-
tains the contributions. For the introduction: See the last paragraph of the introduction.

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This

paper only concerns improving the performance of multigrid linear solver algorithms
and thus has no direct negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See the

statements of Theorems 1, 2, 3, and 4.
(b) Did you include complete proofs of all theoretical results? [Yes] See the proofs of

Theorems 1, 2, 3, and 4.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] URL for the
repository including all the code and data is provided as a footnote in the first paragraph
of Section 5.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the last paragraph of Section 4.2 and the first paragraph of
Section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We did not, but we ran many test cases and plotted all raw
data, with no averaging, so the variability due to test case and random seeds is clearly
visible (and it is generally small).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the first paragraph of Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited references

[14, 15, 16] in the first paragraph of Section 5.
(b) Did you mention the license of the assets? [Yes] We mentioned the licenses for

[14, 15, 16] in the references.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Provided in Checklist Question 3(a).
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] No such data was used.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] No such data was used.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No participants.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No participants.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No participants.

6

	Convergence of AMG
	Choice of Graph Neural Network and Architecture
	Lloyd Aggregation
	Reduction-based AMG

