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In this document, we provide a convergence plot for all the families with guaranteed convergence A, a 
discussion about the choice of the graph neural network and architecture B, a more detailed discussion 
about the clustering algorithm we used for our method (Lloyd aggregation C), and the theoretical 
guarantees for the AMG coarsening D. 

Appendix A Convergence of AMG 

Figure 1 shows the convergence factor for all of the families (except for the Aspect Ratio family, for 
which the theoretical convergence factor bound does not apply) and the convergence factor for the 
different size family against grid size. It is noteworthy that, in this paper, we have directly optimized 
the size of the coarse grid, which sacrifices convergence in exchange for achieving smaller coarse 
grids, justified by the fact that the guaranteed convergence factor is always 0.977, according to 
convergence theory in Appendix D. 
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Figure 1: Left: Measured convergence factors for different families with guaranteed convergence. 
According to the theory in Appendix D, the guaranteed convergence factor is 0.977. Right: measured 
RL convergence rate for the Different Size family versus grid size. 
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Appendix B Choice of Graph Neural Network and Architecture 

We use TAGConv [1] layers as graph convolution in our architecture. This choice is motivated by 
the fact that TAGConv has linear time complexity in graph size (assuming a size-independent upper 
bound on node degree). Moreover, it is a generalized form of the conventional GCN [2], and it is 
scalable, i.e., we can train such a network on certain graph types, yet test them on larger graphs with 
different topologies. In this work, we obtain our experiment results using 3 TAGConv layers for the 
agent, each consisting of 4-size filters with 32 hidden units. This architecture results in the neural 
network output at each node being dependent only on information from nodes up to 12 hops away 
from it (3 layers × 4-size). For comparison, we trained another agent, using the same RL algorithm 
(i.e. Dueling Double DQN [3]), but this time with 6 TAGConv [1] layers, each consisting of 8-size 
filters with 64 hidden units, leading to output of the network at each node being dependent on nodes 
within 48 hops away (6 layers × 8-size). Comparing the results of the two networks, we observe that 
adding more graph convolution layers does help the agent achieve better results on the training set; 
however, when testing on grids noticeably larger than those in the training set, the larger network does 
not outperform the smaller network. We conclude that the initial choice of the network parameters 
provides the agent with enough information about its local neighborhood to outperform the greedy 
algorithm of [4], while there is no substantive benefit to adding more complexity (and cost) to the 
network. A more thorough study of the network complexity and training time is left for future work. 

Appendix C Lloyd Aggregation 

Lloyd aggregation is a k-means-based clustering algorithm which is obtained directly from the general 
form of Lloyd’s algorithm [5, 6]. Consider a 2D planar graph, G, the set of all edges E, the set of all 
of its nodes V , and Vc ⊆ V . The nodes in the Vc set serve as the centers of the clusters. The regions 
are obtained based on the closest center to each graph node, where the distance is measured by the 
number of edges covered in the shortest path between two nodes (denote distance between node i 
and j by dij ). Define the centroid of a region as the farthest node from the boundary, and break the 
possible ties by choosing one randomly. The modified Bellman-Ford algorithm is commonly used for 
obtaining the nearest center to every node in V and its associated distance [5, 7]. Let N be a list of 
graph nodes whose i-th element is the nearest center to the i-th node of the graph, and let D be the 
list of its distances; then, the modified Bellman-Ford algorithm is shown in Algorithm 1. 

Algorithm 1 Modified Bellman-Ford 
1: Input E: The set all edges, V : The set of all nodes, Vc: The set of initial center nodes. 
2: D(i) = ∞ ∀i∈{1,2,...,|V |}
3: N(i) = −1 ∀i∈{1,2,...,|V |}
4: for c ∈ Vc do 
5: D(c) ← 0 
6: N(c) ← c 
7: end for 
8: while True do 
9: Finished ← True 

10: for (i, j) ∈ E do 
11: if D(i) + dij < D(j) then 
12: D(j) ← D(i) + dij 
13: N(j) ← N(i) 
14: Finished ← False 
15: end if 
16: end for 
17: if Finished then 
18: return D, N 
19: end if 
20: end while 

Once the D and N reach their correct values, Algorithm 1 terminates. Given a fixed number of center 
nodes, Lloyd’s algorithm modifies the clusters in each iteration by selecting the centroid of every 
region as its new center, then using the modified Bellman-Ford algorithm to calculate new distances 
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and nearest centers. Given updated center positions, it reshapes the new clusters. The Full Lloyd 
algorithm is shown in Algorithm 2, where we define the set of border nodes, B, as the set of all nodes 
that are connected by an edge to a node that has a different nearest center node. 

Algorithm 2 Lloyd Aggregation 
1: Input K: Number of iterations, E: The set of all edges, V : The set of all nodes, Vc: The set of 

initial center nodes. 
2: for i = 1, 2, 3, ..., K do 
3: D, N ← Modified Bellman-Ford(E, V, Vc) 
4: B ← ∅ 
5: for (i, j) ∈ E do 
6: if N(i) =6 N(j) then 
7: B ← B ∪ {i, j}
8: end if 
9: end for 

10: D, X ← Modified Bellman-Ford(E, V, B) 
11: Vc ← {i ∈ V : D(i) > D(j) ∀N(i)=N(j)}
12: end for 
13: return N 

Time Complexity: Assuming each node’s initial distance to a center node is bounded independently 
of |V |, and also assuming that each node’s degree is bounded independently of |V |, Algorithm 1 runs 
a |V |-independent number of iterations to determine one nearest center node for every point. So, we 
conclude that Algorithm 1 is O(|V |) in our case. This is run a |V |-independent number of times in 
Algorithm 2 to get the clustering, resulting in an O(|V |) clustering algorithm. 

Appendix D Reduction-based AMG 

Algebraic multigrid (AMG) methods are a family of iterative solution algorithms for linear systems 
of equations. First developed in the 1980’s [8, 9], they have become a commonplace tool in the 
solution of discretized elliptic PDEs, particularly for applications such as the modeling of flow 
through porous media. As in geometric multigrid, AMG algorithms make use of complementary 
processes of relaxation and coarse-grid correction to reduce all modes of error in an approximate 
solution. In geometric multigrid methods, the typical approach is to fix the details of the coarse-grid 
correction process and develop relaxation schemes that provide sufficient error reduction over the 
complementary modes to ensure effective convergence overall. AMG methods take the opposite 
approach, fixing the details of the underlying relaxation scheme and constructing a coarse-grid 
correction process to complement it. 

While commonly implemented recursively, we focus on two-level cycles in this work. In this setting, 
the fine-grid relaxation scheme is characterized by its error-propagation operator, where the current 
approximation to the solution of Ax = b, x̃, is updated by 

x̃ ← x̃+ M(b − Ax̃), 

using some matrix M — e.g., M = ωD−1 with some weight and the diagonal of A, in the case 
of weighted Jacobi. From this, the error e = x − x̃ is updated as e ← (I − MA)e. Typically, the 
coarse-grid correction process in AMG is specified by the choice of an interpolation operator, P , that 
maps from the (smaller) coarse space to the given fine space. Then, coarse-grid correction updates an 
approximation, x̃, as 

x̃ ← x̃+ P (P T AP )−1P T (b − Ax̃), 

and updates the error as e ← (I − P (P T AP )−1P T A)e. The main distinction between different 
AMG approaches, then, lies in the construction of P . Classical AMG schemes construct P by first 
determining its row dimension (the coarsening or partitioning phase), then fixing a sparsity pattern 
(to ensure suitable sparsity of P T AP ) and computing the nonzero entries. 

While AMG methods are well-regarded as among the most efficient solvers available for the large, 
sparse, linear systems that come from the discretization of elliptic PDEs, the available theory 
governing their convergence often offers only poor prediction of their actual convergence rates 
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(see [10] for an overview). In particular, AMG algorithms are typically driven by heuristic (greedy) 
graph algorithms that make achieving guaranteed convergence rates difficult. In practice, there are 
only a few AMG frameworks that offer guarantees of even two-level convergence rates, and these 
are often limited to specific problems, such as the graph Laplacian [11, 12]. In this paper, we make 
use of the reduction-based AMG (AMGr) framework, introduced in [13], which offers guarantees 
of convergence for a somewhat wider class of problems, including finite-element discretizations of 
isotropic diffusion on some classes of mesh. We emphasize here that, while working in a theoretically 
justified setting is attractive, AMG algorithms with guaranteed convergence rates typically attain 
worse convergence than those based solely on heuristics. Thus, comparisons of the convergence of 
classical (heuristic-based) AMG algorithms directly with AMGr is potentially misleading, since it is 
a comparison of heuristics (often tuned for standard test problems) against theoretical guarantees. 

A key advantage of the AMGr paradigm (aside from the convergence-rate guarantee) is that it offers 
a prescriptive construction of the AMG interpolation operator, P , once the partitioning is determined. 
In this area, it is typical to consider the problem in a permuted form, where we split the set of 
degrees of freedom (columns) and equations (rows) of A into their “fine” and “coarse” subsets, � � 

Aff −Afc writing A = , where symmetry is assumed and we introduce a sign flip for later −AT 
fc Acc 

convenience. The theoretical foundation of AMGr is the assumption that the submatrix, Aff , can be 
written as Aff = D + E , where D is a matrix that has a sparse inverse, while E is, in some sense, 
small. This is formalized in the main theorem of [13]. Here, we use the standard notation A ≥ 0 to 
denote that matrix A is positive semi-definite (that yT Ay ≥ 0 for all vectors y).� � 

Aff −Afc Theorem 1. Let A = ≥ 0 be symmetric and let Aff = D+E for symmetric matrix −AT 
fc Acc� � � � 

D −Afc D−1Afc D, with 0 ≤ E ≤ �D and ≥ 0. Define interpolation operator P = −AT 
fc Acc I 

2with coarse-grid operator T = I − P (P T AP )−1P T A and, for σ = , define the relaxation 2+� 

D−1 
� � 

operator to have error propagator G = I − σ 0 
A. The two-grid AMGr error propagation 

0 0 
operator defined by TG satisfies: 

� � �� 1 

� � 2 

kTGkA ≤ 1 + < 1. (1)
1 + � (2 + �)2 

As written, this theorem provides a convergence guarantee, but neither a predictive algorithm for 
determining the partitioning nor for the choice of D once Aff is known. These were later provided 
in [4], where it was realized that diagonal dominance of Aff is sufficient to provide a prescriptive 
choice of D. 
Theorem 2. Let A be symmetric and positive definite, and let θ ∈ ( 1 , 1] be given. If 2 Xaii

θ ≤ θi = ∀i ∈ F, 
|aij |

j∈F 

1and D is the diagonal matrix with entries dii = (2 − θi 
)aii for all i ∈ F , then Aff = D + E with 

0 ≤ E ≤ �D for � = 22 
− 
θ− 
2θ 
1 . 

This result guarantees the first of the two conditions on D in Theorem 1, but not the second, that � � 
D −Afc ≥ 0. A further result in [4] addresses this. −AT 

fc Acc 

Theorem 3. Let A be symmetric, positive definite, and diagonally dominant, and let θ ∈ ( 1 , 1] be2 
given. If Xaii

θ ≤ θi = ∀i ∈ F, 
|aij |

j∈F � � 
D −Afc and D is the diagonal matrix with entries dii = (2 − 1 )aii for all i ∈ F , then ≥ 0.θi −AT 

fc Acc 
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Motivated by these results, the optimization problem in Section 3.1 of the main paper was proposed 
in [4] to determine the partitioning, by maximizing the size of Aff subject to ensuring the condition 
on diagonal dominance is met. This problem is shown to be NP-hard, motivating a greedy algorithm 
for its solution. It is that greedy algorithm that we compare against in Section 5 of the main paper. We 
note that the matrices arising from the aspect ratio family of problems are generally not diagonally 
dominant; thus, although they are an interesting and challenging test set, they do not fall into the class 
of problems for which convergence guarantees are given by the results above. For this reason, we do 
not include convergence results for this class. 
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