
5 Human Brain Data258

5.1 Participants and Acquisition259

We recorded brain responses using fMRI from N=5 participants during a sentence reading task. The260

participants were neurotypical native speakers of English (4 female), aged 21 to 30 (mean 25; std 3.5),261

all right-handed. Participants completed two scanning sessions where each session consisted of 10262

runs of the sentence reading experiment (sentences presented on the screen one at a time for 2s with263

an inter-stimulus interval of 4s, 50 sentences per run) along with additional tasks. Participants were264

exposed to the same set of 1,000 sentences (no repetitions), but in fully randomized order. Structural265

and functional data were collected on the whole-body, 3 Tesla, Siemens Prisma scanner with a266

32-channel head coil. T1-weighted, Magnetization Prepared RApid Gradient Echo (MP-RAGE)267

structural images were collected in 176 sagittal slices with 1 mm isotropic voxels (TR = 2,530 ms,268

TE = 3.48 ms, TI = 1100 ms, flip = 8 degrees). Functional, blood oxygenation level dependent269

(BOLD) were acquired using an SMS EPI sequence (with a 90 degree flip angle and using a slice270

acceleration factor of 2), with the following acquisition parameters: fifty-two 2 mm thick near-axial271

slices acquired in the interleaved order (with 10% distance factor) 2 mm × 2 mm in-plane resolution,272

FoV in the phase encoding (A ≪ P) direction 208 mm and matrix size 104 × 104, TR = 2,000 ms and273

TE = 30 ms, and partial Fourier of 7/8. All participants gave informed written consent in accordance274

with the requirements of an institutional review board.275

5.2 Data Preprocessing and First-Level Modeling276

fMRI data were preprocessed using SPM12 (release 7487), and custom CONN/MATLAB scripts.277

Each participant’s functional and structural data were converted from DICOM to NIfTI format. All278

functional scans were coregistered and resampled using B-spline interpolation to the first scan of the279

first session. Potential outlier scans were identified from the resulting participant-motion estimates280

as well as from BOLD signal indicators using default thresholds in CONN preprocessing pipeline281

(5 standard deviations above the mean in global BOLD signal change, or framewise displacement282

values above 0.9 mm; [16]). Functional and structural data were independently normalized into a283

common space (the Montreal Neurological Institute [MNI] template; IXI549Space) using SPM12284

unified segmentation and normalization procedure [3] with a reference functional image computed285

as the mean functional data after realignment across all timepoints omitting outlier scans. The286

output data were resampled to a common bounding box between MNI-space coordinates (-90, -287

126, -72) and (90, 90, 108), using 2 mm isotropic voxels and 4th order spline interpolation for the288

functional data, and 1 mm isotropic voxels and trilinear interpolation for the structural data. Last, the289

functional data were smoothed spatially using spatial convolution with a 4 mm FWHM Gaussian290

kernel. A General Linear Model (GLM) was used to estimate the beta weights that represent the blood291

oxygenation level dependent (BOLD) response amplitude evoked by each individual sentence trial292

using GLMsingle [18]. Within the GLMsingle framework, the HRF which provided the best fit to the293

data was identified for each voxel (based on the amount of variance explained). Data were modeled294

using 5 noise regressors and a ridge regression fraction of 0.05. The ‘sessionindicator’ option in295

GLMsingle was used to specify how different input runs were grouped into sessions. By default,296

GLMsingle returns beta weights in units of percent signal change by dividing by the mean signal297

intensity observed at each voxel and multiplying by 100. Hence, the beta weight for each voxel can298

be interpreted as a change in BOLD signal for a given sentence trial relative to the fixation baseline.299

After first-level modeling, we extracted voxels from language-selective regions in the brain. Language300

selectivity was defined based on an extensively validated language localizer task contrasting reading301

of sentences with non-words strings [7, 15]). We identified the top 10% language-selective voxels in 5302

broad anatomical parcels in the left hemisphere: three frontal parcels (inferior frontal gyrus [IFG], its303

orbital portion [IFGorb], and middle frontal gyrus [MFG]) and two temporal ones (anterior temporal304

[AntTemp], posterior temporal [PostTemp]). These parcels delineate the expected gross locations305

of language-selective brain regions but are sufficiently large to encompass individual variability.306

The number of voxels in region of interest (ROI) was 75 for IFG, 37 for IFGorb, 47 for MFG, 163307

for AntTemp, and 295 for PostTemp. In addition, we included a language network [netw] region308

(617 voxels), which consisted of all voxels in the aforementioned five regions, yielding a total of six309

regions of interest (ROIs) in our study.310
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Figure 4: Training curves for a particular fv-VAE model, compressing IFG data for participant B. For
the first 5,000 epochs, the model converged to high complexity (left axis) and low MSE (right axis).
After epoch 5,000, we increased β, which decreased complexity and increased MSE.

6 Implementation Details311

Here, we include further details about the fv-VAE model architecture, training process, and data312

sources used in our experiments.313

Neural Architectures We used the same feedforward neural architecture for the fv-VAE models in314

all experiments. Anonymized code for replicating our experiments is included here, although given315

the sensitive nature of fMRI scans, we have not included the brain data in the repository.316

A deterministic, feedforward encoder model mapped from an input, x, to a continuous hidden317

representation, h, via three fully-connected layers ReLU layers of size 1024, 512, and 64. We passed318

h through a single fully-connected 128-unit layer to generate µ, according to which we sampled a319

continuous latent representation z ∼ N (µ, I). Recall that this is similar to a standard VAE, but with320

a fixed unit variance.321

The decoder mirrored the encoder model architecture: three fully-connected layers of size 512, 1024,322

and a final layer of the input size’s dimension (which varied according to brain region). The first and323

second decoder layers used ReLU activations; the last layer used a sigmoid activation, as all fMRI324

data were normalized to be between 0 and 1.325

Training fv-VAE Figure 4 depicts a typical training run, plotted here for the IFG region of326

participant B. Overall, the model was trained for 9,000 epochs, using batch size 250, using a default327

Adam optimizer with learning rate 0.001. For the first 5,000 epochs, we fixed β = 1e − 07; this328

small but positive value allowed models to converge to low MSE values and mitigated numerical329

stability issues that arose if we set β = 0. As shown in Figure 4, for the first 5,000 epochs, the330

models converged to low MSE and high complexity. (Directly measuring the exact complexity is331

challenging, so we plotted the variational bound on complexity, computed via the KL divergence332

of two Gaussians.) After epoch 5,000, we increased β by 1e− 08 log(epoch − 5000) at each epoch.333

One could use a different annealing rate for β but, as evidenced by Figure 4, our chosen values tended334

to increase MSE and decrease complexity.335

To extract brain data at varying levels of compression, we saved checkpoints of fv-VAE models336

during training, after epoch 5,000. Specifically, we used checkpoints every 100 epochs from epoch337

5,000 to 6,000, and every 500 epochs from epoch 6,500 to 9,000 (all ranges inclusive). We used338

more frequent sampling in the earlier epochs, as MSE tended to increase more quickly in that region.339

Lastly, for each checkpoint, we computed the actual compressed representation for each sentence340

by passing it through the fv-VAE model and recording the output, µ. By recording µ, rather than341

sampling from a Gaussian centered at µ, we reduced noise in subsequent RSA analysis.342
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GPT2-XL data In the main paper, we described how we generated BERT embeddings using343

the [CLS] token. In additional experiments, we compared brain data to representations from the344

unidirectional-attention Transformer GPT2-XL model [19] (48 layers, embedding dimension of345

1, 600), available via the HuggingFace library (Wolf et al. [28], Transformers version 4.11.3) To346

generate a single representation for an entire sentence, we used the representation of the last token in347

the GPT model.348

7 Variational Autoencoders349

Here, we include an extended discussion of variational autoencoders (VAEs) [12] and our extension350

to fixed-variance VAEs. In a traditional VAE, an encoder is characterized a deterministic feedforward351

network that maps from an input, x, to parameters of a Gaussian distribution: µ(x),Σ(x). Using the352

“reparametrization trick,” one samples a latent representation, z, from the Gaussian distribution, and z353

is used to generate a reconstruction of x via a decoder network.354

Overall, the VAE training loss comprises a reconstruction loss (e.g., MSE) and a bound on the355

complexity of representations: I(X;Z). Equation 3 establishes this complexity loss.356

I(X;Z)VAE = DKL[P(X,Z)∥P(X)P(Z)]

= DKL[P(Z|X)P(X)∥P(X)P(Z)]

= DKL[N (µ(x),Σ(x))∥P(Z)]

≤ Σ(x)2 + µ(x)2 − log(Σ(x))− 1

2

(3)

The first two lines include definitions of complexity, using the KL divergence of the joint distribution357

from the product of its marginals. The third line follows from the nature of the VAE architecture,358

wherein we sample z from a Gaussian distribution. Lastly, the fourth line sets an upper bound on the359

complexity of representations by assuming that P(Z) is a unit Normal distribution, centered at the360

origin.361

In our fixed-variance VAE (fv-VAE), we set the variance of a traditional VAE encoder as the identity362

matrix, but otherwise follow the normal sampling mechanism and training loss. The training loss,363

in particular, simplifies when replacing Σ(x) and removing constant terms, to only include µ(x)2.364

We note, however, that the fv-VAE method is not simply an L2-regularized model; it samples latent365

representations, which is a necessary component for establishing complexity bounds.366
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Figure 5: RSA scores comparing compressed (bold) and uncompressed (faded) brain representations,
across BERT layers. As a further baseline, we include RSA scores using the averaged similarity
matrix across participants. Compression increased RSA scores for some frontal regions, but not
temporal regions.
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Figure 6: RSA scores between participant fMRI data and GPT2-XL embeddings. As in Figure 5,
bold colors represent RSA scores for compressed data; faded colors represent uncompressed data.
Trends largely mirror results from BERT: we observed some increases in RSA for participants B, C,
and D in frontal regions.

8 Additional Results367

In the main paper, we included some of the key results from our approach, highlighting RSA scores368

for particular regions of interest. Here, we present more complete results, including RSA scores using369

BERT and GPT2 embeddings, for all five regions of interest, as well as the overall language network370

(netw). Results for BERT and GPT2 are included in Figures 5 and 6, respectively.371

As in the main paper, each colorful line represents the RSA scores for a particular participant using372

compressed (bold) or uncompressed (faded) fMRI data. In addition to such analysis, we included a373

“averaged” baseline, for which we computed the average similarity matrix across all participants before374

calculating the RSA score. For example, for the AntTemp region, we computed the (1000× 1000)375

Pearson similarity matrix for each of the five participants, averaged the five matrices, and computed376

the RSA score between the BERT similarity matrix and the averaged participant similarity matrix.377
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Figure 7: RSA vs. MSE using BERT Layer 6 embeddings. In several brain regions, small increases
in MSE led to increases in RSA, suggesting benefits to compressing brain data.

Figures 5 and 6 jointly speak to the robustness of our results by displaying similar trends for different378

LLM embeddings. That is, for both BERT and GPT embeddings, we observed increased RSA scores379

for compressed brain representations in frontal regions, for participants B, C, and D, but not in380

temporal regions.381

Figure 7 provides a snapshot of the benefits conferred by compressing brain data. Each figure mirrors382

Figure 2 a in plotting RSA vs. MSE, for embeddings from BERT layer 6. Increases in RSA as383

MSE increases indicates that compressing brain data increases alignment with LLM representations.384

Several brain regions, including, interestingly, temporal regions, produce such curves. For example,385

considering the full language network (Figure 7 a), RSA for participant B peaks for an MSE of386

approximately 0.004 – greater than the minimum MSE of 0.002. These results offer tantalizing but387

incomplete evidence that compressing brain data could improve alignment for all brain regions. We388

hope to continue to investigate such effects in future work.389
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9 Statistical Analysis390

We provide statistical significance values associated with the brain-LLM RSA scores (obtained via the391

Spearman correlation coefficient) for the main BERT analyses (Figures 2, 3, and 5). Each heatmap in392

Figure 8 shows the log p-value for each ROI (columns) for each participant (rows). Each heatmap has393

two rows, corresponding to the p-values for the compressed and uncompressed RSA scores, across394

all BERT layers. Lighter values indicate less significant RSA scores. The upper bound (yellow) of395

the color scale is log(0.05/25) which corresponds to a Bonferroni corrected p-value (correction for396

number of layers); the lower bound (dark purple) is fixed at log(0.000001). Blank areas correspond397

to non-significant scores. Most scores were highly significant, as evident from the dark panels.398

(a) Log of p-values associated with RSA scores for the Netw, AntTemp, and IFG ROIs (columns) for all
participants (rows), across all BERT layers.

(b) Log of p-values associated with RSA scores for the IFGorb, MFG, PostTemp ROIs (columns) for all
participants (rows), across all BERT layers.

Figure 8: P-values associated with RSA scores for all ROIs and all participants across BERT layers.
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