
Supplementary Material484

A Low tensor rank recurrent neural networks485

A.1 Architecture486

Low tensor rank weights. In order to probe for the tensor rank of learning in neural data, we487

introduce an RNN architecture that captures the evolution of neural activity over slow timescales. We488

first recall the description of the architecture of the main text, W 2 Rn⇥n⇥K ,489

W =
RX

j=1

aj ⌦ bj ⌦ cj .

In particular, at trial k, the dynamics of the RNN can be described as,490

⌧ ẋ = W
(k)

�(x)� x+Bu(k)(t) =
RX

j=1

c
(k)
j (aj ⌦ bj)�(x)� x+Bu(k)(t)

for B 2 Rn⇥m
,u(k)(t) 2 Rm, so that the RNN is a low rank RNN [14]. When training, we initialize491

aj ⇠ N (0, I), bj = aj . Furthermore, the weights are parameterized such that ||aj || = ||bj || = 1,492

so that the magnitude of a component is captured by cj .493

Smoothness constraint over trials. We further constrain the initial covariance in trial of the trial494

factors by parameterizing them as cj = (L+ �I)c̄j where LLT = A is the Cholesky decomposition495

of the smooth covariance matrix A, and c̄j is initialized as c̄j ⇠ N (0, I). In particular, we use a496

rational quadratic kernel s2(1+(2l)�1(ki�kj)2)�1, where ki is the ith trial index. This is equivalent497

to performing a 3-mode matrix-tensor product on the weight tensor itself (L+ �I)⇥3 W so that its498

entries over trials are linear combinations of smooth functions up to observation noise.499

This parameterization is similar to that of Gaussian process regression, except no probabilistic500

objective is set. In particular, given that (L + �I) is invertible, any possible cj can in theory be501

obtained upon optimization of the c̄j . By additionally setting a regularization on c̄j , we penalize the502

smoothness of cj as non-smooth solutions have diverging c̄j . In this way, we bias the optimization503

process towards smoother cj’s. As illustrated in Fig. 3b, the cross-validated loss remains similar to504

the non-smooth, full-rank, case.505

A key advantage of having smooth trial factors is that missing trials can be easily be accounted for.506

Indeed, in most large-scale neural datasets, such as the one explored in the present work, potentially507

many trials may have been discarded, for example due to behavioural performance being outside the508

range set by the experimentalist. The assumption being made here is that the across-trial covariance509

is preserved when such trials occur. That is, we assume that a failure of the animal to perform a given510

trial does not imply that a trial wasn’t informative, or that learning did not occur.511

Condition-wise inputs. We parameterize the condition-wise inputs to the network with neural512

ordinary differential equations [37], i.e. as a dynamical system whose right hand side is parameterized513

by a deep neural network (DNN)514

v̇(i) = DNN(v(i)) u(i)(t) = �(Dv(i)(t)),

where v(i)(t) 2 Rl and D 2 Rm⇥l. Throughout this work, we used a fully-connected 3-layer515

DNN with layers of size 150 and ReLU nonlinearities. This provides inputs whose dynamics are516

considerably less constrained than those generated by low-rank RNNs. Thus, we do not make any517

assumption on the activity of upstream brain regions which drive the activity of the brain region518

being recorded. While here we chose to model the inputs using autonomous neural ODEs, one might519

imagine feeding the neural ODE with behavioural or task covariates to relax the condition specificity520

assumption, or fitting residual inputs to capture trial-by-trial variability arising from unmeasured521

variables [20]. This could account for some of the variability that can neither be explained by the task522

condition, nor by changes in the dynamics due to learning.523

Loss. In sections 4 and 5 we focus on optimizing for the mean squared error (MSE)524

L(a,b, c, B,M) =
KX

k

TX

q

���
���M�(x(k)(tq))� y(k)(tq)

���
���
2
, (A.1.1)
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where y are firing rate estimates data and M 2 Rn⇥N . In section B we present supplementary results525

on optimizing the Poisson log-likelihood with respect to spike data,526

L(a,b, c, B,M) = �
KX

k

TX

q

log(Poisson(y(k)(tq)|M�(x(k)(tq)))) (A.1.2)

where y are binned spike data.527

Code availability. A package implemented in Pytorch and TorchSDE [39] for applying ltrRNN to528

neural data will be released upon publication.529

Table 1: Hyperparameters of the ltrRNN models. Bold indicates values specific to section 4 and 5,
⇤ indicates cross-validated hyperparameters, other hyperparameters were tuned by hand.

Neural data (S4) Simulated data (S5)
LtrRNN

R 5⇤ 5⇤
n 200⇤ 200⇤

� tanh tanh
Smoothness

l 50 15
s 0.1 0.1
� 0.1 0.1

Neural ODE
Layers 150⇥ 150⇥ 150 N/A

� ReLU N/A
Regularization

↵ 0.01 0
Cross-validation

Train blocks 1⇥ 10⇥ 20 1⇥ 10⇥ 10
Test blocks 1⇥ 5⇥ 10 1⇥ 5⇥ 5

neuron ⇥ time ⇥ trial

Table 2: Approximate training time of ltrRNNs. Here on the neural data of section 4. The variables
which impact the most training time are the trial and neuron dimensions of the ltrRNN (not the rank
or data time steps), as well as the neural ODE architecture. Hardware : desktop with an RTX 3090
Nvidia GPU and i7-12700K Intel CPU. ⇤ indicates the one used in section 4.

Neurons
200 400

Tr
ia

ls 370 12min 22min
740 16min⇤ 40min

A.2 The dynamics of ltrRNNs530

Rich changes of dynamics through oblique columns. Unlike for a matrix rank decomposition, a531

tensor rank decomposition can be unique even for non-orthogonal factors. A sufficient condition for532

uniqueness is that ra + rb + rc  R� 2 where, without loss of generality, ra denotes the maximum533

number of linearly dependent columns of a [49]. In other words, fitting the changes of dynamics534

over trials as opposed to a single low rank RNN shared over all trials gives additional information535

regarding the columns and rows. In the case where the aj’s are not orthogonal, non-trivial qualitative536

changes in the vector fields can occur. Since for any given trial k, an ltrRNN is simply a low rank537

RNN [14],538

ẋ(k) =
X

j

aj(c
(k)
j bj · �(x(k))) +Bu(k)(t) (A.2.1)

so that the dynamics of x(k) are constrained to span{aj} [ {Bj}. Unlike low rank RNNs, ltrRNN539

are not necessarily invariant under changes of bases of aj’s. Nevertheless, we can introduce an540
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orthonormal basis {ãj} so that,541

W
(k)

�(x(k)) =
RX

i

ãi
X

j

(ãi · aj)(bj · �(x))c(k)j (A.2.2)

In particular, notice that the dynamics along all ãi could potentially be affected by varying c
(k)
j .542

Conversely, the ai’s and bi’s being respectively orthonormal — e.g. as in a singular value de-543

composition — is not a sufficient condition for uniqueness of the tensor rank decomposition [50].544

Nevertheless, constraining the ai to be orthogonal and ensuring that the Kruskal constraint is satisfied,545

the vector fields are then orthogonal. In that case, varying c
(k)
i for some i corresponds to rescaling546

the vector field along ai. Nevertheless, as is illustrated below with a single component, the leak term547

allows the system to display typical properties of linear and nonlinear dynamical systems.548

Bifurcation in a tensor rank-one RNN. A classical example of bifurcation in a two-neuron system549

is that of the pitchfork supercritical bifurcation. Here, we show that it is essentially a tensor550

rank one RNN. We also illustrate how the corresponding linear RNN bifurcates. Let a = b =551

[�1/
p
2, 1/

p
2]T so that,552

W
(k) =

c

2


1 �1
�1 1

�
ẋ=0
===)


x1

x2

�
=

c

2


�(x1)� �(x2)
��(x1) + �(x2)

�
(A.2.3)

That is x1 = �x2. We consider two cases, � = tanh and � = id, both odd functions. Introducing553

the two in the previous equation, ��(x2) = �(x1). So that xi = c�(xi). Now considering each554

activation function separately,555

• tanh: i) c > 1 has two solutions. ii) c  1 one solution (the origin). At c = 1 the origin is a556

non-hyperbolic fixed point.557

• id: i) c = 1 for any x1. The non-zero eigenvalue of the Jacobian of the system is negative,558

therefore it is a line attractor. ii) x1 = 0 for any c. Then the Jacobian of the system at the559

origin has both positive and negative eigenvalues for c > 1 and only negative for c  1.560

Supplementary Figure 1: Bifurcation in a tensor rank one RNN.

More general changes in vector fields. At the cost of increasing the rank, an ltrRNN can possibly561

transition between two arbitrary vector fields of ranks R1 and R2. For example, let cj = [1, 0.9, ..., 0]562

for j 2 {1, ..., R1} and cj = [0, ..., 0.9, 1] for j 2 {R1 + 1, ..., R1 + R2}. There might however563

be multiple bifurcations between the first and last trial. More generally, given that any tensor has a564

(possibly high rank) tensor decomposition, any weight tensor can in theory be captured by an ltrRNN.565

This further illustrates the relevance of the result we found that ltrRNN of very low ranks fit data as566

well as full tensor RNNs.567
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A.3 Relationship between rank decomposition and eigendecomposition568

In this section, we investigate the relationship between an arbitrary low rank decomposition of a matrix569

and the eigendecomposition. We assume that, on a given trial k, W (k) has the rank decomposition570

W
(k) = adiag(c(k))bT =

R0X

i=1

c
(k)
i aib

T
i . (A.3.1)

where a 2 CN⇥R0
, b 2 CR0⇥N , c(k) 2 RR0

, and ai,bi are the rows/colums of a,b respectively.
One such low rank decomposition is the eigendecomposition23

W
(k) = V ⇤V �1 = V diag(�)V �1 =

RX

i=1

�iviṽ
T
i .

By the rank-nullity theorem, R is the rank of W (k), so that R0 � R, with R = R
0 when Equation

(A.3.1) is a minimal rank decomposition. Equating the two decompositions gives a general expression
for the eigenvalues:

⇤ = V
�1adiag(c)bT

V =) �i = (V �1adiag(c)bT
V )ii =

X

j

cj(ṽi · aj)(vi · bj).

If �i,a,b, c(k) 2 R, this gives rise to the result stated in the main text:571

�i =
X

j

cj(kṽikkajk cos ✓ṽ,aij )(kvikkbjk cos ✓v,bij ) (A.3.2)

=
X

j

cj(
kajk

cos(✓ṽ,vii )
cos ✓ṽ,aij )(kbjk cos ✓v,bij ) (A.3.3)

=
X

j

cj
kajkkbjk
cos(✓ṽ,vii )

cos ✓ṽ,aij cos ✓v,bij (A.3.4)

=
1

2

X

j

cj
kajkkbjk
cos(✓ṽ,vii )

(cos(✓ṽ,aij + ✓
v,b
ij ) + cos(✓ṽ,aij � ✓

v,b
ij )). (A.3.5)

Note that the above derivation makes no assumptions about the form of the low rank decomposition,572

other than that it is real-valued. Low rank decompositions commonly set kaik = kbik = 1, and573

often enforce orthogonality on the ai and/or bi, thereby introducing additional constraints on the574

relationship between the c’s and �’s. Normal matrices have cos(✓ṽ,vij ) = �ij and ṽi = vi, in which575

case further simplifications can be made.576

B Motor learning577

Pre-processing. Motor (n = 72 for Fig. 3, n = 70 for Sup. Fig. 4) and premotor (n = 231 for578

Fig. 3, n = 137 for Sup. Fig. 4) cortical neurons were used. The data was Gaussian filtered with579

a standard deviation of 40 ms (4 time bins). It was then centered by its baseline activity through580

subtracting neuron-wise the mean activity from around target onset to go-cue, and rescaled by dividing581

neuron-wise by the standard deviation of the execution period. Namely, the activity of a neuron ȳi(t)582

was given by583

ȳi(t) =
yi(t)� hyi(t)it100

h(yi(t)� hyi(t)it>100)2it>100
(B.0.1)

2Assuming W (k) is diagonalisable. A similar argument using the Jordan normal form holds for defective
matrices.

3Here, we write the left eigenvectors (rows of V �1, transposed into column vectors) as ṽr . We can
assume without loss of generality that the right eigenvectors vi are normalised to unit length, in which case
the orthonormality of left and right eigenvectors gives ṽi · vj = �ij = kṽikkvjk cos(✓ṽ,vij ) =) kṽik =

1/ cos(✓ṽ,vii ), where ✓ṽ,vii is the angle between the ith left and right eigenvector.
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where t = 0 is the go cue. Example of activity upon this pre-processing is given in Supp. Fig. 2.584

Modeling assumptions. We assumed that motor and premotor cortex was driven into an initial state585

by inputs from upstream regions during the preparatory period, after which the input shuts off so that586

the resulting activity during the reach evolves autonomously via the recurrent dynamics dynamics587

from that initial state. We therefore set u(t) = 0 for t > 100 where t = 0 is the time of the go cue.588

Where the 100 ms account for a sensory delay.589

Cross-validation procedure. We cross-validated the optimal rank and number of neurons of the590

ltrRNN. Low matrix or tensor rank models can be cross-validated by holding out specific entries of the591

matrix or tensor for training, and then used for testing. However, neural data has temporal correlation,592

such that the entry of the time-by-trial-by-neuron data tensor Tijk is strongly correlated with Ti�1,jk593

and Ti+1,jk. For example, assuming the data are continuous, a simple average of these entries will594

give an optimal estimate Tijk in the limit of small time bins. Thus, the test set can be trivially inferred595

from the train set. We validated this intuition by performing the same cross-validation as section 4596

but with 1⇥ 1⇥ 1 blocks, and found the test loss was similar as using the train loss over the whole597

dataset (Sup. Fig. 3).598

To counter this effect, sets of contiguous entries [Tijk, ..., Ti+n,jk] can be held out of training, and599

the interior of these blocks [Ti+q,jk, ..., Ti+n�q,jk] used for testing [29]. Here, given that we are600

interested in uncovering smooth changes in neural activity over slow timescales, we hold out n-by-m601

matrices [[Tijk, ..., Ti+n,jk], ..., [Ti,j+m,k, ..., Ti+n,j+m,k]] (Fig. 3b. inset).602

As mentioned in Supplementary Material A, our method allows inferring the dynamics of held-out603

trials. We found that using the cross-validation procedure from [29] infers similar ranks as holding604

out entire trials (Sup. Fig. 3). We nevertheless applied this procedure for the sake of being able to605

compare different classes of models.606

Poisson log likelihood. Another method for fitting firing-rate models to spike data is to use the607

negative Poisson log likelihood loss [11, 10]. We fitted a ltrRNN (R = 5, n = 200 as in the MSE608

loss case) with softplus activation using negative Poisson log likelihood loss. We found similar but609

overall noisier results (Supp. Fig. 5). This may be due to the presence of high firing rate neurons610

which are normalized by the preprocessing procedure but not likelihood fitting.611

C Task-trained RNN model of motor learning612

Task design. A trial is split into a preparatory period t 2 [0, Tgo) and execution period [Tgo, Tend].613

Here we set Tgo = 2, Tend = 4. To model a ballistic reach, the RNN receives input the target614

information and a hold cue during the preparatory period. During the execution period it evolves615

autonomously.616

dx(k) =
h
W�(x(k))� x(k) + 1t<TgoBtargetu

(k)
target + 1t<TgoBholdu

(k)
hold

i
dt+ �dW (C.0.1)

where Btarget 2 Rn⇥2, u(k)
target = [cos(✓(k)), sin(✓(k))] is a static vector representing the position of617

the target, Bhold 2 Rn⇥1, u(k)
hold = 1 a cue indicating to hold movement, and dW the infinitesimal618

increments of a Wiener process [51]. The dynamics of the hand are given in section 5 of the619

main text. The loss is taken to minimize the distance between the hand y(k)(t) and the target v(k)620

throughout the execution period, while keeping the hand still during the preparatory period, that is621

L(W,Btarget, Bhold, D) =622

1

K

KX

k=1

 
1

Tgo

Z Tgo

0
||y(k)(t)||2dt+ 1

Tend � Tgo

Z Tend

Tgo

||y(k)(t)� v(k)||2dt
!
. (C.0.2)

In particular, the speed of the reach is only constrained by the noise of the RNN and the hand. The623

dynamical system as a whole is evaluated with a differentiable adaptive step SDE solver [39] and624

trained with ADAM [52] during initial training, and SGD during motor perturbation learning.625

Analysis of the weights. We found that, consistent with the literature [16], the changes in weights626

resulting from the initial training were much larger than those of motor perturbation learning.627

PARAFAC on the full tensor of updates W �W0 ⌦ 1 captured the weight tensor in 3 components628

(not shown), whose columns and rows were essentially those of performing SVD on W
⇤. Fitting629
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Supplementary Figure 2: Persistent effects of motor learning. Top: session used in the main text
(Fig. 3). Bottom : session used in supplementary material (Sup. Fig. 4). a. Hand movement during
the first and last 80 trials of perturbation learning and washout. The hand trajectories of some reach
directions do not revert back post-washout (e.g. light green for top; dark green for bottom) b. Single
neuron activity averaged within each condition. c. State at go cue +100ms. Larger full color marker
are median within a condition. For some reach directions, the washout tends to be more similar to the
perturbed state than the baseline.

additional PARAFAC components revealed that residual variability in the updates of pretraining630

was larger than the motor perturbation learning variability. Furthermore, unlike SVD, there is no631

guarantee that the components of fitting a rank k + 1 PARAFAC model will be related to those of632

fitting a rank k model. Nevertheless, motor perturbation learning had a significant change on the633

eigenvalues and activity of the RNN (Fig. 5f,g)634

To uncover an upper bound on rank of the weight tensor, we split the analysis into the pre-training635

and motor perturbation learning. We first performed SVD on the change in weights matrix W
⇤ �W0,636

where W
⇤ are the weights of the network post-training, but pre-motor perturbation learning (Fig.637

4b.). We found that the changes in weights were well captured by a rank-3 decomposition. Then,638

we performed PARAFAC on the change in weights tensor W �W
⇤ ⌦ 1 of the motor perturbation639

learning. We found that this change of weight tensor was well approximated by a tensor rank640
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Supplementary Figure 3: Comparison of cross-validation procedures. Applied to the neural data
of the session used in the main text.

Supplementary Figure 4: LtrRNN applied to an additional recording session. a. Cross-validated
loss with held out blocks of size 100ms by 20 trials. b. PCA on preprocessed data. c. State of the
ltrRNN at go cue +100ms. f. Projection on first three aj . e. Projection of the vector field along
aj (see main text). f. Eigenspectrum of W (k) over trials. g. First three cj . h. Trial factors cj . i.
Projection of x(k)(t) on the corresponding aj .

2 decomposition. The combination of these results upper-bounds the tensor rank of the overall641

changes in weights to 5. Finally, we compared the subspace spanned by the columns of the SVD and642

PARAFAC decomposition by projecting the weight tensor W�W
⇤⌦1 on the first three column and643

row singular vectors of W ⇤ �W0 and found approximately a remaining 0.2 unexplained variance,644

suggesting that the columns of W0 �W
⇤ and W

⇤ were not orthogonal, but did not span the same645

subspace. Combined, these results suggest that the numerical tensor rank is at least 4 and at most 5,646

consistent with the results uncovered by ltrRNN from the RNN activity (Fig. 4e).647

D Mathematical results648

D.1 Adjoint derivation649

In this section, we present a derivation of the adjoint mainly following [37]. Then, we derive the650

adjoint of recurrent neural networks.651
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Supplementary Figure 5: Poisson log-likelihood fitting. a. Projection on first three aj . b. State
of the ltrRNN at go cue +100ms. c. First three cj . d. Eigenspectrum of W (k) over trials. e. Trial
factors cj . f. Projection of x(k)(t) on the corresponding aj .

D.1.1 State adjoint652

Consider the dynamical system ẋ = f(x,✓) 2 Rn where ✓ 2 Rk is a set of parameters. Furthermore,653

let the functional L : Rn ! R such that L(x(T )) is our loss. First, define the state adjoint,654

a(t) =
dL(x(T ))

dx(t)
. (D.1.1)

Notice that since x(t+�t) is a function of x(t),655

a(t) =
dL(x(T ))

dx(t+�t)

dx(t+�t)

dx(t)
= a(t+�t)

dx(t+�t)

dx(t)
. (D.1.2)

By Taylor expanding x(t+�t) = x(t) +�tf(x(t)) +O(�t
2), we get,656

a(t) = a(t+�t)(I +
d

dx(t)
f(x(t)) +O(�t

2)) (D.1.3)

where I is the identity matrix. By rearranging,657

a(t+�t)� a(t)

�t
= a(t+�t)

df(x(t))

dx(t)
+O(�t). (D.1.4)

Taking the limit as �t ! 0,658

da(t)

dt
= a(t)

df(x(t))

dx(t)
. (D.1.5)

We now have the dynamics of the adjoint; all that remains is that we find an initial (or rather terminal)659

condition. For this, notice that660

a(T ) =
dL(x(T ))

dx(T )
(D.1.6)

is the usual gradient of L w.r.t. to its argument.661
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D.1.2 Parameter adjoint and gradient662

In the above we derived the state adjoint a. However, for our purposes we also require the parameter663

adjoint dL(x(T ))/d✓. For this, it suffices to augment the original dynamical system with its664

parameters4 ż = [f(x,✓),0] and initial (later terminal) condition z(0) = [x(0),✓]. Defining the loss665

L̄(z(T )) = L(x(T )), the adjoint of this augmented system is,666

az(t) =
dL̄(z(T ))

dz(t)
=


dL̄(z(T ))

dx(t)
,
dL̄(z(T ))

d✓

�
=


dL(x(T ))

dx(t)
,
dL(x(T ))

d✓

�
=


ax(t),

dL(x(T ))

d✓

�
,

(D.1.7)

which contains the desired term dL(x(T ))/d✓. It now remains to describe the dynamics of the667

augmented system. By the same argument as for the state adjoint (D.1.5),668

daz(t)

dt
= az(t)

dż

dz
. (D.1.8)

By (D.1.7) and by unconcatenating z,669

=


ax(t),

dL(x(T ))

d✓

� "df(x(t))
dx(t)

dx(t)
d✓

d0
dx(t)

d0
d✓

#
(D.1.9)

=


a(t)

df(x(t))

x(t)
,a(t)

df(x(t))

d✓

�
. (D.1.10)

Hence the following dynamical system can be evaluated,670

d

dt


x(t),a(t),

dL(x(T ))

d✓

�
=


f(x(t),✓),a(t)

df(x(t))

x(t)
,a(t)

df(x(t))

d✓

�
, (D.1.11)

with terminal condition671

x(T ),a(T ),

dL(x(T ))

d✓

�
=


x(T ),

dL(x(T ))

dx(T )
,0

�
. (D.1.12)

Notice that to obtain the terminal condition, since it depends on x(T ), the original dynamical system672

must be evaluated forward once.673

D.1.3 RNN adjoint674

Let ẋ = f(x,W ) = W�(x) � x + Bu(t) and L(x(T )) = ||D�(x(T )) � y||2 for y 2 Rd.675

Furthermore, as it will be convenient, let W =
PR

i ↵i ⌦ �i. We will derive one by one the terms676

needed to characterize the parameter adjoint. First the Jacobian is677

df(x(t),✓)

dx(t)
=

RX

i

↵i ⌦ (�i � �
0(x(t)))� I (D.1.13)

where � denotes the element-wise product, I the identity matrix, and �
0 the derivative of �. Next,678

df(x(t),✓)i
dWjk

=

⇢
0 i 6= j

�(x)j i = j
, (D.1.14)

that is679

df(x(t),✓)

dW
= I ⌦ �(x). (D.1.15)

Finally the terminal condition,680

dL(x(T ))

dx(T )i
=

d

dxi

dX

j

(Dj · �(x)� yj)
2 =

dX

j

(Dj · �(x)� yj)(Dij�
0(x)i) (D.1.16)

4Here [·, ·] denotes row concatenation.
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that is,681

dL(x(T ))

dx(T )
=

dX

j

(Dj · �(x)� yj)(Dj � �
0(x)) = �

0(x)�
dX

j

(Dj · �(x)� yj)Dj (D.1.17)

Or more explicitly, ȧz =682

8
<

:
ȧx =

⇣PR
i ↵i ⌦ �i � �

0(x)
⌘T

ax � ax, ax(T ) = �
0(x(T ))�

Pd
j (Dj · �(x(T ))� yj)Dj

ȧW = ax ⌦ �(x), aW (T ) = 0

(D.1.18)

D.2 Rank of the gradient683

D.2.1 The gradient as a composition of operators684

In this section, we prove Theorems 1. In order to derive bounds on the singular values of rWL =685

aW (0), we shall now consider ax and �(x) as linear operators with integration. Namely,686

axy :=

Z T

0
ax(t)y(t)dt (D.2.1)

where y 2 H for H some suitable Hilbert space, such as L2 for our case.687

More formally, let ax,�(x) 2 B0,0, where B0,0 is the Banach space of i) compact ii) bounded688

operators from H to Rn, such that ax,�(x) : H ! Rn. In particular, we note that compactness689

follows from the image of ax, that is ax(H), to be a vector subspace of Rn and therefore be of finite690

rank. By the same argument, �(x) is compact, and therefore so is �(x)⇤ by Schauder’s theorem [53],691

where ⇤ is adjunction. Furthermore, notice that �(x),ax are solutions of dynamical systems with692

differentiable right hand side and therefore bounded (in Rn) if they are evaluated for finite time, and693

therefore bounded when seen as operators. The following result can now be applied:694

Lemma 2 ([53]). Let T 2 B0,0, then T admits a singular value decomposition. Furthermore, this695

singular value decomposition is of finite rank.696

We can now prove the main theorem.697

Proof of Theorem 1. Notice that the composition of the two operators is: ax � �(x)⇤ = rWL.698

Furthermore, the singular values of rWL are,699

�
rWL
i = min

U✓Rn,
dimU=
n�i�1

max
y2U,
||y||=1

||rWLy|| = min
U✓Rn,
dimU=
n�i�1

max
y2U,
||y||=1

||ax�(x)⇤y|| (D.2.2)

which can be bounded as,700

min
U✓Rn,
dimU=
n�i�1

max
y2U,
||y||=1

||ax�(x)⇤y||  min
U✓Rn,
dimU=
n�i�1

max
y2U,
||y||=1

||ax||||�(x)⇤y|| (D.2.3)

= �
ax
1 min

U✓Rn,
dimU=
n�i�1

max
y2U,
||y||=1

||�(x)⇤y|| (D.2.4)

that is,701

(D.2.5)

�
rWL
i  �

ax
1 �

�(x)⇤

i (D.2.6)
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Now notice that, for any operator, akin to the matrix case, T1, T2, the adjoint of their composition is702

(T1T2)⇤ = T
⇤
2 T

⇤
1 . Furthermore,703

�
(rWL)T

i = min
U✓Rn,
dimU=
n�i�1

max
y2U,
||y||=1

||(ax�(x)⇤)⇤y|| = min
U✓Rn,
dimU=
n�i�1

max
y2U,
||y||=1

||�(x)a⇤xy|| (D.2.7)

 �
�(x)
1 min

U✓Rn,
dimU=
n�i�1

max
y2U,
||y||=1

||a⇤xy|| (D.2.8)

= �
�(x)
1 �

a⇤
x

i (D.2.9)

Noticing that �a⇤
x

i = �
ax
i and �

rWL
i = �

(rWL)T

i ,704

�
rWL
i  �

�(x)
1 �

ax
i (D.2.10)

Combining D.2.6 and D.2.10 we obtain the sought upper bound of Theorem 1,705

�
rWL
i  min

n
�
ax
1 �

�(x)
i ,�

�(x)
1 �

ax
i

o
(D.2.11)

Similar steps can be used to derive the lower bound of Theorem 1, using instead the identity706

�
T1
n ||T2y||  ||T1T2y|| where T1, T2 2 B0,0 and �

T1
n is the smallest non-zero singular value of707

T1.708

We however note that, unlike the upper bound, the lower bound we provide does not have any709

numerical use, as the smallest singular value of the adjoint or of the firing rate is practically 0 (for710

example, well bellow machine precision).711

We further point out that a more explicit characterization of the singular values of the gradient can be712

obtained. Let Uax
i , U�(x)

i be the right singular vectors of respectively ax and �(x), so that V ax
i (t),713

V
�(x)
i (t) are the left singular vectors and �

ax
i , ��(x)

j the singular values.714

rWL =
nX

i,j=1

⇣
V

ax
i ⌦ V

�(x)
j

⌘
�
ax
i �

�(x)
j

Z T

0
U

ax
i (t)U�(x)

j (t)dt (D.2.12)

The characterization of the rank of the gradient has thus shifted to the firing rate and adjoint spaces.715

Furthermore, the integral is just the inner product between their right singular vectors and therefore716

of magnitude bounded by 1. Hence, for the dynamics of the weights to be large in a given direction717

in weight space V
ax
i ⌦ V

�(x)
j , all three of: the singular values of the firing rate, the state adjoint, as718

well as their cofluctuation in time, must not be small.719

D.2.2 Weight gradient for time discretizations720

Finally, we mention that our detour through functional analysis was for the sake of mathematical721

rigour, and that in practical applications, the RNN and its adjoint are evaluated at discrete time722

steps 0,�t..., q�t. In that case, the gradient can be estimated as a simple matrix-matrix product.723

Let A = [ax(0), ...,ax(q�t)] and B = [�(x)(0), ...,�(x)(q�t)]. Then rWL = �tAB
T , and the724

bounds D.2.6 and D.2.10 follow from classic matrix-matrix product bounds [54]. In particular, given725

that �(x) and ax are smooth, without loss of generality,726

�
rWL
i = lim

minj(tj+1�tj)!0
�
ABT

i (D.2.13)

This simple matrix-matrix product opens up the possibility of fast RNN adjoint implementations as,727

unlike computing ax
df
dW in general adjoint solvers, which requires O(qn3) time and O(n2) memory728

complexity for an n-dimensional RNN and q time steps, here the time complexity drops to O(qn2).729
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D.2.3 Rank of linear RNNs730

In this section we prove Theorem 2.731

Proof of claim 1. If W =
PR

i ↵i⌦�i, then by Lemma 1, the dynamics of the adjoint are constrained732

to the span of the rows of W , namely, ȧx 2 span{�i}. Therefore, ax 2 span{�i} [ {ax(T )},733

which is a at most R+ 1 dimensional subspace. If ax is constrained to a at most R+ 1 dimensional734

subspace, then ȧW = ax ⌦ x is also constrained to a at most R + 1 dimensional subspace. Since735

aW (T ) = 0, aW is constrained to the same subspace as its dynamics, and in particular, rankaW (0) =736

rankrWL
(0)  R+ 1.737

Proof of claim 2. Suppose W
(k) =

P2R+m+d
i ↵(k)

i ⌦ �(k)
j , where ↵(k)

i ,�(k)
i 2 span{↵(0)

i } [738

{�(0)
i } [ {Bi} [ {Di} := V . In particular, notice that V is only dependent on the initial weight.739

Then by a similar argument as above, a(k)x 2 V , which implies aW (0)(k) = rWL
(k) 2 V .740

Therefore W
(k+1) = W

(k) + �rWL
(k) =

P2R+m+d
i ↵(k+1)

i ⌦ �(k+1)
j with ↵(k+1)

i 2 V . That is741

rankW (k+1)  2R+m+ d.742

Proof of claim 3. Mutatis mutandis �(k+1) 2 V , that is x 2 V . Therefore, W(k) =743 P2R+m+d
ij c

(k)
ij ↵i ⌦ ↵j for some c

(k)
ij ’s, where ↵i 2 V . Or equivalently, W =

P2R+m+d
ij ↵i ⌦744

↵j ⌦ cij . That is, rankW  (2R+m+ d)2.745

D.3 Extensions of our results746

Loss integrated over time. Commonly, the loss considered might be integrated,747

L(T ) :=
Z T

0
L(x(t),y(t))dt (D.3.1)

The parameter adjoint is dependent only linearly on the state adjoint, we may therefore integrate the748

state adjoint for all initial conditions.749

L(T ) =
✓Z 0

T
ax(t) +

Z 0

t
ȧx(t

0)dt0
◆
dt (D.3.2)

The term inside the first integral is just the solution of time-varying autonomous LDS, therefore,750

Z 0

T
ax(t)dt =

Z 0

T
�(0, t)

dL(x(t),y(t))

dx(t)
dt (D.3.3)

Where � is the linear dynamical system state transition matrix [55]. But notice that this is the solution751

to the controlled LDS,752

ȧx = ax
df(x(t))

dx(t)
+

dL(x(t),y(t))

dx(t)
, ȧx(T ) = 0 (D.3.4)

In the specific case of an RNN,753

ȧx =

 
RX

i

↵i ⌦ �i � �
0(x)

!T

ax � ax + �
0(x(t))�

dX

j

(Dj · �(x(t))� yj)Dj , ȧx(T ) = 0

(D.3.5)

Therefore, Theorem 1 remains unchanged for a loss integrated over time. For Theorem 2, Claims 2-3754

remain unchanged, while Claim 1 becomes rankrWL
(0)  R+min{d,m}.755

Gradient with respect to other parameters. So far we have focused on the gradient of the weights756

of the RNN. As we have seen, the space over which the state adjoint ax(t) evolves as well as the757

trajectories of the system itself x(t) determine the space over which the gradient evolves. But those758

are respectively dependent on the decoder D and encoder B of the system. If all parameters D,B,W759
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of the system are optimized simultaneously, as is most often the case, we may wonder how our760

bounds hold.761

First, for B, notice that by a similar argument as for W , df(x,Bu(t))
dB = I ⌦ u(t), so that ȧB =762

ax ⌦ u(t). Therefore, following essentially the same derivation as that of Theorem 1, the following763

bound can be derived,764

�
B
i  min{�ax

1 �
u
i ,�

u
1 �

ax
i }. (D.3.6)

By a similar argument as for the derivation of Theorem 2, B(k)
i 2 span{↵i} [ {�i} [ {Bi} [ {Di}.765

Second, for D, since df
dD = 0, that is ȧD = 0,766

aD(T ) = aD(0) = rDL =
dL(T )

dD
. (D.3.7)

In other words, the gradient of the loss with respect to the decoder weights have zero dynamics.767

The gradient of a functional w.r.t. a given parameter is independent of the gradient of that functional768

with respect to another parameter if these two parameters do not depend on one another. Therefore769

these results hold regardless of which combination of W , B or D is optimized.770

Batched updates. Most often, the weights are updated in batches. That is �W
(k) =771

Q
�1
PQ

q rWL
(k,q) where q is the index over the batched dimension. Since the column and772

row spaces of rWL
(k,q) remain unchanged, Theorem 2 2-3. remain unchanged, while 1. be-773

comes rank�W
(0)  R + min{d,m}. For Theorem 1, the common singular value identities774

[54] �i+j�1(A + B)  �i(A) + �j(B) and �i(cA) = c�i(A) for c 2 R+
0 can be used. Then,775

�P
iq�Q+1(�W

(k))  Q
�1
PQ

q �iq (rWL
(k,q)).776

Momentum-based optimizers. Momentum-based optimizers such as Adam [52] are commonly777

used to train RNNs on behavioural tasks. Here we focus on the first moment, a similar derivation778

can be undertaken for higher moments. In that case, a momentum variable is introduced, which is779

updated as M (k+1) = �M
(k) + (1� �)rWL

(k), where � determines the speed of the exponential780

decay. The weights are then updated as W (k+1) = W
(k) � ↵M

(k+1), where ↵ is the learning rate.781

Which implies, �W
(k) = W

(k+1) �W
(k) = �↵

Pk
j (1� �)jrWL

(j). Using the same identities782

are for batched updates, �P
iq�k+1(�W

(k)) 
Pk

j (1� �)j�iq (rWL
(j)).783

D.4 Numerical simulations784

Similarly to [13], we illustrate our mathematical results on random RNNs. Since constant inputs are785

one dimensional (Bu =
P

Biui), we instead use time-varying inputs parameterized with LDS:786

u̇ = Mu� u u(0) = u0 (D.4.1)

where u(t) 2 Rm, Mij ⇠ N (0, 1
p
m), u0 ⇠ N (0,1/2). The target outputs are set as y 2 Rl,787

yi ⇠ U(�1, 1). The loss is defined as,788

L(W ) = ||D�(x)(T )� y||2 (D.4.2)

where x is the solution of an RNN as considered thus far.789

In Sup. Fig. 6 we show the effect of varying �, the rank R of the initial weights as well as the790

standard deviation (or strength) g of the initial weights such that W (0)
ij ⇠ N (0, g2).791
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Supplementary Figure 6: Singular values of adjoints and gradients. a. Loss over training. Inset:
activation function. b. Activity during the last trial (black). Inset: activity of two example neurons
over training. c. Singular values of the firing rate and adjoint. Inset: additional singular values. d.
Singular values of the gradient, weights, and the bound we derive. e. Variance explained per rank
of the tensor decomposition of weight tensor W � W

(0) ⌦ 1. We additionally plot the variance
explained over performing matrix decomposition on all possible unfoldings of the weight tensor.
Architectures. Unless noted, the initial weight std was g = 1.5, the input and output dimensions
m = d = 2. i. Rectified tanh. We found that non-smooth activition functions seem to give the slowest
decay of the singular values of the firing rate and adjoint. ii-iii. Softplus and tanh, which are the most
common activation functions in neuroscience, have exponentially decaying firing rate and adjoint
singular values, and therefore (by Theorem 1) exponentially decaying gradient singular values. iv.
Low rank (R = 3) linear RNN. As per Theorem 2, the first gradient step is of rank R + 1 = 4. v.
Tanh in a chaotic regime (g = 2.1). Despite being in a chaotic regime, the firing rate, the adjoint, and
therefore (by Theorem 1) the gradient have exponentially decaying singular values.
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