
A Appendix

A.1 Code Availability

In Section 4, we performed numerical experiments to validate the support recovery property of the
proposed `1 regularized ML estimator and compare its performance with the square root estimator
(GLASSO+SR) and what we call the GLASSO+2HR (2 Hop Refinement) estimator [20]. Our
benchmark examples include a synthetic data for chain and grid graphs, and a real-world electric
power system network. We implement all three estimators using CVXPY 1.2 open source python
package on Google Colab. All the simulation results reported in this paper can be reproduced using
the code available at https://github.com/AnirudhRayas/SLNSCL.

A.2 Limitations

In this work we restricted B⇤ in the model B⇤Y �X = 0 to be invertible and positive definite. In
applications such as transportation networks, B⇤ might not be symmetric, and hence, not positive
definite. For this setting, it is not clear if our technical analysis hold. Another limitation is that the
our sample complexity result depends quadratically in the maximum degree d. This is because of
the proof technique we adapted from [48]. Decreasing this dependence from d2 to d is an open
question. Finally, as is well known, verifying regularity conditions, such as the mutual incoherence,2
in practice is computationally hard. Hence, there is a need to develop regularity conditions that are
easily verifiable in practice.

A.3 Proofs of all technical results

Overview: We begin with a brief overview of the problem set-up and state the necessary assumptions.
Then, we provide proofs for all the technical results. Recall that our observation model is Y =
B⇤�1X , where B⇤ is a p⇥p sparse matrix which encodes the structure of a network with the property
that B⇤

ij
= 0 for all (i, j) 2 Ec, Y 2 Rp is the vector of node potentials and X 2 Rp is the unknown

random vector of injected flows with known covariance matrix ⌃X . Given n i.i.d samples of the
vector Y our goal is to learn the sparsity structure of the matrix B⇤. Towards this we propose an
estimator bB which is the solution of the following `1 regularized log-det problem

bB = argmin
B�0

⇥
Tr(DBSBD)� log det(B2) + �nkBk1,off

⇤
. (9)

where D 2 Rp⇥p is the unique square root of ⌃�1
X

and S is the sample covariance matrix constructed
from n samples of the random vector Y . We recall the assumptions necessary to prove our results.

[A1] Mutual incoherence condition. Let �⇤ be the Hessian of the log-determinant function in (9):

�⇤ , r
2
B
log det(B)|B=B⇤ = B⇤�1

⌦B⇤�1. (10)

For �⇤ in (10), there exists some ↵ 2 (0, 1] such that
�������⇤

EcE
(�⇤

EE
)�1

������
1  1� ↵.

[A2] Hessian regularity condition. Let d be the maximum number of non zero entries among all the
rows in B⇤ (i.e., the degree of the underlying graph), ⇥⇤ = B⇤⌃�1

X
B⇤, and D2 = ⌃�1

X
. Then,

���
���
����⇤�1

���
���
���
1


1

4dk⇥⇤�1
k1|||D2|||1

. (11)

Our analysis is based on the Primal-Dual Witness (PDW) construction to certify the behaviour of the
estimator bB. The PDW technique consists of constructing a primal-dual pair ( eB, eZ), where eB is the
primal solution of the restricted log-det problem defined below

eB , argmin
B=BT ,B�0,BEc=0

⇥
Tr(DBSBD)� log det(B2) + �nkBk1,off

⇤
. (12)

where eZ is the optimal dual solution. By definition the primal solution eB satisfies eBEc = B⇤
Ec = 0.

Furthermore the pair ( eB, eZ) are solutions to the zero gradient conditions of the restricted problem
2Interestingly, this condition is necessary and sufficient for sparse linear regression problems [63].
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(12). Therefore, when the PDW construction succeeds the solution bB is equal to the primal solution
eB which guarantees the support recovery property ie. bBEc = 0.

We now summarize our technical results. 1 We begin by showing that the `1 regularized log-det
problem in (9) is convex and admits a unique solution bB (see Lemma 1). 2 We then proceed to
derive the sufficient conditions under which the PDW construction succeeds (see Lemma 2). 3
We then guarantee that the remainder term R(�) is bounded if � is bounded (see Lemma 3). 4
Furthermore, for a specific choice of radius r as a function of kWk1we show that � lies in a ball
Br of radius r (see Lemma 4). 5 We then derive a lemma which we call the master lemma which
gives support recovery guarantees and element-wise `1 norm consistency for our estimator bB under
no specific distributional assumptions (see Lemma A.6). 6 Using known concentration results on
sub-gaussian and moment bounded random vectors we prove our main result for the two distributions
mentioned above. Recall that our main result gives sufficient conditions on the number of samples
required for our estimator bB to recover the exact sparsity structure of B⇤. We also show that under
these sufficient conditions bB is consistent with B⇤ in the element-wise `1 norm and achieves sign
consistency if |B⇤

min| (the minimum non-zero entries of B⇤) is lower bounded (see Theorem 1 and
Theorem 2). 7 Finally, we show that bB is consistent in the Frobenius and spectral norm.

Numbering convention: To make the appendix self contained we restated statements of all theorems,
lemmas, and definitions with their numbers unchanged with respect to the main text. For the numbered
environments that are specifically introduced in Appendix, the environment begins with the label "A"
(e.g., Lemma A.1).
Lemma 1. (Convexity and uniqueness) For any �n>0 and B�0, if the diagonal elements of the
sample covariance matrix Sii > 0 for all i, then (i) the `1-log determinant problem in (9) is convex
and (ii) bB in (9) is the unique minima satisfying the sub-gradient condition 2D2 bBS�2 bB�1+�n

bZ=0.
Here bZ belong to the sub-gradient @k bBk1,off so that bZij = 0, for i = j, and bZij=sign( bBij) when
bBij 6= 0 and | bZij |  1 when bBij = 0, for i 6= j.

Proof. (i) Convexity: Let S = MMT , for some M ⌫ 0, and recall that kAk
2
F
= Tr(AAT). Then,

the objective function in (9) can be expressed as

kDBMk
2
F
� log det(B2) + �nkBk1,off. (13)

First, the square-root of the first term is convex because for any � 2 (0, 1) and B1, B2 � 0, we have

kD(�B1 + (1� �)B2)MkF = k�DB1M + (1� �)DB2MkF

 �kDB1MkF + (1� �)kDB1MkF .

Now that h1(x) = x2 and h2(A) = kAkF are both convex and that h1(x) is non-decreasing on the
range of h2, that is, [0,1], it follows that the composition h1 � h2 = k · k

2
F

is convex.

Second, we show the convexity of � log det(B2) using the perspective function technique [10]. To
this end, let | · | be the absolute value and note that log det(B2) = log | det(B2)| = 2 log | det(B)|.
Let g(t) = log | det(B + tV )| with V ⌫ 0 be the perspective function of log | det(B)|. Since B is
symmetric and invertible, there exists an orthogonal matrix Q such that QQT = I and B = Q⌦QT,
where ⌦ is a diagonal matrix consisting of eigenvalues of B. Then,

g(t) = log(| det(Q⌦QT + tQQTV QQT)|) (14)

= log(| det(Q(⌦+ tQTV Q)QT)|) (15)

= log(| det(⌦+ tQTV Q)|) (16)

= log(| det(I + t⌦�1QTV Q)|) + log(|⌦|), (17)

where we used the facts | det(X1X2)| = | det(X1) det(X2)| = | det(X1)|| det(X2)| and ⇤ is full
rank. Since ⌦ is diagonal and QTV Q ⌫ 0, it follows that the eigenvalues {�i} of ⌦�1QTV Q are
real-valued (need not be positive). Thus,

g(t) = log
Y

|(1 + t�i)|+ log(|⌦|).
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Notice that g0(t) =
P

�i(1+t�i)
(1+t�i)2

and g00(t) = �
P

�
2
i

(1+t�i)2
< 0. Thus g(t) is strictly concave.

Hence, 2 log | det(B)| = log det(B2) is strictly concave. Finally, � log det(B2) is strictly convex.

Third, the norm �nkBk1,o↵ is the sum of absolute values of off-diagonal terms, and hence, convex.
Because the sum of convex functions and a strictly convex function is strictly convex, we conclude
that the objective function in (14) is strictly convex.

Remark: In the proof, we used the fact that B is symmetric and full rank but not the positive-definite.
The proof for B � 0 is simple because we can drop the absolute values and mimic the standard
log-det concavity proof [48, 23]. Finally, we required V ⌫ 0 to not to deal with the (possible)
imaginary eigenvalues of ⌦�1QTV Q. However, we conjecture that V needs to be only symmetric.

(ii) Uniqueness: In part (i), we showed that the objective function in (14) is strictly convex. Recall
that strictly convex functions have the property that the minimum is unique if attained [10]. We show
that the minimum is attained using the notion of coercivity (see Def 11.10 and Proposition 11.14
in [5]). This amounts to showing that the objective function CO(B) , (kDBMk

2
F
� 2 log detB)

subject to constraints (see below) tend to infinity as kBk2 ! 1.

By Lagrangian duality, the `1 regularized log-det problem (9) can be written as
argmin

B�0,B=BT ,kBk1,off<⇤n

kDBMk
2
F
� 2 log detB, (18)

where ⇤n is the constraint on the off diagonal elements of B. From the constraint kBk1,off < ⇤n,
it follows that the off-diagonal elements of B lie in an `1 ball. Thus, kBk2 ! 1 if and only if for
any sequence of diagonal elements k [B11, . . . , Bpp] k1 ! 1. On the other hand, by Hadamard’s
inequality for positive definite matrices [26], we have 2 log detB 

P
k

2 logBkk. Thus,

kDBMk
2
F
� 2 log detB � kDBMk

2
F
� 2

X

k

logBkk. (19)

We now lower bound kDBMk
2
F

. Consider the following inequality:

kDBMk
2
F
=

X

i,j

[DBM ]2
ij

(20)

=
X

i,j,k,l

(DikBklMlj)
2 (21)

�

X

i,j,k=l

(DikBkkMkj)
2 (22)

=
X

k

(Bkk)
2
X

i,j

(Dik)
2(Mkj)

2. (23)

The inequality in (22) follows because the off-diagonal elements of the matrix B are non-negative
(i.e.,

P
i,j,k 6=l

(DikBklMlj)2 � 0). Rewriting equation (19) using the lower bound from equation
(23), we have

kDBMk
2
F
� 2 log detB �

X

k

2

4(Bkk)
2
X

i,j

(Dik)
2(Mkj)

2
� 2 logBkk

3

5 (24)

If the term
P

ij
(Dik)2(Mkj)2 > 0, then for any sequence k[B11, . . . , Bpp]k1 ! 1, the quadratic

term (Bkk)2 in the right hand side of the lower bound in equation (24) dominates the logarithmic
term logBkk for all k. Therefore the objective function CO(B) = kDBMk

2
F
� 2 log detB � 1

as k[B11, . . . , Bpp]k1 ! 1. This implies that CO(B) is coercive and a unique minima exists. Now
it remains to show that the term

P
ij
(Dik)2(Mkj)2 > 0.

One one hand, by assumption, the diagonal elements of the sample covariance matrix S are strictly
positive. On the other hand, S = M2, where M is the unique positive semi-definite square root. Thus,

Skk =
X

j

(Mkj)
2 > 0. (25)
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By the same logic, the following inequality holds for D2 = ⌃�1
X

, where ⌃X is positive definite matrix:

[⌃�1
X

]kk =
X

i

(Dik)
2 > 0. (26)

Multiplying terms in (25) and (26), we have that
P

ij
(Dik)2(Mkj)2 > 0.

We derive sufficient conditions under which the PDW construction (defined in Section 3.2) succeeds.
Lemma 2. (Sufficient conditions for strict dual feasibility) Let the regularization parameter �n > 0
and ↵ be defined as in [A1]. Suppose the following holds

max
n�������(D2�) + �(D2B⇤)

������
1kWk1, kR(�)k1,

�������(D2�)
������

1k⇥⇤�1
k1

o


�n↵

24
. (27)

Then the dual vector eZEc satisfies k eZEck1 < 1, and hence, eB = bB.

Proof. We begin by obtaining a suitable expression for eZEc using the zero-subgradient condition of
the the restricted `1 regularized log-det problem defined in (6):

eB = argmin
B=BT ,B�0,BEc=0

⇥
Tr(DBSBD)� log det(B2) + �nkBk1,off

⇤
. (28)

The zero-subgradient of the restricted problem is given by

2D2 eBS � 2 eB�1 + �n
eZ = 0, (29)

where eB is the primal solution given by (28) and eZ 2 @kBk1,off is the optimal dual. Recall that
� = eB �B⇤ and W = S �⇥⇤�1 and notice the following chain of identities:

2(D2 eBS � eB�1) + �n
eZ = 2(D2 eBS �D2B⇤S +D2B⇤S � eB�1) + �n

eZ
= 2(D2�S +D2B⇤S � eB�1) + �n

eZ
= 2(D2�W +D2B⇤W +D2�⇥⇤�1 +D2B⇤⇥⇤�1

� eB�1) + �n
eZ.

On the other hand, by definition, ⇥⇤�1 = B⇤�1⌃XB⇤�1 and (D2)�1 = ⌃X . Thus, D2B⇤⇥⇤�1 =
B⇤�1. Substituting these expressions in the zero-subgradient condition yields the following:

D2�W +D2B⇤W +D2�⇥⇤�1 +B⇤�1
� eB�1 + �0

n
eZ = 0, (30)

where �0
n
= 0.5�n. By adding and subtracting B⇤�1�B⇤�1 to the preceding equality and followed

by some algebraic manipulations give us

B⇤�1�B⇤�1 +D2�W +D2B⇤W +D2�⇥⇤�1
�R(�) + �0

n
eZ = 0, (31)

where R(�) = eB�1
�B⇤�1

�B⇤�1�B⇤�1.

We now vectorize (30). We use vec(A) or Ā to denote the p2-vector formed by stacking the columns
of A and use �(A) = (I ⌦A) to denote the Kronecker product of A with the identity matrix I . By
applying vec() operator on both sides of (30) it follows that

vec(B⇤�1�B⇤�1 +D2�W +D2B⇤W +D2�⇥⇤�1
�R(�) + �0

n
eZ) = 0. (32)

Using the standard Kronecker matrix product rules [31], we have vec(B⇤�1�B⇤�1) = �⇤�, where
�⇤ = B⇤�1

⌦ B⇤�1 and vec((D2�)W ) = �(D2�)W; �(D2�) = I ⌦D2�; and I is the p ⇥ p
identity matrix. By substituting these observations in (32), we note that

�⇤�+ �(D2�)W+ �(D2B⇤)W+ �(D2�)⇥⇤�1
�R(�)+ �0

n
eZ= 0. (33)

For compactness, we suppress � notation in R(�). Recall that the E is the augmented set defined as
E := {E(B⇤)[ (1, 1) . . .[ (p, p)}, where E is the edge set of the network and Ec is the complement
of the set E. Recall that we use the notation AE to denote the sub-matrix of A containing all
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elements Aij such that (i, j) 2 E. We partition the preceding linear equations into two separate
linear equations corresponding to the sets E and Ec as

�⇤
EE

�E +
�
�EE(D

2�) + �EE(D
2B⇤)

�
WE + �EE(D

2�)⇥⇤
E

�1
�RE + �0

n
eZE = 0,

(34)

�⇤
EcE�E +

�
�EcE(D

2�) + �EcE(D
2B⇤)

�
WEc + �EcE(D

2�)⇥⇤
Ec

�1
�REc + �0

n
eZEc = 0.

(35)

From (34), we can solve for�E as

�E = (�⇤
EE

)�1
h
�

⇣�
�EE(D

2�) + �EE(D
2B⇤)

�
WE + �EE(D

2�)⇥⇤
E

�1
⌘
+RE � �0

n
eZE

i

| {z }
,M

.

(36)

Substituting�E given by (36) in (35) gives us

�⇤
EcE(�

⇤
EE

)�1M +
�
�EcE(D

2�) + �EcE(D
2B⇤)

�
WEc�EcE(D

2�)⇥⇤
Ec

�1
�REc + �0

n
eZEc =0.

(37)
From which we can solve for the vectorized dual eZEc as

�0
n
eZEc =��⇤

EcE(�
⇤
EE

)�1M �
�
�EcE(D

2�) + �EcE(D
2B⇤)

�
WEc � �EcE(D

2�)⇥⇤
Ec

�1+REc .
(38)

Taking the element-wise `1 norm on both sides of the preceding equality gives us

keZEck1 
1

�0
n

�������⇤
EcE(�

⇤
EE

)�1
������

1kMk1 +
1

�0
n

�������EcE(D
2�)

������
1k⇥⇤

Ec
�1
k1

+
1

�0
n

�������EcE(D
2�) + �EcE(D

2B⇤)
������

1kWEck1 +
1

�0
n

������REc

������
1.

(39)

We invoke the mutual incoherence condition in (10) to bound
�������⇤

EcE
(�⇤

EE
)�1

������
1  (1� ↵) and

since kAEck1  kAk1 for any matrix A, we get

keZEck1 
1� ↵

�0
n

kMk1 +
1

�0
n

�������(D2�)
������

1k⇥⇤�1
k1

+
1

�0
n

⇥�������(D2�) + �(D2B⇤)
������

1kWk1 + |||R|||1
⇤
.

(40)

We bound kMk1 by taking the element-wise `1 norm of M in (36) and followed by applying
sub-multiplicative norm inequalites. Thus,

kMk1 
�������EE(D

2�) + �EE(D
2B⇤)

������
1kWEk1 +

�������EE(D
2�)

������
1k⇥⇤

E

�1
k1

+ |||RE |||1 + �0
n
k eZEk1.

(41)

Because eZE is the sub-vector of the vectorized optimal dual eZ, it follows that k eZEk1  1. Thus,

kMk1 

h�������(D2�) + �(D2B⇤)
������

1kWk1 +
�������(D2�)

������
1k⇥⇤�1

k1 + |||R|||1

i

| {z }
,H

+�0
n
.

(42)

On the other hand, from (42), we have H  �0
n
↵/4. Putting together the pieces, from (42) and (40)

we conclude that

keZEck1  (1� ↵) +
1� ↵

�0
n

H +
1

�0
n

H (43)

= (1� ↵) +
2� ↵

�0
n

H (44)

 (1� ↵) +
2� ↵

�0
n

✓
�0
n
↵

4

◆
(45)

 (1� ↵) +
↵

2
< 1. (46)
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Remark For comparison, consider the strict dual feasibility conditions in [48, Lemma 4]. Here, the
maximum is on the noise deviation kWk1 and the remainder term kR(�)k1. Instead, in our case,
the maximum is taken over several other quantities not just kWk1 and kR(�)k1 (see (2)).

The following lemma shows that the remainder term R(�) is bounded if � is bounded. The proof is
adapted from [48], where a similar result is derived using matrix expansion techniques. We use this
lemma in the proof of our main result (see Theorem 1 and Theorem 2) to show that with sufficient
number of samples R(�)  ↵�n/24.
Lemma 3. (Control of reminder) Suppose that the element-wise `1-bound k�k1 

1
3⌫B⇤�1d

holds, then the matrix Q =
1P
k=0

(�1)k(B⇤�1�)k satisfies the bound ⌫QT 
3
2 and the matrix

R(�) = B⇤�1�B⇤�1�QB⇤�1 has the element-wise `1-norm bounded as

kR(�)k1 
3

2
dk�k

2
1⌫3

B⇤�1 . (47)

We show that for a specific choice of radius r, the distortion � = eB �B⇤ lies in a ball of radius r.
Lemma 4. (Control of �) Let

r,4⌫�⇤�1 [⌫D2⌫B⇤kWk1+0.5�n]  min
n 1

3⌫B⇤�1d
,

1

6⌫�⇤�1⌫3
B⇤�1d

o
.

Then we have the element-wise `1 bound k�k1 = k eB �B⇤
k1  r.

Proof. We adopt the proof technique in [48, Lemma 6]. We use the notation AE or [A]E to denote the
sub-matrix of A containing all elements Aij such that (i, j) 2 E. Let G( eBE) be the zero sub-gradient
condition of the restricted `1 log-det problem in (12):

G( eBE) =
h
D2 eBS � eB�1 + �0

n
eZ
i

E

= 0. (48)

where �0
n
= 0.5�n. LetGdenote the vectorized form of G. Recall that � = eB �B⇤ = eBE �B⇤

E
,

�E . The second equality follows from PDW construction and the constraint in the restricted convex
program in (6). To establish k�k1  r, we show that �E lies inside the ball Br = {AE 2 R|E| :
kAk1  r}, whereAE = vec (AE), using a contraction property of the continuous map:

F (�E) , �(�⇤
EE

)�1
�
G(�E +B⇤

E
)
�
+�E , (49)

where we used the fact that eBEc = eB⇤
Ec = 0.

Suppose that F (·) is a contraction on Br, i.e., F (Br) ✓ Br. Then by Brower’s fixed point theorem
[29], it readily follows that there exists a C 2 Br such that F (C) = C. Finally, C =�E because
(i) eB that satisfiesG( eB) = 0 is unique (see Lemma 1) and (ii) F (�E) =�E if and only ifG(·) = 0,
Hence,�E 2 Br is the unique fixed point of F (·) in (49). Consequently, k�Ek1  r.

It remains to show that F (·) is a contraction. Let �0
2 Rp⇥p be a zero padded matrix on Ec such

that�0
E 2 Br. Then F (�0

E) can be expanded in terms of �0 as

F (�0
E) = �(�⇤

EE
)�1

�
G(�0

E
+B⇤

E
)
�
+�0

E

= �(�⇤
EE

)�1
h
vec([D2(�0 +B⇤)S]E � (�0 +B⇤)�1

E
+ �0

n
eZE) + �⇤

EE
�0

E

i
.

(50)

Adding and subtracting ⇥⇤�1 and B⇤
E

�1 to the preceding equality yields us

F (�0
E) =� (�⇤

EE
)�1

h
vec

⇣⇥
D2(�0 +B⇤)W

⇤
E
+

h
D2(�0 +B⇤)⇥⇤�1

i

E

+ �0
n
eZE �B⇤

E

�1
⌘i

� (�⇤
EE

)�1
h
� vec

⇣
(�0 +B⇤)�1

�B⇤
E

�1
⌘
+ �⇤

EE
�
0
E

i
.

(51)
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The last vec () term can be even simplified as

vec
⇣
(�0 +B⇤)�1

�B⇤�1
⌘
+ �⇤�0 = vec

⇣
(�0 +B⇤)�1

�B⇤�1 + (B⇤�1�0B⇤�1)
⌘

= vec(R(�0)).
(52)

Substituting this observation in (51) and rearranging the terms gives us

F (�0
E) =� (�⇤

EE
)�1 vec

h
D2B⇤W�0

n
eZ
i

E| {z }
,T1

� (�⇤
EE

)�1 vec
⇥
D2�0W

⇤
E| {z }

,T2

� (�⇤
EE

)�1
⇥
R(�0)

⇤
E| {z }

,T3

� (�⇤
EE

)�1 vec
h
D2(�0 +B⇤)⇥⇤�1

�B⇤�1
i

E| {z }
,T4

.
(53)

We now show that kF (�0
E)k1  r by bounding `1 norms of terms (T1)-(T4). Recall that ⌫A =

|||A|||1 , maxj=1,...,p
P

p

j=1 |Aij | and it is sub-multiplicative; that is |||AB|||1  |||A|||1|||B|||1.
Notice that this not the case with the max norm (`1).

(i) upper bound on kT1k1: Consider the following chain of inequalities.

kT1k1 

���
���
����⇤�1

���
���
���
1

���vec(D2B⇤W + �0
n
eZ)
���
1

=
���
���
����⇤�1

���
���
���
1

����(D2B⇤)W+ �0
n
eZ
���
1

(a)


���
���
����⇤�1

���
���
���
1

⇥�������(D2B⇤)
������

1kWk1 + �0
n

⇤

(b)
 ⌫�⇤�1 [⌫D2⌫B⇤kWk1 + �0

n
]
(c)


r

4
(54)

where (a) follows because keZk1  1 (see Lemma 1); (b) follows because �(D2B⇤) = (I ⌦D2B⇤),
and hence,

�������(D2B⇤)
������

1 =
������D2B⇤

������
1 

������D2
������

1|||B⇤
|||1 = ⌫D2⌫B⇤ ; and finally, (c) follows

from definition of the radius r in Lemma 4.

(ii) upper bound on kT2k1: For T2 in (53), consider the following chain of inequalities.

kT2k1  ⌫�⇤�1

⇥�������(D2�)
������

1kWk1
⇤

 ⌫�⇤�1⌫D2 |||�0
|||1kWk1

(a)
 ⌫�⇤�1⌫D2dk�0

k1kWk1
(b)
 ⌫�⇤�1⌫D2dk�0

k1

✓
r

4⌫�⇤�1⌫D2⌫B⇤

◆

(c)
 d

✓
1

3d⌫B⇤�1

◆✓
r

4⌫B⇤

◆
(d)


r

4
, (55)

where (a) follows because by construction �0 has at-most d non-zeros in every row and that |||�0
|||1 

dk�0
k1; (b) follows from the choice of r = 4⌫�⇤�1(⌫D2⌫B⇤kWk1 + �0

n
) in Lemma 4, which is

lower bounded by 4⌫�⇤�1⌫D2⌫B⇤kWk1, for all �0
n
� 0. Thus, kWk1  r/(4⌫�⇤�1⌫D2⌫B⇤); (c)

follows because �0 is a zero-padded matrix of �. Hence k�k = k�0
k1  r, which can be upper

bounded by 1/(3d⌫B⇤�1) in light of the hypothesis in Lemma 4; and finally, (d) follows because
⌫B⇤⌫B⇤�1 � 1.

(iii) upper bound on kT3k1: For T3 in (53), consider the following chain of inequalities.

kT3k1  ⌫�⇤�1kR(�0)k1 (56)
(a)


3

2
d⌫�⇤�1⌫3

B⇤�1k�0
k
2
1 (57)

(b)


3

2
d⌫�⇤�1⌫3

B⇤�1r(r)
(c)


r

4
, (58)
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where (a) follows because Lemma 3 guarantees that kR(�0)k1  (3/2)d⌫3
B⇤�1k�0

k
2
1 whenever

k�0
k1  1/(3d⌫B⇤�1). The latter inequality is a consequence of the hypothesis in Lemma 4; (b)

is true because by construction �0
2 Br, and hence, k �0

k1  r; (c) follows by invoking the
hypothesis in Lemma 4, where r satisfies r  1/(6d⌫�⇤�1⌫3

B⇤�1).

(iv) upper bound on kT4k1: The expression of T4 in (53) can be simplified as

T4 = �(�⇤
EE

)�1 vec
⇣h

D2(�0 +B⇤)⇥⇤�1
�B⇤�1

i

E

⌘

= �(�⇤
EE

)�1 vec
⇣h

D2�0⇥⇤�1 +D2B⇤⇥⇤�1
�B⇤�1

i

E

⌘

= �(�⇤
EE

)�1 vec
⇣h

D2�0⇥⇤�1
i

E

⌘
. (59)

The last equality follows by observing that D2B⇤⇥⇤�1 = B⇤�1. This can be verified by plugging
⇥⇤�1 = B⇤�1⌃XB⇤�1 and ⌃X = (D2)�1 in D2B⇤⇥⇤�1 and simplifying the resulting expression.
By taking the `1 bound on the both sides of (59) gives us

kT4k1  ⌫�⇤�1

�������(D2�0)
������

1k⇥⇤�1
k1 (60)

 ⌫�⇤�1⌫D2dk�0
k1k⇥⇤�1

k1 (61)

 ⌫�⇤�1⌫D2rdk⇥⇤�1
k1

(a)


r

4
, (62)

where (a) follows by invoking the assumption in (11), and noting that k⇥⇤�1
k1  1/(4⌫�⇤�1⌫D2d).

Putting together the pieces, from the above calculations, we note that

kF (�0
E
)k1  kT1k1 + kT2k1 + kT3k1 + kT4k1  r. (63)

is a contraction as claimed. This concludes the proof.

We borrow the following notion of tail conditions as defined in [48] to characterize the distribution.
We us this characterization to prove our master lemma A.6.
Definition A.3. (Tail condition, [48]) The random vector Y satisfies the tail condition T (f, v⇤)
if there exist a constant v⇤ > 0 and a function f : N ⇥ (0,1) such that for any i, j 2 [p] and
� 2 (0, 1/v⇤):

P
⇥
|Sij � ⌃⇤

ij
| � �

⇤


1

f(n, �)
. (64)

Furthermore, f(n, �) is monotonically increasing in n (or �) for fixed � (or n).

Both the exponential-type tail f(n, �) = exp(cn�a) and the polynomial-type tail f(n, �) = cnm�2m,
where m is an integer and c, a > 0, satisfy the monontone property in Definition A.3. The following
inverse functions associated with f(n, �) are needed to prove our sample complexity result:

nf (�, p
⌧ ) := max{n|f(n, �)  p⌧} and �f (n, p

⌧ ) := max{�|f(n, �)  p⌧}. (65)

Both the functions are well-defined due to the to the monotonicity property of f(n, �). Further, if
n > nf (�, p⌧ ) for some � > 0 implies that � � �f (n, p⌧ ).

The following result presents an exponential-type tail bound for sub-Gaussian random vectors.
Lemma A.5. (Sub-Gaussian tail condition, [48]) Consider a zero-mean random vector (Y1, . . . , Yp)
with covariance ⌃⇤ such that each Yi/

p
⌃⇤

ii
is sub-Gaussian with parameter �. Given n i.i.d samples,

the sample covariance matrix S satisfies the tail bound

P
⇥
|Sij � ⌃⇤

ij
| > �

⇤
 4 exp

n
�

n�2

128(1 + 4�2)2 max
i

(⌃⇤
ii
)2

o
, (66)

for all � 2 (0, 8(1 + 4�2)max
i

(⌃⇤
ii
)).
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Let Wij = Sij � ⌃⇤
ij

, where ⌃⇤ = ⇥⇤�1. This difference quantity, which signifies the amount of
noise in the data, plays a key role in bounding the error term k bB �B⇤

k1. We later show that if Wij

is small, then we can guarantee that our estimator bB is close to B⇤ in the element-wise `1 �norm.

By taking a union bound over all entries of |Wij |, from Lemma A.5, it follows that

P [kWk1 � �f (n, p
⌧ )] 

p2

f(n, �f (n, p⌧ ))
=

1

p⌧�2
, (67)

for some ⌧ > 2. The above bound gives an explicit control on the noise term.

We now state and prove our master lemma which gives support recovery guarantees and `1 norm
bounds for our estimator bB for distributions satisfying tail condition T (f, v⇤) in Definition A.3.
Lemma A.6. (Master lemma) Consider a distribution satisfying the incoherence assumption with
parameter ↵ 2 (0, 1] and the tail condition T (f, v⇤). Let bB be the unique solution of the log-
determinant problem in (9) with �n = 2⌫D2⌫B⇤�f (n, p⌧ ) for some ⌧ > 2. Then if the sample size is
lower bounded as

n > nf (1/max{v⇤, 24d⌫D2⌫B⇤ max{⌫�⇤�1⌫B⇤�1 , 2⌫2�⇤�1⌫3B⇤�1 , 2↵�1d�1
}}, p⌧ ), (68)

then with probability greater than 1� 1
p⌧�2 , the estimate bB recovers the sparsity structure of B⇤ ie.

( bBEc = B⇤
Ec ). Furthermore bB satisfies the `1 bound k bB �B⇤

k1  8⌫�⇤�1⌫D2⌫B⇤�f (n, p⌧ ).

Proof. We first show that the Primal Dual Witness (PDW) construction (see sec 3.3) succeeds with
the probability stated in the lemma. This amounts to showing that the inequality in (8) holds with
the required probability. To this aim, let A denote the event that kWk1  �f (n, p⌧ ). We have
previously shown in (67) that P[A] � 1 � 1/p⌧�2. Conditioned on the event A, we show that the
inequality in (8) is satisfied.

From Lemma 4, we have

r = 4⌫�⇤�1 [⌫D2⌫B⇤kWk1 + 0.5�n] , (69)

substituting for �n = 2⌫D2⌫B⇤�f (n, p⌧ ) as given in the assumption, we get

r  8⌫�⇤�1⌫D2⌫B⇤�f (n, p
⌧ ). (70)

From assumption on the sample size n in (68) and the monotonicity property (65) we have 0.5�n =
⌫D2⌫B⇤�f (n, p⌧ )  ↵/48, which implies that �n < 1. We also set �f (n, p⌧ )  �n. Similarly
from (65) and (68) we have r  8⌫�⇤�1⌫D2⌫B⇤�f (n, p⌧ )  min{1/(3d⌫B⇤�1), 1(6d⌫�⇤�1⌫3

B⇤�1)}.
Therefore the assumption in Lemma 4 is satisfied resulting in

k�k1  r  min


1

3d⌫B⇤�1

,
1

6d⌫�⇤�1⌫3
B⇤�1

�
. (71)

Define �f , �f (n, p⌧ ). We show that the every component in the max term of (8) are bounded by
↵�n/24. We begin with the first component:

�������(D2�) + �(D2B⇤)
������

1kWk1 
⇥������D2�+D2B⇤������

1
⇤
�f (72)


⇥������D2�

������
1 +

������D2B⇤������
1
⇤
�f (73)

 [⌫D2dk�k1 + ⌫D2⌫B⇤ ]
↵�n

48⌫D2⌫B⇤
(74)

(a)



1 +

1

3⌫B⇤⌫B⇤�1

�
↵�n

48
(75)

(b)


↵�n

36


↵�n

24
. (76)

where (a) follows from (71); (b) follows because ⌫B⇤⌫B⇤�1 � 1.
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We show the second component kR(�)k1  ↵�n/24. In fact,

kR(�)k1
(a)


3

2
dk�k

2
1⌫3

B⇤�1 (77)

(b)


3

2
dr⌫3

B⇤�1r (78)

(c)


3

2
d


1

6d⌫�⇤�1⌫3
B⇤�1

�
⌫3
B⇤�1(8⌫�⇤�1⌫D2⌫B⇤�f ) (79)

= 2⌫D2⌫B⇤�f 
↵�n

24
. (80)

where (a) holds because, as shown in (71), k�k1 satisfies the assumption in Lemma 3; (b) holds
because k�k1  r; and (c) is a consequence of the inequality in (71).

We show that the third component
�������(D2�)

������
1k⇥⇤�1

k1  ↵�n/24. In fact,
�������(D2�)

������
1k⇥⇤�1

k1 =
������D2�

������
1k⇥⇤�1

k1 (81)

 ⌫D2dk⇥⇤�1
k1k�k1 (82)

(a)
 ⌫D2dk⇥⇤�1

k1r (83)
(b)
 d⌫D2


1

4d⌫D2⌫�⇤�1

�
[8⌫�⇤�1⌫D2⌫B⇤�f ] (84)

 2⌫D2⌫B⇤


↵�n

48⌫D2⌫B⇤

�
=

↵�n

24
. (85)

where (a) holds because k�k1  r and (b) follows by invoking the assumption in (11). Since the
sufficient conditions for strict dual feasibility are satisfied, the PDW construction succeeds. Therefore
bB = eB. Since by definition eBE = B⇤

Ec = 0, the estimator bB recovers the sparsity structure of
B⇤. Now, since � = bB � B⇤ and k�k1  8⌫�⇤�1⌫D2⌫B⇤�f (n, p⌧ ), we have k bB � eBk1 

8⌫�⇤�1⌫D2⌫B⇤�f (n, p⌧ ).

We use Lemma A.5 and Lemma A.6 to prove our main result for sub-gaussian distributions.
Theorem 1. (Support recovery: Sub-Gaussian) Let Y = (Y1, . . . , Yp) be the node potential vector.
Suppose that Yi/

p
⌃⇤

ii
is sub-Gaussian with parameter � and assumptions [A1-A2] hold. Let the

regularization parameter �n = C0

p
⌧(log 4p)/n, where C0 is given below. If the sample size

n > C2
1d

2(⌧ log p+ log 4), the following hold with probability at least 1� 1
p⌧�2 , for some ⌧ > 2:

(a) bB exactly recovers the sparsity structure of B⇤; that is, bBEc = 0,

(b) bB satisfies the element-wise `1 bound k bB �B⇤
k1  C2

q
⌧ log p+log 4

n
, and

(c) bB satisfies sign consistency if |B⇤
min| � 2C2

q
⌧ log p+4

n
, B⇤

min , min(i,j)2E(B⇤) |B
⇤
ij
|,

where C1 = 192
p
2
h
(1 + 4�2)max

i

(⌃⇤
ii
)⌫D2⌫B⇤

i
max{⌫�⇤�1⌫B⇤�1 , 2⌫2�⇤�1⌫3B⇤�1 , 2↵�1d�1

},

C2 = [64
p
2(1 + 4�2)max

i

(⌃⇤
ii
)⌫�⇤�1⌫D2⌫B⇤ ], and C0 = C2/(4⌫�⇤�1).

Proof. Part (a): From Lemma A.6, we have that if n > nf (�, p⌧ ), then bB recovers the exact sparsity
structure of B⇤. We compute nf (�, p⌧ ). Using the tail bound for sub-gaussian distributions (see
Lemma A.5), the decay function f(n, �) = 1

4 exp
n

n�
2

c⇤

o
, where c⇤ = 128(1 + 4�2)2 max

i

(⌃⇤
ii
)2.

From the definition of inverse function and monotonicity of f(n, �) in A.3, we have nf (�, p⌧ ) =
c⇤ log(4p⌧ )

�2
. Substituting for � from Lemma A.6, we get

nf (�, p
⌧ ) = C2

1d
2(⌧ log p+ log 4). (86)
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Therefore, from Lemma A.6, if n > C2
1d

2(⌧ log p + log 4), the estimator bB recovers the sparsity
structure of B⇤.

Part(b): From Lemma A.5 we compute �. Using the monotonicity property of f(n, �) and setting

� , �f (n, p
⌧ ) =

r
c⇤ log(4p⌧ )

n
= 8

p
2(1 + 4�2)max

i

(⌃⇤
ii
)

r
⌧ log p+ log 4

n
. (87)

Also we have from Lemma A.6 that k bB �B⇤
k1  8⌫�⇤�1⌫D2⌫B⇤�f (n, p⌧ ). Thus,

k bB �B⇤
k1  64

p
2(1 + 4�2)max

i

(⌃⇤
ii
)⌫�⇤�1⌫D2⌫B⇤

| {z }
C2

r
⌧ log p+ log 4

n
. (88)

Part(c): We prove the sign consistency of bB by contradiction. Let |B⇤
min| � 2C2

q
⌧ log p+4

n
be as in

the theorem’s hypothesis. Suppose that sign( bB) 6= sign(B⇤). Then, an elementary algebra shows that

k bB�B⇤
k1>2C2

q
⌧ log p+4

n
. This contradicts the bound in part (b). Thus, sign( bB) 6= sign(B⇤).

We now show Frobenius and spectral norm consistency for the sub-gaussian distribution. Recall that
E(B⇤) = {(i, j) : B⇤

ij
6= 0, for all i 6= j} is the edge set of B⇤. Thus, s = |E(B⇤)| is the number of

non-zero off-diagonal elements in B⇤.
Corollary 1. Let s = |E(B⇤)| be the cardinality of E(B⇤). Under the same hypotheses in Theorem
1, with probability greater than 1� 1

p⌧�2 , the estimator bB satisfies

k bB �B⇤
kF  C2

r
(s+ p)(⌧ log p+ 4)

n
and k bB �B⇤

k2  C2 min{d,
p
s+ p}

r
⌧ log p+ 4

n
.

(89)

Proof. Consider the following inequality:

k bB �B⇤
k
2
F
=

X

i,j

⇣
bBij �B⇤

ij

⌘2
=

X

i

⇣
bBii �B⇤

ii

⌘2
+
X

i 6=j

⇣
bBij �B⇤

ij

⌘2
(90)

 pk bB �B⇤
k
2
1 + sk bB �B⇤

k
2
1 (91)

= (s+ p)k bB �B⇤
k
2
1, (92)

where the inequality follows because there are at most p non-zero diagonal terms and s non-zero
off-diagonal terms in bB �B⇤. The latter fact is a consequence of Theorem 1 (a), which ensures that
bBEc = B⇤

Ec with high probability when n = ⌦(d2 log p). We obtain the Frobenius norm bound in
(89) by upper bounding k bB �B⇤

k1 using the result in Theorem 1 (b).

We now spectral norm consistency. From matrix norm equivalence conditions [26], we have

k bB �B⇤
k2 

���
���
��� bB �B⇤

���
���
���
1

 dk bB �B⇤
k1 (93)

and that

k bB �B⇤
k2  k bB �B⇤

kF 
p
s+ pk bB �B⇤

k1. (94)

These two bounds can be unified into one single bound as

k bB �B⇤
k2  min{

p
s+ p, d}k bB �B⇤

k1. (95)

This concludes the proof.

Next we prove our second main result for random vectors with bounded moments. We need the
following standard concentration inequality result.
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Lemma A.7. (Tail bounds for random variables with bounded moments, [48]) For a random vector
(Y1, . . . , Yp), suppose there exists a positive integer k and scalar Mk 2 R with

E
"

Yip
⌃⇤

ii

#4k

 Mk. (96)

Given n i.i.d samples, the sample covariance matrix S admits the following concentration inequality

P
⇥
|Sij � ⌃⇤

ij
| > �

⇤


22k(maxi ⌃⇤
ii
)2kCk(Mk + 1)

nk�2k
. (97)

where Ck � 0 is a constant depending only on k.
Theorem 2. (Support Recovery: Bounded Moments) Let Y = (Y1, . . . , Yp) be the node potential
vector. Suppose that Yi/

p
⌃⇤

ii
has bounded moment as in (96) and assumptions [A1-A2] hold. Let

the regularization parameter �n = C0

p
⌧(log 4p)/n, with C0 defined in Theorem 1. If the sample

size n > C4d2p⌧/k, then with probability more than 1� 1/p⌧�2, for some ⌧ > 2, the following hold:

(a) bB exactly recovers the sparsity structure of B⇤; that is, bBEc = 0,

(b) bB satisfies the element-wise `1 bound k bB �B⇤
k1  C5

q
p⌧/k

n
, and

(c) bB satisfies sign consistency if |B⇤
min| � 2C5

q
p⌧/k

n
,

where C4 =
h
48(max

i

⌃⇤
ii
) (Ck(Mk + 1))1/2k ⌫D2⌫B⇤ max{⌫�⇤�1⌫B⇤�1 , 2⌫2�⇤�1⌫3B⇤�1 , 2↵�1d�1

}

i2
,

C5 = 16(maxi ⌃⇤
ii
) (Ck(Mk + 1))1/2k ⌫�⇤�1⌫D2⌫B⇤ .

Proof. The proof follows along the same lines of Theorem 1. Hence, to avoid redundancy, we provide
only high-level details. Part (a) We use the polynomial type tail bound in A.7 to compute nf (�, p⌧ ),
we therefore have nf (�, p⌧ ) =

(c⇤p
⌧ )1/k

�2
and substituting for c⇤ and � as given in Lemma A.7 and

Lemma A.6 respectively, we get

nf (�, p
⌧ ) = C4d

2p⌧/k. (98)

Part(b): From Lemma A.7, we have f(n, �) = n
k
�
2k

c⇤
, where c⇤ = 22k(max

i

⌃⇤
ii
)2kCk(Mk + 1).

Thus setting

� = �f (n, p
⌧ ) =

✓
c⇤p⌧

n

◆1/2k

= 2(max
i

⌃⇤
ii
)(Ck(Mk + 1))1/2k

r
p⌧/k

n
. (99)

On the other hand, from Lemma A.6, we have k bB �B⇤
k1  8⌫�⇤�1⌫D2⌫B⇤�f (n, p⌧ ). Thus,

k bB �B⇤
k1  16(max

i

⌃⇤
ii
)(Ck(Mk + 1))1/2k⌫�⇤�1⌫D2⌫B⇤

r
p⌧/k

n
. (100)

Part (c): similar to the contradiction argument in Theorem 1. The details are omitted.

We present Frobenius and spectral norm consistency results for distributions with bounded moments.
Corollary 2. Suppose the hypotheses in Theorem 2 hold. Then with probability greater than 1� 1

p⌧�2 :

k bB�B⇤
kF  C5

q
(s+p)(p⌧/k)

n
and k bB �B⇤

k2  C5 min{d,
p
s+ p}

q
p⌧/k

n
, where s = |E(B⇤)|.

Proof. The proof follows along the same lines of Corollary 1. Hence, the details are omitted.

26


	Introduction
	Problem Setup
	A Convex Estimator and Statistical Guarantees
	Statement of Main result
	Outline of Main Analysis
	Primal-dual pair and supporting lemmas

	Experiments
	Discussions and Future Work
	Appendix
	Code Availability
	Limitations
	Proofs of all technical results


