
Incorporating dense metric depth into neural 3D representations for view

synthesis and relighting

Supplementary Material

This supplementary document inherits the figure, equa-
tion, table, and reference numbers from the main
document. Additional results may be viewed at
https://stereomfc.github.io.

8. Representations and implementation details

Our scene representation consists of two networks – an in-
trinsic network N (ω) and an appearance network A(ε). We
follow [62] to build and train N (ω). We use 18 levels of
hashgrid encodings [76] to encode the input and a two layer
(128 neurons/layer) MLP to generate the intrinsic embed-
ding. The first channel of the embedding, S(ω) is trained
with Eq. (2) to recover a signed distance field of the scene
as described in Sec. 3.1. The rest of the 127 channels of the
embedding E(ω) are passed on to the appearance network
A(ε) as an input.

The appearance network takes E(ω), the viewing direc-
tion (encoded with 6 levels of sinusoidal encodings follow-
ing [96]), and optionally the illumination direction (if recov-
ering BRDF) to generate colors. The neural network is built
with 2 layers of fully connected MLPs (128 neurons/layer)
with skip connections.

The neural signed distance field S(ω) is optimized to re-
turn the signed distance of a point from its nearest surface
S(ω) : R3 → R. The surface of the object can be obtained
from the zero-level set of S(ω) – i.e. for all surface points
xs ↑ R3 | S(xs|ω) = 0. We train S(ω) by minimizing a ge-
ometric loss ϑD (Eq. (2)). We follow [105] to transform the
distance of a point ϖpi = ϖr|ti in a ray to its closest surface
si = S(ω, ϖpi) to the scene density (or transmissivity).

!ω(s) =

{
0.5 exp(s

ω), s ↓ 0

1↔ 0.5 exp(→s
ω), otherwise.

(4)

To render the color C of a single pixel of the scene at
a target view with a camera centered at ϖo and an outgoing
ray direction ϖd, we calculate the ray corresponding to the
pixel ϖr = ϖo + tϖd, and sample a set of points ti along the
ray. The networks N (ω) and A(ε) are then evaluated at all
the xi corresponding to ti and the per point color ci. The
transmissivity ϱi is obtained and composited together using
the quadrature approximation from [70] as:

C =
∑

i

exp(↔
∑

j<i

ϱjςj)(1↔exp(↔ϱjςj))ci, ςi = ti↔ti→1

(5)

The appearance can then be learned using a loss on the es-
timated and ground truth color Cgt

ϑC = E
[
||C↔Cgt||2

]
(6)

The appearance and geometry are jointly estimated by min-
imizing the losses in Eq. (7) using stochastic gradient de-
scent [55].

ϑ = ϑC + φgϑD + φcE(|↗2
xS(xs)|) (7)

φs are hyperparameters and the third term in Eq. (7) is the
mean surface curvature minimized against the captured sur-
face normals. As the gradients of the loss functions ϑC and
ϑD propagate through A and N (and S as it is part of N)
the appearance and geometry are learned together.

8.1. Details of our baselines

We implemented four baselines to investigate the effects of
incorporating dense metric depth and depth edges into neu-
ral view synthesis pipelines.

VolSDF
++ is our method similar to VolSDF [105] and

MonoSDF[108]. We represent the scene with N and A and
train it with metric depth and color by minimizing Eq. (7).
The samples for Eq. (6) are drawn using the “error-bounded
sampler” introduced by [105].

NeUS
++ represents a modified version of NeUS [100],

where we use the training schedule and structure of N from
[62], the appearance network A is adopted from NeUS and
we optimize Eq. (2) along with Eq. (6). In addition to
A, NeUS++also has a small 4 layer MLP (32 neurons per
layer) to learn the radiance of the background as recom-
mended in the original work by [100].

UniSurf
++ is our method inspired by UniSurf[77]. We

represent the scene’s geometry using a pre-optimized im-
plicit network N as outlined in Sec. 3.1. We follow the
recommendations of [77] to optimize A. UniSurf exposes a
hyperparameter to bias sampling of Eq. (5) towards the cur-
rent estimate of the surface. As we pre-optimize the surface,
we can find the surface point xs = o+ tsd through sphere
tracing S along a ray. The intersection point ts can then
be used to generate N samples along the ray to optimize
Eq. (6).

ti = U
[
ts +

(
2i↔ 2

N
↔ 1

)
”, ts +

(
2i

N
↔ 1

)
”

]
(8)

Equation (8) is the distribution used to draw samples and
” is the hyperparameter that biases the samples to be close
to the current surface estimate. We optimize S independent

https://stereomfc.github.io

(a) (b) (c) (d) (e) (f)

Figure 9. AdaShell
++

can work with noisy depth with little loss in view interpolation performance and training time. However, the surface recovered
is also noisy. Figures 9a, 9c and 9e are the geometries recovered with no noise in depth and Figs. 9b, 9d and 9f are with noisy depths. Although
AdaShell++does not de-noise the geometry, there is very little degradation in performance (training speed and view synthesis quality) with noisy depth.
NeUS++struggles at the task of view synthesis with noisy depth. Details in Sec. 5.4 and Tab. 6.

of Eq. (5) by just minimizing Eq. (2) with registered depth
maps (see Sec. 3.1). We use this method to study the effects
of volumetric rendering versus surface rendering. We found
this strategy to be very sensitive to the hyperparameter ”
and its decay schedule as the training progressed. While
best parameters for some sequences resulted in very quick
convergence, they were very hard to come across and gen-
erally, poorer choices led to undesirable artifacts (see e.g.
Fig. 4).

We describe AdaShell
++ in the following section.

8.2. AdaShell++: Accelerating training with dense

depth

The slowest step in training and inference for neural volu-
metric representations is generally the evaluation of Eq. (5).
In this section we describe our method to accelerate training
by incorporating metric depth.

A method to make training more efficient involves draw-
ing the smallest number of the most important samples of
ti for any ray. The sampling of ti is based on the current
estimate of the scene density and although these samples
can have a large variance, given a large number of orthog-
onal view pairs (viewpoint diversity), and the absence of
very strong view dependent effects, the training procedure
is expected to recover an unbiased estimate of the true scene
depth (see e.g. [43]). We can accelerate the convergence by
a) providing high quality biased estimate of the scene depth
and b) decreasing the number of samples for ti along the
rays.

Given the high quality of modern deep stereo (we
use[103]) and a well calibrated camera system, stereo depth
can serve as a good initial estimate of the true surface depth.
We use stereo depth, aligned across multiple views of the
scene to pre-optimize the geometry network S(ω). The
other channels E(ω) of N remain un-optimized. A pre-
optimized S can then be used for high quality estimates of
ray termination depths.

[77, 100, 105] recommend using root finding techniques
(e.g. bisection method) on scene transmissivity (Eq. (4))
to estimate the ray termination depth. The samples for
Eq. (5) are then generated around the estimated surface
point. Drawing high variance samples as N and A are
jointly optimized reduces the effect of low quality local

minima, especially in the initial stages of the optimization.
As we have a pre-trained scene transmissivity field (S trans-
formed with Eq. (4)), we can draw a few high-quality sam-
ples to minimize the training effort.

We found uniformly sampling around the estimated
ray-termination depth (UniSurf++baseline in Sec. 3.3
and Fig. 4) to be unsuitable. Instead, we pre-calculated a
discrete sampling volume by immersing S in an isotropic
voxel grid and culling the voxels which report a lower than
threshold scene density. We then used an unbiased sampler
from [105] to generate the samples in this volume. This
let us greatly reduce the number of root-finding iterations
and samples, while limiting the variance by the dimensions
of the volume along a ray. As the training progresses, we
decrease the culling threshold to converge to a thinner sam-
pling volume around the surface while reducing the number
of samples required.

We show the sampling volume (at convergence) and our
reconstruction results in Figs. 7 and 10 respectively. We re-
tain the advantages of volumetric scene representation as
demonstrated by the reconstruction of the thin structures
in the scene, while reducing training effort. We dub our
method AdaShell++to acknowledge [101], which demon-
strates a related approach to accelerate inference.

The “shells” shown in Figs. 7 and 10 and the shells
recovered by [101] for small scenes are physically simi-
lar quantities. [101] dilate and erode the original level-set
of the scene (approximated by S) using a hyperparameter.
Our “shells” are also jointly estimated with the geometry
as the training progresses. [101] estimate the fall-off of the
volume density values along a ray to determine the hyper-
parameters, which in turn determines the thickness of the
“shell”. They subsequently use uniform sampling (similar
to Eq. (8), where the ” now denotes the local thickness
of the shell) to generate samples for rendering. Our work
takes a discrete approach by immersing the zero-level set
(in form of pre-optimized S) in a dense isotropic voxel grid
and culling the voxels which have a lower volume density,
according to a preset hyperparameter that determines the
thickness of the shell. Once the shell has been estimated,
we use a unbiased density weighted sampler (instead of
a uniform sampler) to generate samples along the ray in-
side the shell. We roughly follow [95] to generate samples

Figure 10. Another example of shells recovered by AdaShell
++. Fig. a shows the geometry recovered with 5 RGBD tuples. Figure b displays the

sampling volumes around the geometry after AdaShell++has converged – we note the similarity of this step with [101]. Figs. c and d are the ground-truth
and reconstructed test images. Related example in Fig. 7.

along a segment of the ray guided by the voxels it intersects.
The spatial density of samples is inversely proportional to
their distance from the estimated surface. We implement
this using the tools from NerfStudio[61, 97]. Our sam-
pling strategy is more robust to errors in estimated geom-
etry (as shown in Sec. 5.4 and Fig. 9) than other approaches
–notably NeUS++and the original work (Adaptive Shells
[101]) which is based on NeUS([100]).

8.3. Training Details

We ran our experiments on a Linux workstation with
an Intel Core i9 processor, 64GB RAM, and an Nvidia
RTX3090Ti graphics card with 25GB of vRAM. Across
all the experiments for learning scene radiance, we imple-
mented a hard cut-off of 100K gradient steps amounting to
less than 4.5 hours of training time across all the experi-
ments.

Across all our baselines (AdaShell++, VolSDF++,
NeUS++, and UniSurf++) we used the intrinsic network
proposed in [62], with 2 layers of MLPs (128 neurons per
fully connected layer) and 18 levels of input hash encodings
activated gradually. Our input activation curriculum was
based on the recommendations of [62], and was used jointly
with our edge-aware sampling strategy Sec. 3.2, Eq. (3),
and Fig. 3 across all the scenes. The implementations of our
baselines, design and bill-of-materials for the multi-flash
camera system, dataset and the hyperparameters will be re-
leased soon. Figure 7 denotes the training steps graphically.

8.4. Difference between our and prior work on neu-

ral scene understanding with depth

IGR[45] was among the first to fit a neural surface to point
samples of the surface. Our pipeline is largely inspired
by that work. However, we have two main differences –
we use a smaller network, and periodically activate multi-
resolution hash encodings as recommended by [62] instead
of using a fully connected set of layers with skip connec-
tions. Additionally, as we have access to depth maps, we
identify the variance of the neighborhood of a point on the
surface through a sliding window filter. We use this local es-
timate of variance in a normal distribution to draw samples
for x!

s along each ray. Our strategy assumes that image-

space pixel neighbors are also world space neighbors, which
is incorrect along the depth edges. However, as the Eikonal
equation should be generally valid in R3 for S , the incorrect
samples do not cause substantial errors and only contribute
as minor inefficiencies in the pipeline. A more physically
based alternative, following [45], would be executing near-
est neighbor queries at each surface point along the rays to
estimate the variance for sampling. With about 80k rays per
batch, ↘ 200K points in (xs), and about 40k gradient steps
executed till convergence, and a smaller network, our ap-
proach was more than two orders of magnitude faster than
[45], with no measurable decrease in accuracy of approxi-
mating the zero-level set of the surface.

NeuralRGBD[9] is the closest prior work based on data
needed for the pipeline and its output. The scene is recon-
structed using color and aligned dense metric depth maps.
The authors aggregate the depth maps as signed distance
fields and use the signed distance field to calculate weights
for cumulative radiance along samples on a ray (Eq. (5) in
text). The weights are calculated with

wi = ↼

(
Di

tr

)
≃ ↼

(
↔Di

tr

)
(9)

where the Di is the distance to the surface point along a
ray, and the truncation tr denotes how fast the weights fall
off away from the surface. Equation (9) yields surface bi-
ased weights with a variance controlled by the parameter
tr. Notably, the depth map aggregation does not yield a
learned sign distance field (no Eikonal regularizer in the
loss). The authors also include a ‘free-space’ preserving
loss to remove “floaters”. As implemented, the pipeline
needs the truncation factor to be selected per-scene. As the
depth maps are implicitly averaged by a neural network, it
is implicitly smoothed and therefore the pipeline is robust
to local noise in the depth map.

MonoSDF[108] is mathematically the closest prior
method to our work and it uses dense scene depths and nor-
mals obtained by a monocular depth and normal prediction
network (OmniData[33]). MonoSDF defines the ray length
weighted with the scene density as the scene depth dpred

Epochs

Gradually activate more hash encoded levels

Sample around flat patches Sample around edges

Using all activated encoding levels

 Sample diffuse patches Sample specular patches

Train geometry and appearance with radiance Refine appearance model with BRDF parameters

E
n
d
 o

f
tr
ai
n
in
g

fo
r

vi
ew

 s
yn

th
es
is
 a

n
d

ge
om

et
ry

 c
ap

tu
re
.

E
n
d
 o

f
tr
ai
n
in
g.

E
xt
ra

ct
 m

es
h
,
b
ak

e
ou

t
B
R
D
F

p
ar

am
et
er
s
as

te
xt
u
re
.

Using multi-view images, depth maps and depth edges Using multi-view, multi-illumination images, specularity
labels

M
u
lt
i-
vi
ew

,
m
u
lt
i-

il
lu
m
in
at
io
n
 i
m
ag

es
,

d
ep

th
 m

ap
,
d
ep

th
 e

d
ge

s
an

d
 s
p
ec

u
la
ri
ty
 l
ab

el
s

Figure 11. Our approach to recovering 3D assets from captured data. In the first part, for NeUS++and VolSDF++we jointly optimize geometry and
appearance by minimizing Eqs. (2) and (6). For AdaShell++and UniSurf++, we first optimize Eq. (2) for a fixed number of gradient steps before the joint
optimization. At this stage the geometry is optimized and appearance is recovered as radiance. Following this, we use multi-illumination images with a
truncated BRDF parametrization to refine the appearance model, given the geometry, to learn the reflectance parameters.

and minimizes

ϑD =
∑

r

||wdmono + q↔ dpred||22 (10)

where {w,q} are scale and shift parameters. Estimating an
affine transformation on the monocular depth dmono is im-
portant because in addition to gauge freedom (w), monoc-
ular depths also have an affine degree of freedom (q). The
scale and shift can be solved using least squares to align
dmono and dpred. The scene normals are calculated as
gradients of S weighted with scene density along a ray.
Through a scale and shift invariant loss, MonoSDF calcu-
lates one set of (w,q) for all the rays in the batch corre-
sponding to a single training RGBD tuple. In the earlier
stages of the training, this loss helps the scene geometry
converge. The underlying assumption is that there is an
unique tuple {w,q} per training image that aligns dmono

to the actual scene depth captured by the intrinsic network
N .

Our experiments with MonoSDF indicate that the net-
work probably memorizes the set of (w,q) tuples per train-
ing image. Explicitly passing an unique scalar tied to the
training image (e.g. image index as proposed in [68])
speeds up convergence significantly. Success of MonoSDF
in recovering both shape and appearance strongly depends
on the quality of the monocular depth and normal predic-
tions. Our experiments on using MonoSDF on the Wild-
Light dataset([21]) or the ReNe dataset ([98]) failed because
the pre-trained Omnidata models performed poorly on these
datasets. Unfortunately, as implemented, MonoSDF also
failed to reconstruct scene geometry when the angles be-
tween the training views were small – ReNe dataset views
are maximally 45↑ apart. However, it demonstrates supe-
rior performance on the DTU and the BlendedMVS se-
quences while training with as low as three pre-selected
views. Finally, our scenes were captured with a small depth
of field and most of the background was out of focus, so the
scene background depth was significantly more noisy than
the foreground depth. We sidestepped this problem by as-
signing a fixed 1m depth to all the pixels that were in the
background. Although this depth mask simplifies our cam-
era pose estimation problem (by segregating the foreground

from the background), it assigns multiple infeasible depths
to a single background point. As we aggregate the depth
maps into the intrinsic network (N) by minimizing Eq. (2),
the network learns the mean (with some local smoothing) of
the multiple depths assigned to the single background point.
However, the scale and shift invariant loss is not robust to
this and with masked depth maps, we could not reliably op-
timize MonoSDF on our sequences. We suspect that this
is because the scale and shift estimates for each instance of
Eq. (10) on the background points yielded very different re-
sults, de-stabilizing the optimization.

[83] and [30] use sparse scene depth in the form of SfM
triangulated points. [83] use learnt spatial propagation [20]
to generate dense depth maps from the sparse depth ob-
tained by projecting the world points triangulated by SfM.
[30] assign the closest surface depth at a pixel obtained by
projecting the triangulated points to the image plane. Nei-
ther of these pipelines recover a 3D representation of the
scene and focus on view synthesis using few views.

[84] introduce a novel 3D representation – “Neural point
clouds” which includes geometric and appearance feature
descriptors (small MLPs) grounded to a point in 3D. The
geometry is recovered as the anchors of the “neural points”.
The appearance is calculated using a volumetric renderer
which composits the outputs of the appearance descriptors
of the neural points with the transmissivity of the neural
points along the ray. The transmissivity of a neural point is
calculated as a function of distances of a pre-set number of
neighboring neural points.

8.5. Capturing approximate BRDF and generating

textured meshes

Multi-illumination images captured by our camera sys-
tem can be used to estimate surface reflectance proper-
ties. We recover a truncated Disney BRDF model([14].
Our model consists of a per pixel specular albedo, a dif-
fuse RGB albedo, and a roughness value to interpret the
observed appearance under varying illumination. To esti-
mate the spatially varying reflectance, we first train a model
(AdaShell++, VolSDF++or NeUS++) to convergence to
learn the appearance as radiance. At convergence, the first
channel S of the intrinsic network N encodes the geom-

(a) Limited parametrization (b) Full Disney BDRF parametrization

Figure 12. Optimizing for the full Disney BRDF is difficult. Figure 12a shows our results with only specularity, roughness and metallic BRDF parameters.
Figure 12b depicts identical results utilizing the complete range of Disney BRDF parameters as outlined in [21]. Note the excessive glossy appearance of
Fig. 12b due to the dominance of the clearcoat and clearcoat-gloss parameters. Details in Sec. 8.5, meshes rendered with [92].

(a) AdaShell++
(b) VolSDF++

(c) NeUS++

Figure 13. All the pipelines can be used to extract the “base-color” of the scene. We calculate texture of the meshes from the radiance at convergence
(PSNR 27.5+) for one of the scenes in Fig. 1. The textured meshes are rendered with MeshLab[23].

etry and the appearance network A encodes the radiance.
We use two of the embedding channels of E to predict the
roughness and specular albedo at every point on the scene.
The diffuse albedo is obtained as the output of the con-
verged appearance network A. To calculate the appearance,
we apply the shading model ([14]) to calculate the color
at every sample along a ray and volumetrically composite
them using Eq. (5) to infer appearance as reflectance. Fig-
ure 11 describes our steps graphically.

Optimizing for the full set of the Disney BRDF parame-
ters, following [21] did not work with our aproach as the
optimization often got stuck at poor local minima. Fig-
ure 12b shows one instance of optimizing the pipeline of
[21], where the strengths of the recovered ‘clearcoat’ and
‘clearcoat-gloss’ parameters dominated over the optimiza-
tion of the other parameters, resulting in a waxy appear-
ance. Choosing a more conservative set of parameters (only
‘base-color’, ‘specular’ and ‘roughness’) in Fig. 12a led to a
more realistic appearance. WildLight[21] is based on [100]
– we substituted [100] with NeUS++and the apperance
model of [21] was not changed, minimizing the chances of
introduction of a bug causing the artifact.

Our process of generating texture and material properties
roughly follows the methods described by [21] and [97]. We
proceed through the following steps:
1. At convergence (see Fig. 11), we extracted the scene ge-

ometry using the method described in [72].
2. We calculate a depth mask by thresholding the depth im-

ages at every training view with an estimate of the scene

depth to segregate the foreground from the background.
3. Next, we cull the resulting triangular mesh (step 1) by

projecting rays from every unmasked (foreground) pixel
corresponding to all the camera views. This lets us ex-
tract the main subject of our scene as a mesh. We use
Embree[102] to implement this.

4. We generate texture coordinates on the culled mesh us-
ing “Smart UV Unwrap” function from [11]. These re-
sults were qualitatively better than [107] and our imple-
mentation of [93]. We then rasterize the culled mesh
from step 3 to get points on the surface corresponding to
the texture coordinates.

5. We project each of these surface points back on to each
of the training views to get the image coordinates. Rays
originating from a rasterized surface point and intersect-
ing the surface before reaching the camera are removed
to preserve self occlusion.

6. For all the valid projected points, we cast a ray onto
the scene and use either AdaShell++, VolSDF++, or
NeUS++to generate the color at the pixel along the ray
using Eq. (5). This is repeated for all the training views.

7. At the end of the previous step we have several measure-
ments of colors at every texture coordinate of the scene.
We apply a median filter (per color channel) to choose
the color – taking averages or maxima of the samples
introduces artifacts. If using the radiance as texture is
sufficient (often the case for diffuse scenes) this textured
mesh can be exported. Figure 13 demonstrates using
each of AdaShell++, VolSDF++and, NeUS++to calcu-

late the diffuse color of the scene in Fig. 1.
8. To generate material textures, we follow the same pro-

cedures with the corresponding material channels after
AdaShell++, VolSDF++or NeUS++has been trained on
multi illumination images using the schedule outlined in
Fig. 11.

9. The material properties are also volumetrically compos-
ited using Eq. (5) and median filtered like the base col-
ors. This is different from just querying the value of the
network at the estimated surface point in [21].

We use [92], a web browser based tool that supports phys-
ically based rendering with the Disney BRDF parameters,
and [11] to generate the images in Figs. 1 and 12 respec-
tively.

9. A multi-flash stereo camera

We capture the scene using a binocular stereo camera pair
with a ring of lights that can be flashed at high intensity.
For our prototype, we use a pair of machine vision cam-
eras ([38]) with a 1”, 4MP CMOS imaging sensor of reso-
lution of 2048 ≃ 2048 pixels. As we focus mainly on small
scenes, we use two sets of lenses that yield a narrow field
of view – 12mm and 16mm fixed focal length lens ([32]).
We use 80W 5600K white LEDs ([25]) flashed by a high-
current DC power supply switched though MOSFETs con-
trolled with an Arduino microcontroller. At each pose of
our rig, we captured 12 images with each of the flash lights
on (one light at a time) and one HDR image per camera.
The cameras are configured to return a 12 bit Bayer image
which is then de-Bayered to yield a 16 bit RGB image.

For the HDR images, we performed a sweep of expo-
sures from the sensor’s maximum (22580 microseconds) in
8 stops and used [71] to fuse the exposures captured with
ambient illumination (fluorescent light panels in a room).
Following the recommendations of [49] we used an f-stop
of 2.8 to ensure the whole scene is in the depth of field of
the sensors. We found the recommendations from [74] to be
incompatible with our pipeline, so we used Reinhard tone-
mapping ([81]) to re-interpret the HDR images. Our image
localization pipeline, and stereo matching also worked bet-
ter with tonemapped images.

We set the left and right cameras to be triggered simul-
taneously by an external synchronization signal. We con-
figured the camera frame acquisition and the illumination
control programs to run in the same thread and synchro-
nized the frame acquisition with the flashes through block-
ing function calls. Figure 5 presents a schematic of our pro-
totype device.

Through experiments we observed that the vignetting at
the edges of the frames were detrimental to the quality of
reconstruction, so we only binned the central 1536 ≃ 1536
pixels. A 16bit 1536 ≃ 1536 frame saved as a PNG im-
age was often larget than 10MB. To achieve a faster capture
and training time without sacrificing the field of view, we

down sampled the images to a resolution of 768≃ 768 pix-
els for our experiments. Centered crops of our initial larger
frames lead to failures of our pose-estimation pipelines due
to the field of view being too narrow(Sec. 4.2), so we chose
to down sample the images instead. For the images lit by
a single LED, we used the camera’s auto exposure func-
tion to calculate an admissible exposure for the scene and
used 80% of the calculated exposure time for imaging – the
built-in auto-exposure algorithm tended to over-expose the
images a bit. Estimating the exposure takes about 2 sec-
onds. Once the exposure value is calculated, it is used for
all of the 12 flashes for each camera.

Several instances of these RGBD tuples are collected and
the colored depth maps are registered in the 3D space in
two stages – first coarsely using FGR [113] and then re-
fined by optimizing a pose graph[22]. At the end of this
global registration and odometry step, we retain a reprojec-
tion error of about 5 - 10 pixels. If the reprojection errors
are not addressed, they will cause the final assets to have
smudged color textures. To address it, we independently
align the color images using image-feature based alignment
techniques common in multi-view stereo ([85, 88]), so that
a sub 1 pixel mean squared reprojection error is attained.
The cameras aligned in the image-space are then robustly
transformed to the world space poses using RANSAC[37]
with Umeyama-Kabsch’s algorithm[99]. Finally, we mask
out the specular parts of the aligned images and use Col-
orICP [78] to refine the poses. The final refinement step
helps remove any small offset in the camera poses intro-
duced by the robust alignment step. A subset of the data
collected can be viewed on the project website.

9.1. Identifying pixels along depth edges

To identify pixels along depth edges, we follow [79] and de-
rive per-pixel likelihoods of depth edges. Assuming that the
flashes are point light sources and the scene is Lambertian,
we can model the observed image intensity for the kth light
illuminating a point x with reflectance ↽(x) on the object as

Ik(x) = µk↽(x)⇐lk(x),n(x)⇒ (11)

where µk is the intensity of the kth source and lk(x) is the
normalized light vector at the surface point. Ik(x) is the
image with the ambient component removed. With this,
we can calculate a ratio image across all the illumination
sources

R(x) =
Ik(x)

Imax(x)
=

µk⇐lk(x),n(x)⇒
maxi(µi⇐li(x),n(x)⇒)

(12)

It is clear that the ratio image R(x) of a surface point is
exclusively a function of the local geometry. As the light
source to camera baselines are much smaller than the cam-
era to scene distance, except for a few detached shadows
and inter-reflections, the ratio images (Eq. (12)) are more

sensitive to the variations in geometry than any other pa-
rameters. We exploit this effect to look for pixels with
largest change in intensity along the direction of the epipo-
lar line between the camera and the light source on the im-
age. This yields a per-light confidence value of whether x
is located on a depth edge or not. Across all 12 illumination
sources, we extract the maximum values of the confidences
as the depth edge maps. Unlike [79], we use 12 illumination
sources 30↑ apart, and we do not threshold the confidence
values to extract a binary edge map. This lets us extract
more edges especially for our narrow depth of field imaging
system and gets rid of hyper parameters used for threshold-
ing and connecting the edges.

Often parts of our scene violate the assumption of
Lambertian reflectances resulting in spurious depth edges.
When we use depth edges for sampling, these errors do not
affect the accuracy of our pipeline. When using depth edges
for enhancing stereo matching (Sec. 4.1) we ensure that the
stereo pairs do not contain too many of these spurious edge
labels to introduce noise in our depth maps.

9.2. Identifying patches with non-Lambertian re-

flectances

We modified the definition of differential images in the con-
text of near-field photometric stereo introduced by [16, 63]
to identify non-Lambertian patches. Assuming uniform
Lambertian reflectances, Eq. (11) can be expanded as

Ik(x) = µ↓
k↽(x)n(x)

T sk ↔ x

|sk ↔ x|3 (13)

where sk is the location and µ↓
k is the power of the kth light

source. We define the differential images as It = εI
εsst

where, st = εs
εt , which when applied to Eq. (13) can be

expanded as

It(x) = I(x)
nT st

nT (s↔ x)
↔ 3I(x)

(s↔ x)T st
|s↔ x|2 (14)

Observing that the light sources move in a circle around
the center of projection on the imaging plane, sT st = 0.
Also, the second term of Eq. (14) is exceedingly small given
that the plane spanned by st is parallel to the imaging plane
and our choice of lenses limit the field of view of the cam-
eras. The second term is further attenuated by the denomi-
nator |s↔ x|2 because the camera-to-light baselines (s) are
at least an order of magnitude smaller than the camera to
object distance (x). As a result, under isotropic reflectances
(Lambertian assumed for this analysis) the differential im-
ages It(x) are invariant to circular light motions. Any ob-
served variance therefore can be attributed to the violations
of our isotropic BRDF assumptions. We identify specular
patches by measuring the variance of this quantity across
the 12 instances of the flashlit images.

Although our pipelines for identifying depth edges and
patches of varying appearances demonstrate satisfactory

qualitative performance, sometimes they yield wrong la-
bels because Eqs. (12) and (14) do not include additional
terms for spatially varying BRDFs and interreflections re-
spectively. These errors do not have any significant effect
in our reconstruction pipeline as we use this information to
generate samples during different phases of training to min-
imize photometric losses and we do not directly infer shape
or reflectances from these steps.

9.3. Difference between [36, 79] and our hardware

[79] was the first to propose pairing flashes with cameras
and laid the groundwork for identifying depth edges from
multi-flash images from a single viewpoint. However, [79]
considered a monocular camera and only four flashes along
the horizontal and vertical directions of the camera in the
demonstrated device. Researchers (see e.g. [17]) have since
extended it by placing multiple light sources far apart from
a monocular camera and have demonstrated locating depth
edges on objects with strictly Lambertian reflectances. In
this work, we retain the original light and camera configu-
ration from [79] and increase the number of lights from four
to 12.

[36] also investigated a stereo camera in a multi-flash
configuration aimed at edge preserving stereo depth maps.
They do not extend the application to synthesizing geom-
etry or appearance by capturing and assimilating multiple
views of the scene. For obtaining stereo depth maps, we use
[103], which performs much better than conventional stereo
matching ([47, 109]) largely deployed in off-the shelf sys-
tems ([54]).

Both [35, 79] discuss methods to detect specularities
(termed “material edges”) through different transforms of
the multi-light images. However, we achieve a more con-
tinuous circular motion of the lights around the cameras, so
we choose to use the photometric invariants described by
[16] instead.

	. Introduction
	. Related Work
	. Method
	. Incorporating dense metric depth
	. Incorporating depth edges in joint optimization of appearance and geometry
	. Baselines augmented with depth

	. Setup and Dataset
	. A multi-flash stereo camera
	. Dataset

	. Experiments and results
	. Accuracy of incorporating metric depth
	. The effect of depth edges in training
	. View synthesis with dense depth
	. Using noisy depth
	. Relighting

	. Limitations
	. Conclusions
	. Representations and implementation details
	. Details of our baselines
	. AdaShell++: Accelerating training with dense depth
	. Training Details
	. Difference between our and prior work on neural scene understanding with depth
	. Capturing approximate BRDF and generating textured meshes

	. A multi-flash stereo camera
	. Identifying pixels along depth edges
	. Identifying patches with non-Lambertian reflectances
	. Difference between feris2005discontinuity,raskar2004MFC and our hardware

