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ABSTRACT

How to effectively interact audio with vision has attracted wide interest in the
multi-modality community. Recently, a novel audio-visual segmentation (AVS)
task has been proposed, aiming to segment the sounding objects in video frames
using audio cues. However, current AVS methods suffer a modality imbalance
issue. The fusion of audio features is insufficient because of its unidirectional and
deficient interaction, while the vision information is more sufficiently exploited.
Thus, the output features are always dominated by visual representations, which
restricts audio-vision representation learning and may cause some false alarms.
To address this issue, we propose AVSAC, where a Bidirectional Audio-Visual
Decoder (BAVD) is devised with multiple bidirectional bridges built within. This
strengthens audio cues and enables continuous interaction between audio and vi-
sual representations, which shrinks modality imbalance and boosts audio-visual
representation learning. Furthermore, we introduce Audio Feature Reconstruc-
tion (AFR) to evade harmful data bias and curtail audio information loss by re-
constructing lost ones from visual signals. Extensive experiments show that our
method achieves new state-of-the-art performances in the AVS benchmark, espe-
cially boasting significant improvements (about 6% in mIoU and 4% in F-score) in
the most challenging MS3 subset which needs to segment multiple sound sources.

1 INTRODUCTION

Audio and vision are two closely intertwined modalities that play an indispensable role in our per-
ception of the real world. Recently, a novel audio-visual segmentation (AVS) (Zhou et al., 2022)
task has been proposed, which aims at segmenting the sounding objects from video frames corre-
sponding to a given audio. It consists of two sub-tasks: single sound source segmentation (S4) and
multiple sound source segmentation (MS3). The task has rapidly raised wide interest from many
researchers since being proposed, while there are still some issues remaining to be solved. One
of the biggest challenges is that this task requires both accurate location of the audible frames and
precise delineation of the shapes of the sounding objects (Zhou et al., 2022; 2023). This necessitates
reasoning and adequate interaction between audio and vision modalities for a deeper understanding
of the scenarios, which renders many present audio-visual task-related methods (Qian et al., 2020;
Chen et al., 2021) unsuitable for AVS. Therefore, it is necessary to tailor a new method for AVS.

AVSBench (Zhou et al., 2022) is the first baseline method for AVS, but its convolutional struc-
ture limits its performance due to limited receptive fields (Gao et al., 2023). As a remedy, trans-
formers have recently been introduced to AVS network designs (Gao et al., 2023; Liu et al.,
2023c;b; Huang et al., 2023) by using the attention mechanism to model the audio-visual rela-
tionship. The attention mechanism can highlight the most relevant video frame regions for each
audio input by aggregating the visual features according to the audio-guided attention weights.
Despite some improvements, present AVS methods still suffer modality imbalance issues, as il-
lustrated in Figure 1. Notably, modality imbalance generally exists in multi-modality fields

(Han et al., 2022; Peng et al., 2022; Zhou et al., 2020).

In present AVS methods, audio features are insufficiently fused because the fusion is unidirectional
and deficient, while the vision information is more sufficiently exploited (Zhou et al., 2022; Gao
et al., 2023; Liu et al., 2023c;b). The inadequate audio feature either repeats itself to the same size as
the visual feature for cross attention or serves as a query for channel attention in the fusion modules
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Figure 1: Overview of the AVSBench baseline (Zhou et al., 2022), AVSegFormer (Gao et al., 2023)
and our AVSAC. The fusion of audio features is insufficient in (a) and (b) because of their unidi-
rectional and deficient interaction, while the vision information is more sufficiently exploited. This
will cause modality imbalance with visual features taking the dominance. (c) Our AVSAC features a
paralleled decoder branch structure with multiple bidirectional bridges linked between each layer to
strengthen audio cues through continual and in-depth audio-visual interaction, which relieves modal-
ity imbalance. It has two key designs: (1) Bidirectional Audio-Visual Decoder (BAVD), which has
a two-tower decoder structure with each layer linked by bidirectional bridges, and (2) Audio Feature
Reconstruction (AFR) module to recover lost audio representations from the output from our audio-
guided vision decoder branch for better audio signal preservation.

of Figure 1 (a), (b) to produce what we define the audio-guided vision features (AGV). This implies
a modal imbalance issue: the network will focus more on the visual information while neglecting the
audio ones because the audio feature is not as information-rich as the visual feature, so unidirectional
and deficient fusion of audio features may easily cause audio cues to fade away. This phenomenon
resembles Liu et al. (2023a) . This will restrict audio-visual representation learning as audio cues
also matter to AVS. Thus, it’s intuitive to derive vision-guided audio features (VGA) to balance with
AGV by aggregating the audio features together according to the vision-guided attention weights.
However, both AGV and VGA are single-modal features that only represent part of the multi-modal
information. For instance, VGA is a set of audio features that describes pixels but does not preserve
the inherent visual feature of each pixel itself. We argue that a holistic understanding of audio-visual
representation can be obtained through the bidirectional interaction of the two modalities.

Motivated by this, we devise AVSAC, where we propose a bidirectional audio-visual decoder with
a two-tower structure linked by multiple bidirectional bridges between each decoder layer. It in-
tegrates AGV and VGA into one structure, as shown in Figure 1 (c). The vision-guided decoder
branch processes and outputs the VGA, while the audio-guided decoder branch processes and out-
puts AGV. The bidirectional bridges enable continuous and in-depth interaction between the two
feature modes to boost the significance of audio representations.

In addition, since most AVS methods use the GT mask as the only supervision, no effective feedback
can be given to prevent the network from learning a certain data bias Chen et al. (2023) that enables
the network to “guess” the correct target even if the audio cue has been lost. We hence propose the
Audio Feature Reconstruction (AFR) to protect network from harmful data bias and guarantee the
existence of audio cues. AFR loss is then introduced to supervise network training.

Our main contributions can be summarized as three-fold: (i) We propose AVSAC, a two-tower
decoder AVS structure with multiple bidirectional bridges linked between, to solve the modality im-
balance issue in present AVS networks. (ii) We propose two modules: Bidirectional Audio-Visual
Decoder (BAVD) and Audio Feature Reconstruction (AFR), to further enhance audio cues through
continuous and in-depth audio-visual interaction while preventing the network from learning harm-
ful data bias. (iii) Our method achieves new state-of-the-art performances on two sub-tasks of the
AVS benchmark, with significant improvements (about 6% in mIoU and 4% in F-score) in the most
challenging multiple sound source subset.

2 RELATED WORKS

2.1 AUDIO-VISUAL SEGMENTATION

Audio-visual segmentation (AVS) requires to predict pixel-wise masks of the sounding objects in a
video sequence given audio cues. To tackle this issue, (Zhou et al., 2022; 2023) proposed the first
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audio-visual segmentation benchmark with pixel-level annotations and devised AVSBench based on
the temporal audio-visual fusion with audio features as query and visual features as keys and values.
However, the relatively limited receptive field of convolutions restricts the AVS performance. As
a remedy, AVSegFormer (Gao et al., 2023) was later proposed based on vision transformer and
achieved good AVS performances. Following (Gao et al., 2023), a series of ViT-based AVS networks
has also been proposed(Liu et al., 2023c;b; Huang et al., 2023). Recently (Mao et al., 2023) has
introduced diffusion model to AVS. However, present methods do not pay enough attention to audio
cues as to visual features, since the audio feature is not as information-rich as visual feature but
the fusion of audio features is relatively insufficient and unidirectional, while the vision information
is more sufficiently exploited by sending to every decoder layers. Therefore, modality imbalance
occurs with more focus on the visual information, making audio cues easily fade away. To solve
this, we propose to continuously strengthen audio cues to reach modality balance.

(Liu et al., 2023a) also noticed the modality imbalance problem but in a language-vision task, but

its audio and visual feature extraction process only involves vision modality while we involves

audio and vision modalities.

2.2 VISION TRANSFORMER

Drawing inspirations from Deformable DETR (Zhu et al., 2020) and DINO (Zhang et al., 2022),
AVSegFormer (Gao et al., 2023) leveraged vision transformer to extract global dependencies. The
remarkable performance of AVSegFormer (Gao et al., 2023) has inspired more researchers to apply
transformer to AVS task (Liu et al., 2023c;b; Huang et al., 2023). However, the fusion of audio
features is insufficient in these methods because it is unidirectional and unenough, while the vision
information is more sufficiently exploited by sending it to every decoder layer for attention opera-
tions. This inevitably triggers modality imbalance–the network tends to focus more on the vision
information instead of the little bits of audio cues, making the audio information easily fade away.
To solve this, we devise AVSAC based on ViT to enhance the disadvantaged audio information so
as to balance with visual features.

3 METHOD

3.1 OVERVIEW

Figure 2 illustrates the overall architecture of our AVSAC, which is an AVS network with a two-
tower decoder structure linked with multiple bidirectional bridges. The network’s inputs include an
audio input A ∈ RT×dmodel and consecutive video frames input V , where T represents the number
of frames and dmodel defaults to 128 in the VGGish. Following previous works (Zhou et al., 2022;
Gao et al., 2023), we first extract two sets of input backbone features: visual feature Fvis from V
using a CNN backbone ((He et al., 2016; Wang et al., 2022)), and audio feature Faudio from A using
VGGish (Hershey et al., 2017). Then Faudio and Fvis are fed into corresponding decoders for multi-
model interaction and output binary segmentation masks. Our AVSAC has two key components: (1)
a Bidirectional Audio-Visual Decoder (BAVD) and (2) an Audio Feature Reconstruction (AFR)
module. We detail each component of our framework in the following.

3.2 BIDIRECTIONAL AUDIO-VISUAL DECODER (BAVD)

As mentioned above, most present AVS methods use the naive attention mechanism to process
multi-modal information but always use audio features as query and visual features as key and value
through channel attention or repeating audio features to the same size as visual features. In this
way, the audio features only attend the generation of attention weights that indicate the significance
of each area in the visual feature but do not directly involve in the output, so that the output can
be regarded as a reorganized single-modal vision feature, which we define as audio-guided vision
features (AGV). Even worse is that the AGV is then sent to the successive transformer decoder. As
a result, visual features take the dominance while audio features dramatically get lost in the decoder.
Thus we argue that present AVS methods only do well in processing features from the value input,
but lack the ability to fuse multi-modal features. We call this issue a modality imbalance challenge.
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Figure 2: Overall architecture of AVSAC. We propose two key components in this framework: (1)
Bidirectional Audio-Visual Decoder (BAVD), enabling the model to strengthen audio cues by con-
sistently balancing AGV with VGA through continuous and in-depth bilateral modality interaction.
(2) Audio Feature Reconstruction (AFR) module is proposed to evade harmful data bias and prevent
audio representations from fading away.

To relieve modality imbalance, we hope to equally treat features from both modalities and interact
with each other. Based on this idea, we propose a Bidirectional Audio-Visual Decoder (BAVD) that
consists of two paralleled interactive decoders with bidirectional bridges, as shown in Figure 2. The
two-tower decoder structure includes an audio-guided decoder branch and a vision-guided decoder
branch, responsible for extracting AGV and VGA respectively. In this way, both AGV and VGA can
be consistently extracted and mutually balance each other as the network goes deep, which signifi-
cantly relieves modality imbalance. To obtain the final segmentation mask prediction, we multiply
the AGV feature output FAGV obtained from the audio-guided vision decoder branch with the VGA
feature output FV GA from the vision-guided audio decoder branch. Then we utilize an MLP to
integrate different channels, followed by a residual connection to ensure that the fusion of audio
representation does not lead to aggressive loss of visual representation. Finally, the segmentation
mask M can be obtained through a linear layer. The process be expressed as Equation 1.

M = Linear(FAGV +MLP (FAGV · FV GA)) (1)

where MLP (.) and Linear(.) denote the MLP process and the linear layer, respectively. In the
following, we will introduce the two decoder branches in our BAVD in detail on how to obtain
FV GA and FAGV .

3.2.1 AUDIO-GUIDED VISION (AGV) DECODER BRANCH

We adopt the deformable attention block following (Zhu et al., 2020) as the basic structure of the
self-attention layer in AGV decoder branch to generate visual queries for audio-guided cross atten-
tion in the next step, as shown in the right part of Figure 3 (a). We build multiple bidirectional
bridges between each layer of the two decoders for bidirectional modality interaction. Specifically,
the inputs of i-th layer of the VGA decoder branch are injected into the i-th layer of the AGV de-
coder branch as key (Ki

a) and value (V i
a ) for multi-modality interaction based on the cross-attention

operation. The expression of audio-guided cross attention on the i-th layer is written as Equation 2.

F i
AGV = CrossAtten(Qi

v,K
i
a, V

i
a , F

i
v, w) = F i

v + softmax(
Qi

vK
iT

a√
dK

)V i
aw (2)

where F i
AGV is the i-th audio-guided cross attention output, Ki

a, V
i
a are the key and value sent

through the bridge from the i-th layer of the VGA decoder branch and Qi
v is the query of the i-th
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Figure 3: illustration of the Internal module structure of (a) Bidirectional Audio-Visual Vision De-
coder (BAVD). (b) Audio Feature Reconstruction (AFR).

layer of the AGV decoder branch. F i
v is the i-th layer self attention output. w is a learnable weight

that enables the AGV decoder branch to determine how much information it needs and also makes
the audio representation more adaptable to the audio-visual representation.

3.2.2 VISION-GUIDED AUDIO (VGA) DECODER BRANCH

The basic operation in our VGA decoder branch is the cross-attention operation, as shown in the left
part of Figure 3 (a). We do not follow the same structure as AGV decoder branch as we delete the
self-attention layer because we find that the audio representation is not as information-rich as the vi-
sual representation, and additional self-attention layers only bring increased parameters but dropped
performance. The experimental result is recorded in our ablation study in Table 3. The reason is
that excessive parameters may cause ambiguity in audio representations to harm the performance.
Therefore we simplify our VGA decoder branch to only cross attention layers. The expression of
the cross attention on the i-th layer is written as Equation 3.

F i
V GA = CrossAtten(Qi

a,K
i
v, V

i
v ) = softmax(

Qi
aK

iT

v√
dk

)V i
v , Qi

a = F i−1
V GA (3)

where F i
V GA is the i-th layer cross attention output. Qi

a is the query of the i-th layer of the VGA
decoder branch, which is also the former layer cross-attention output. and Ki

v, V
i
v are the key and

value come from the i-th layer outputs of the AGV decoder branch.

3.3 AUDIO FEATURE RECONSTRUCTION (AFR)

Most of the present AVS networks are only supervised by the segmentation GT masks, which implies
a hypothesis: as long as the prediction mask matches the GT mask, we think that the network can
understand the audio cues. However, this is not always the case actually. For example, for some
datasets, there is always one and only one target in the segmentation GT mask for each training
sample, so the network may easily learn such data bias and always output one target. Thus, for
some training samples, if the network happens to “guess” the right target region even if the audio
information has been lost or distorted, these samples actually contribute nothing or even do harm to
the network training.

To prevent the network from harmful data bias during representation learning and also curtail audio
information loss, we propose the Audio Feature Reconstruction (AFR) module as shown in Figure 3
(b). AFR can reconstruct the audio feature from the final output of the audio-guided vision decoder
to guarantee that the audio information is well preserved through the whole audio-visual feature
interaction procedure. It takes audio feature Faudio and the AGV output FAGV of the audio-guided
vision decoder as inputs and projects the two features into the same feature space for comparison.
The Audio Feature Reconstruction loss is derived by minimizing the distance between the recon-
structed audio feature Fafr and the projected multi-model feature Fproj using the Mean Squared
Error (MSE) loss.
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3.4 LOSS FUNCTION

The total loss function L consists of two parts: one is the mask loss for segmenta-
tion (Lmask) that includes binary Focal loss Lfocal (Lin et al., 2017) and Dice loss
Ldice (Milletari et al., 2016), and the other is for audio feature reconstruction (Lafr).
We define Lmask = λfocalLfocal + λdiceLdice and Lafr = MSE(Fafr, Fproj). We use the mask

loss to supervise two places of the network–the final output and the audio-guided decoder output.
The total loss function can be written as

L(ŷ, y) =
2∑

i=1

Li
mask + λafrLafr =

2∑
i=1

(λfocalLi
focal + λdiceLi

dice) + λafrLafr (4)

where λfocal , λdice and λafr are the weights to balance the loss function. The whole framework
is trained by minimizing the total loss function between ŷ and ground-truth y. Our proposed AFR
does not participate in mask prediction and is computationally free during inference. It can serve as
a plug-in module to any existing AVS methods.

4 EXPERIMENTS

4.1 DATASETS

AVSBench-Object (Zhou et al., 2022) is an audio-visual segmentation dataset with pixel-level an-
notations. Each video has a duration of 5 seconds and is uniformly segmented into five clips. An-
notations for the sounding objects are provided by the binary mask of the final frame of each video
clip. The dataset includes two subsets according to the number of audio sources in a video: a semi-
supervised single sound source subset (S4), and a fully supervised multi-source subset (MS3). The
S4 subset consists of 4932 videos, while the MS3 subset contains 424 videos. We follow the dataset
split of (Zhou et al., 2022) for training, validation, and testing.

4.2 EVALUATION METRICS

We employ the evaluation metrics including the Jaccard index (the mean Intersection-over-Union
between the predicted masks and the ground truth) and F-score following (Zhou et al., 2022).

4.3 IMPLEMENTATION DETAILS

We train our AVSAC model for the three sub-tasks using 2 NVIDIA A6000 GPUs. We freeze the
parameters of visual and audio backbones. We choose the Deformable Transformer (Zhu et al.,
2020) block as the structure of the self-attention layer in the vision-guided decoder. Consistent with
previous works, we choose AdamW (Loshchilov & Hutter, 2017) as our optimizer, with the batch
size set to 4 and the initial learning rate set to 2× 10−5. All video frames are resized to 224× 224
resolution. For the S4 and MS3 subsets, each video contains 5 frames. Since the MS3 subset is quite
small, we train it for 60 epochs, while the S4 is trained for 30 epochs. The encoder and decoder in
our AVSAC both are comprised of 6 layers with an embedding dimension of 256. We set λfocal,
λdice and λafr to 1, 1 and 0.1 for the best performance.

4.4 QUALITATIVE COMPARISON

We compare the qualitative results between AVSBench (Zhou et al., 2022), AVSegFormer (Gao
et al., 2023) and our AVSAC in Figure 4. PVT-v2 is adopted as the visual encoder backbone of
all three methods, among which our AVSAC enjoys the best visual segmentation performance with
the finest shape-aware segmentation effect and significantly relieves some false alarms. The left
side of Figure 4 visualizes the fineness of our method in delineating the shape of the sounding
object. The right side of Figure 4 visualizes that our AVSAC can curtail some false alarms. When
the pianist appears in the video frames but does not make any sound, AVSBench cannot find the
correct-sounding objects and includes all of them. AVSegFormer performs better but still mistakes
the person in the background as the sounding source in the third frame. However, our AVSAC can
accurately segment the sounding piano keys without generating false alarm predictions. The reason
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Figure 4: Qualitative examples of the AVSBench, AVSegFormer and our AVSAC framework. The
left part is the output of the S4 setting, and on the right is the MS3 setting. The other two methods
only produce segmentation maps that are not that precise, whereas our AVSAC can not only signifi-
cantly evade some false alarms but also more accurately delineate the shapes of sounding objects.

for the flaws of the other two methods (also other AVS methods) is that the features extracted by
these methods are dominated by visual representations while lacking enough audio guidance to help
distinguish the correct-sounding object. Our method solves this modality imbalance problem by
balancing visual representations with enough audio cues by building bidirectional bridges between
our two-tower decoders so that both AGV and VGA can be consistently obtained.

We also visualize the attention maps of consecutive frames with and without audio enhancement
in Figure 5 to further prove the effectiveness of our method. It is obvious to find that no-audio-
enhancement results are coarser than audio-enhanced ones from the left part of Figure 5. The right
part of Figure 5 again visualizes the false alarms caused by modality imbalance–the left man is
mistaken as a sounding object even though he does not make any sound. Equipped with our bidirec-
tional bridges between two decoders for continuous audio enhancement can significantly mitigate
this issue. For more qualitative results, please refer to our appendix.

4.5 QUANTITATIVE COMPARISON

The quantitative results on the test set of S4 and MS3 are presented in Table 1. We can observe
that our method has achieved state-of-the-art performances on all three AVS benchmark subsets in
terms of F-score and mIoU. There is a consistent performance gain of our AVSAC model compared
to other SOTA methods, regardless of whether ResNet-50 (He et al., 2016), Swin-Transformer (Liu
et al., 2021) or PVTv2 (Wang et al., 2022) is used as the backbone. This suggests that the modality
imbalance problem indeed exists and limits the performance of present AVS methods. By build-
ing multiple bidirectional bridges between two paralleled decoders, we balance audio and visual
modality information flows during the whole training process, therefore solving the modality im-
balance issue and significantly boosting the segmentation performances. Note that the performance
improvement benefits from our two-tower decoder structure with bidirectional bridges itself, in-
stead of coming from more trainable parameters. Actually, the parameter number of our baseline
AVSegFormer (Gao et al., 2023) is 186M, while our model is slightly more lightweight with 181M
parameters, but our model far outperforms present AVS methods.

5 ABLATION STUDIES

In this section, we conduct ablation experiments to verify the effectiveness of each key design in our
proposed AVSAC. Specifically, we adopt PVTv2 (Wang et al., 2022) as the backbone and conduct
extensive experiments on the S4 and MS3 sub-tasks.

Ablation of each key module. We ablate the impact of each of our key components in Table 2. We
adopt AVSegFormer (Gao et al., 2023) as the baseline. From Table 2 we can observe that compared
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Figure 5: Visualization of attention maps of consecutive frames with and without multiple bidirec-
tional bridges. The darker areas highlight the predicted-sounding objects in attention maps.

Table 1: Comparison with other SOTA methods on the AVS benchmark. All methods are evaluated
on two AVS sub-tasks, including single sound source segmentation (S4) and multiple sound source
segmentation (MS3). The evaluation metrics are F-score and mIoU. The higher the better. The
figures in bold mark the highest ones in each column.

Methods Backbone S4 MS3
F-score mIoU F-score mIoU

LVS (Chen et al., 2021) ResNet-50 (He et al., 2016) 51.0 37.94 33.0 29.45
MSSL (Qian et al., 2020) ResNet-18 (He et al., 2016) 66.3 44.89 36.3 26.13

3DC (Mahadevan et al., 2020) ResNet-34 (He et al., 2016) 75.9 57.10 50.3 36.92
SST (Duke et al., 2021) ResNet-101 (He et al., 2016) 80.1 66.29 57.2 42.57
AOT (Yang et al., 2021) Swin-B (Liu et al., 2021) 82.8 74.2 0.050 0.018
iGAN (Mao et al., 2021) Swin-T (Liu et al., 2021) 77.8 61.59 54.4 42.89

LGVT (Zhang et al., 2021) Swin-T (Liu et al., 2021) 87.3 74.94 59.3 40.71

AVSBench-R50 (Zhou et al., 2022) ResNet-50 (He et al., 2016) 84.8 72.79 57.8 47.88
AVSegFormer-R50 (Gao et al., 2023) ResNet-50 (He et al., 2016) 85.9 76.45 62.8 49.53

AVSBG-R50 (Hao et al., 2023) ResNet-50 (He et al., 2016) 85.4 74.13 56.8 44.95
AuTR-R50 (Liu et al., 2023c) ResNet-50 (He et al., 2016) 85.2 75.0 61.2 49.4

DiffAVS-R50 (Mao et al., 2023) ResNet-50 (He et al., 2016) 86.9 75.80 62.1 49.77
AQFormer-R50 (Huang et al., 2023) ResNet-50 (He et al., 2016) 86.4 77.0 66.9 55.7

AVSAC-R50 (Ours) ResNet-50 (He et al., 2016) 86.95 76.90 65.11 51.13

AVSBench-PVT (Zhou et al., 2022) PVTv2 (Wang et al., 2022) 87.9 78.74 64.5 54.00
AVSegFormer-PVT (Gao et al., 2023) PVTv2 (Wang et al., 2022) 89.9 82.06 69.3 58.36

AVSBG-PVT (Hao et al., 2023) PVTv2 (Wang et al., 2022) 90.4 81.71 66.8 55.10
AuTR-PVT (Liu et al., 2023c) PVTv2 (Wang et al., 2022) 89.1 80.4 67.2 56.2

DiffAVS-PVT (Mao et al., 2023) PVTv2 (Wang et al., 2022) 90.2 81.38 70.9 58.18
AQFormer-PVT (Huang et al., 2023) PVTv2 (Wang et al., 2022) 89.4 81.6 72.1 61.1

AVSAC-PVT (Ours) PVTv2 (Wang et al., 2022) 91.62 84.29 74.86 64.13

with our AFR, our BAVD brings more significant AVS performance gain, especially in the more
challenging MS3 subset. The reason is that the bidirectional bridge design in BAVD continuously
strengthens the audio feature along the decoder to guarantee that the audio feature will not fade
away. In this way, the previously dominant visual features can be balanced by strengthened audio
signals, which helps the network to more accurately delineate sounding object shapes according to
the strengthened audio guidance. Our AFR is more like an auxiliary module to prevent the network
from learning harmful data bias and recover some lost audio representations from visual signals, so
equipped with it also brings performance gains.

Ablation of BAVD. The ablation studies of the internal structure of BAVD are presented in Ta-
ble 3. In this work, we propose BAVD, which is a two-tower decoder structure with bidirectional
bridges to enhance audio cues to reach a continuous audio-visual modality balance and interaction.
To demonstrate the necessity of bidirectional bridges, we compare this design with two kinds of uni-

8



Under review as a conference paper at ICLR 2024

directional bridges–the audio-to-vision bridge (Model #1) and the vision-to-audio bridge (Model
#2). The audio-to-vision bridge brings higher performance gain than the vision-to-audio bridge,
which proves that strengthening audio cues as visual guidance is very effective in relieving modality
imbalance. The network equipped with bidirectional bridges offers the best performance, suggest-
ing that this design adequately balances audio and visual modalities. We also ablate the necessity of
attention blocks in both decoder branches by deleting each AGCA in AGV decoder branch (Model
#3) and adding a self-attention between each VGA decoder branch layers (Model #4). Results
show that adding self-attention between each VGA layer slightly harms AVS fineness because the
audio feature itself is not as information-rich as visual features, so processing it with excessive pa-
rameters may cause ambiguity, so we do not add a self-attention block to the audio decoder. Deleting
AGCA in AGV decoder drops the performance, so we keep it.

Ablation of the loss function. We ablate the impact of the loss function in Table 4. The results indi-
cate that (1) Combining Focal loss with Dice loss as the mask loss contributes better to segmentation
fineness, because the Dice loss solves the foreground-background imbalance problem but ignores a
further imbalance between easy and difficult samples, whereas Focal loss can focus on these difficult
misclassified samples. (2) Equipping mask loss with our proposed AFR loss brings the best results
because our AFR loss can prevent the network from learning some harmful data bias and also help
reconstruct some lost audio cues to guarantee modality balance.

Ablation of the number of decoder layers. We also adjust the number of BAVD layers N and show
the results in Table 5. By increasing BAVD layer number from 2 to 6, we can observe consistent
AVS performance gain. The best results on both subsets are obtained when N is set to 6, which
indicates that more BAVD layers bring better performances. The reason is that audio cues cannot
get sufficiently enhanced if the decoder layer is not enough and, therefore cannot effectively mitigate
the audio-visual modality imbalance problem, leading to relatively limited performances.

Table 2: Ablation study of each key design. Re-
sults show that BAVD and AFR complements
each other and combining both performs better.

No. Settings S4 MS3
F-score mIoU F-score mIoU

#1 Baseline 89.9 82.06 69.3 58.36
#2 BAVD 90.93 83.65 74.12 63.46
#3 BAVD+AFR 91.62 84.29 74.86 64.13

Table 3: Ablation study of BAVD. It shows that
building bidirectional bridges between two-tower
decoders improves more.

No. Settings S4 MS3
F-score mIoU F-score mIoU

#1 Audio → Vis 90.64 83.28 72.86 61.98
#2 Vis → Audio 90.12 82.46 70.03 58.89
#3 w/o AGCA 90.75 83.41 73.22 62.58
#4 +SA in VGAD 91.01 83.86 73.66 62.99
#5 w/ BAVD 91.62 84.29 74.86 64.13

Table 4: Ablation study of loss function. It
shows that combining mask loss (Focal+Dice)
with audio reconstruction loss works better.

Settings S4 MS3
F-score mIoU F-score mIoU

Lmask (Dice) 90.56 83.29 73.66 62.99
Lmask (Dice+Focal) 90.93 83.65 74.12 63.46

Dice+Focal+Lafr 91.62 84.29 74.86 64.13

Table 5: Ablation study of decoder layer num-
ber. We find that 6 decoder layers work better
than other configurations.

Layers S4 MS3
F-score mIoU F-score mIoU

2 88.76 79.83 69.77 58.62
4 90.50 82.84 72.17 61.25
6 91.62 84.29 74.86 64.13

6 CONCLUSION

In this paper, we notice that present AVS methods all suffer a modality imbalance challenge–visual
features take the dominance while audio signals easily fade away and are unable to provide enough
guidance, causing relatively limited AVS performance. To solve this, we try to bootstrap AVS
task by strengthening the audio cues to make a balance between audio and visual modalities and
propose the AVSAC network. The superior performances on all three AVS datasets demonstrate the
effectiveness of our method in solving modality imbalance in AVS.

Limitations. Similar to other methods that adopt Transformers, our proposed method does not ex-
hibit significant advantages in model size and inference efficiency compared to recent AVS methods.
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A APPENDIX

A.1 MORE QUALITATIVE RESULTS

Some more qualitative results between AVSBench (Zhou et al., 2022), AVSegFormer (Gao et al.,
2023) and our AVSAC are visualized in Figure 6. We also adopt PVT-v2 as the visual encoder
backbone of all three methods. Our AVSAC still enjoys the best visual segmentation performance
with the finest shape-aware segmentation results.

AVSBench

AVSAC

Ground

Truth

AVSegFormer

Video

Audio

Figure 6: More Qualitative examples of the AVSBench, AVSegFormer, and our AVSAC. The left
part is the output of the S4 setting, and on the right is the MS3 setting. The other two methods only
produce segmentation maps that are not that precise, whereas our AVSAC can not only significantly
evade some false alarms but also more accurately delineate the shapes of sounding objects.

A.2 QUANTITATIVE RESULTS ON AVSS BENCHMARK

AVSS (Zhou et al., 2023) is an extension of the AVSBench-Object dataset with 12,356 videos across
70 categories. It is designed for audio-visual semantic segmentation (AVSS). Different from the
AVSBench-Object dataset which only has binary mask annotations, AVSS offers semantic-level
annotations for sounding objects. The videos in AVSS are longer, each lasting 10 seconds, and 10
frames are extracted from each video for prediction.

We add the quantitative results on the test set of AVSS based on the comparison results from (Zhou
et al., 2023), as presented in Table 6. We can observe that our method still achieves the best perfor-
mances on the larger AVS dataset in terms of F-score and mIoU.

A.3 DETAILED SETTINGS

We list the detailed settings of our model in Table 7.

A.4 FAILURE CASES

We visualize a failure case of present methods including our method in Figure 7 (a). When the real
sounding object moves outside of the field of view, present AVS methods tend to falsely segment
other object in view as sounding object.

A.5 ABLATION OF TRAINING MASK LOSS W/ AND W/O SELF-ATTENTION

We display the training and evaluation mask losses between the final mask output and GT of AVSAC
w/ and w/o self-attention in the VGA decoder branch in Figure 7 (b). Adding self-attention makes
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Table 6: Comparison with other SOTAs on the AVSS benchmark. The evaluation metrics are F-score
and mIoU. The higher the better. The figures in bold mark the highest ones in each column.

Methods Backbone AVSS
F-score mIoU

3DC (Mahadevan et al., 2020) ResNet-34 21.6 17.27
AOT (Yang et al., 2021) Swin-B 31.0 25.40

AVSBench-R50 (Zhou et al., 2022) ResNet-50 25.2 20.18
AVSegFormer-R50 (Gao et al., 2023) ResNet-50 29.3 24.93

AVSAC-R50 (Ours) ResNet-50 29.60 25.32
AVSBench-PVT (Zhou et al., 2022) PVTv2 35.2 29.77

AVSegFormer-PVT (Gao et al., 2023) PVTv2 42.0 36.66
AVSAC-PVT (Ours) PVTv2 42.25 36.90

Table 7: Detailed settings. This table provides a detailed overview of the specific settings used for
each sub-task.

Settings S4 MS3 AVSS
input resolution 224 × 224 224 × 224 224 × 224

feames T 5 5 10
embedding dimension D 256 256 256

AGV decoder feature size 5376 × 256 5376 × 256 1029 × 256
VGA decoder feature size 300 × 256 300 × 256 300 × 256

decoder layers N 6 6 6
batch size 4 4 4
optimizer AdamW AdamW AdamW

learning rate 2× 10−5 2× 10−5 2× 10−5

drop path rate 0.1 0.1 0.1
epoch 30 60 30
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(a) (b)

Figure 7: (a) Failure case display. (b) Training mask losses between the final mask output and GT
of AVSAC w/ and w/o self-attention in the VGA decoder branch.
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Truth

Video
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Figure 8: Visual ablation of AFR module.

the mask loss drops lower while the evaluation loss is higher than the no self-attention case, which
means over-fitting. Therefore this explains why adding self-attention to VGA decoder is not adopted.

A.6 VISUAL ABLATION OF AFR MODULE

We visualize visual result samples with and without AFR module in Figure 8. Take the left part
result as an example, when we remove AFR, we find that the model cannot segment the laughing
baby on the first two frames since part of the audio cues may get lost so that the audio guidance is not
enough. Adding AFR module improves this because the sounding baby gets successfully recognized
and segmented again.

A.7 VISUAL RESULT WITHOUT AUDIO CUES

We visualize a visual result without audio cues in Figure 9. We use our pretrained AVSAC model
but set the audio input as zero and obtain the no audio results in the third row. Obviously, without
audio cues dramatically harms the AVS performance.
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Ground

Truth

Video

AVSAC

No Audio

Figure 9: Visual result without audio cues.
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