Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 SYNAPTIC CURRENT KERNEL OF THE DSNN

The neurons of DSNN consider the dendrite and axon delays during the information process. Specif-
ically, the synaptic current of original IF model decays in terms of O(t — ¢!, )exp(—=t=), while
that of our modified model reduces in terms of ©(t — ¢! )exp(—*=tiz=t4). The functions of these
two models have been presented in Fig. 4] It can be found that ¢4 leads to the change of curvature
for different neurons in the DSNN, rather than simply shifting the functions. In addition, a larger
tq corresponds to a greater initialized synaptic current of the modified model. The foundation is in
accord with biological evidence that distal synaptic inputs obtain larger local response amplitudes
than similar ones at proximal locations Gulledge et al.|(2005)); (Grillo et al.|(2018)). That also implies
high levels of biological plausibilities in the DSNN.
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Figure 4: Comparison of synaptic currents between the original IF model and the modified one.

A.2 SPIKING NEURAL NONLINEARITY

Artificial neural networks have been successfully applied to various fields. One of the key elements
is to use nonlinear activation functions, such as the ReLLU and sigmoid function. We theoretically
analyze the nonlinearity of neural activation in the DSNN.

According to Eq.[7] it is easy to observe a linear dependency among the input and output spikes in
terms of exponential time, assuming all input spikes are in the causal set. For example, a neuron
has two input spike times ¢}, and t2 and one output spike time #,,;. Let t} <t? , there are two

possible causal sets: {t } and {t} ,t2 }. Their corresponding outputs can be calculated as follows:
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The conditions of C,, and Cj are t}, <t ,<t? andt] <t? <t% ., respectively. By incorporating

Eq.[I8] we can get

out>
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Cg, otherwise.

For certain efe and 6 in a trial, the causal set C' is merely determined by the time interval At;,
between these two input spikes ¢}, and t? , where At;,, =t —t2 . Fig. a) illustrates the function
of t,y¢ With its two variables t, “and 2 .

For clarlty, Fig. lb) shows the dynamic of t,,,; regarding At;,, with the fixed values of tl They are
typical piecewise linear functions. During the specific ranges, a linear relationship exists between
exponential input and output spike times. However, once the set of causal input spikes changes,
apparent nonlinearities can be found among the interval and output. In other words, the spiking
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Figure 5: (a) Dynamic of the output spike timing ¢,,,; regarding the input splke timings ¢}, and t2,.
(b) Dynamics of ¢, regarding the time interval between input spike timings t7, — ¢}, w1th the ﬁxed
values of ¢} .

neuron’s nonlinear behavior is determined by the causal set. Such nonlinearities enable the DSNN
to solve complex data mining tasks in terms of deep architectures. Besides, similar foundations can
be generalized to the neuron with multiple input spikes, where the input number N > 2. For sorted
multiple input spikes, the condition of the causal set is given by

t ’ s 7tk ! ) t tk 5
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Considering tout = e

, the conditions of ¥, can be transformed into
C Zd _tk < k—1 tl
¢ Zz 1€ em i Zz 1 €¢ 1)
tfn € C, otherwise.

For the given ¢, and 6, whether the kth spike is in the causal set is only determined by the time
intervals between it and the previous spikes.

A.3 PROOF OF THE MEMBRANE POTENTIAL OF NEURONS IN THE DSNN

More detailed proof of Eq. [6]have been presented as follows. Eq. [2]can be rewrited as

0, t<tl:
17 t—td
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By integrating it, we can get
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where Cj; are the integration constant determined by the B.C. in Eq. [2, and k € {1,2,--- ,N}.

Define Ty (t) = Zi?:l e+ . T(fe*k:m ) + Ck, and Ty(t) = Cy, we can get Ty (t},) = T1(t},) by
assuming the continuity of ul (t). With the setting Cp = ucs¢ = 0, it can be written as follows:

e 7 (—1)+Cy =0 (24)
tlj tLJ

With the assumption C; = 7-e* and C = 7 - Zle e, the condition of B.C. Ty(tFF!) =

Tr+1(t51) needs to satisfy the following equation:
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Then, we can get Cj, 41 = 7 - Zf;l e, According to the mathematical induction, we can finally
uj

proof that Cy = 0, and Cj, = 7 - 25:1 eth, where (k = {1,2,--- ,N}). Thus, Ti(t) can be
rewrited as:

k ;
Ti(t)=7-Y er(l—e 7). (26)

Collecting all the T} (t), the membrane potential u () can be presented as

t—tl

N ij
wt)=7-Y O —t,)er (1—e 7). 27)
=1

A.4 ABLATION STUDY

In this section, an ablation experiment is conducted to verify the effectiveness of dendritic and axon
delays. We compared the original DSNN with two modified versions containing only dendritic delay
or axon delay on the four benchmark datasets. The experimental results have been presented in Table
We can find that both modified DSNNs perform worse than the original one. And the DSNN
with only the dendritic delay is much better than the version with only the axon delay, implying
the importance of dendritic delay in the DSNN. This is because the dendritic delay is functionally
analogous to the synaptic weights.

Table 4: Ablation study of dendritic and axon delays.

Tasks dendritic delay (%) axon delay (%) dendritic and axon delays (%)
XOR 99.7 21.4 100.0

Iris 95.3 51.3 96.7

MNIST 93.5 10.2 96.6
FASHIONMNIST 80.6 10.0 83.1
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A.5 PSEUDOCODE OF THE FORWARD PROCESS OF DSNN

Algorithm 2: Forward process of one layer in the DSNN

Input: Vector of input spikes z;, = €%, number of neurons in the previous and current

layers I and J, vector of activation threshold 8, matrice of dendrite delays z4[I][J],
vector of axon delays zq[I];

Output: Vector of input spikes of the next layer’s neurons z._;

wmn’

Via < argsort(z;y,); // the sort indices in the ascending order
Zin — Zin|Vid]s // sort the input spikes
Za < za[Vid][]; /I rearrange the dendrite delay matrice to match the input spikes

for j =11t Jdo

for:=1t01do
if i == I then
‘ Znext < OQ;
else
‘ Znext < zin [Z + 1]7
end
. i = . i1 Zalk,j)Zin[k]
02 Zalh J] > 0 and S5 20 j1=g1j < Fmeat then
| Cljl « {Vall], -+, Vialt]}s /l causal set of the neuron
end
end
if C[j] # ¢ then
. Ekec[j] zalk,jlzin(k]
Zout|]] S rec 2alki]—00] °
zin[j] — zout[j} : za[j];
else
| Zinli]  oo3
end
end

’
return z; .
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