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A PROOFS

A.1 PROOF OF PROPOSITION 3.3

For probability vectors q,p, p̂ → !(V), define M(q, p̂) = minp→N(p̂) q
↑ log p, and M(p̂) =

maxq minp→N(p̂) q
↑ log p. Then, the t-step total rewards of no-foresight strategy Q(P̂) and locally

optimal strategy Q̃(P̂) are respectively given by

Lt(Q(P̂),P↓(P̂,Q)) =
t∑

s=1

EX<s↔Q(P̂)[M(qs(X<s), p̂s(X<s))] := Rt(Q(P̂), P̂),

Lt(Q̃(P̂),P↓(P̂, Q̃)) =
t∑

s=1

EX<s↔Q̃(P̂)[M(p̂s(X<s))] := R̃t(P̂).

Since ω < maxi p̂i, M(p̂) is always bounded from below. Moreover, as the set-valued mapping
p̂ ↑↓ N(p̂) satisfies upper and lower hemicontinuity and N(p̂) is compact, M is continuous in p̂
by Berge’s Maximum Theorem (Aliprantis & Border, 2006), which further implies the continuity of
R̃t. Since the space of P̂ is compact, we conclude that infimum of R̃t can be attained at some P̂↓,
namely inf R̃t(P̂) = R̃t(P̂↓).

Now, if qt(x<t; P̂↓) = q̃t(x<t; P̂↓) ↔t, we are done. Otherwise, let t0 be the first step such that
qt0(x<t0 ; P̂↓) ↗= q̃t0(x<t0 ; P̂↓). We have

t0↗1∑

s=1

EX<s↔Q(P̂→)[M(qs(X<s), p̂
↓
s(X<s))] =

t0↗1∑

s=1

EX<s↔Q̃(P̂→)[M(q̃s(X<s), p̂
↓
s(X<s))],

EX<t0↔Q(P̂→)[M(qt0(X<t0), p̂
↓
t0(X<t0))] ↘ EX<t0↔Q̃(P̂→)[M(q̃t0(X<t0), p̂

↓
t0(X<t0))],

which implies Rt0(Q(P̂↓), P̂↓) ↘ R̃t0(P̂↓). Consider P̂↓↓ defined as follows. For each x<s → Vs↗1,

p̂↓↓
s (x<s) =

{
p̂↓
s(x<s), s ↘ t0,

p̂↓
s(x

↓
<s) where x

↓
<s = argminx→Vs↑1 M(q̃s(x), p̂↓

s(x)), s > t0.

In words, P̂↓↓ can be understood as shifting the future structure of P̂↓ after t0. Since the strategy
Q(P̂) is defined to have no foresight, we have qs(x<s; P̂↓↓) = qs(x<s; P̂↓) for s ↘ t0. Hence,

Rt0(Q(P̂↓↓), P̂↓↓) ↘ R̃t0(P̂↓) (4)

holds as well.

Due to our construction of P̂↓↓, the future rewards after t0 satisfy
T∑

s=t0+1

EX<s↔Q(P̂→→)[M(qs(X<s), p̂
↓↓
s (X<s))] ↘

T∑

s=t0+1

max
x<s→Vs↑1

M(qs(x<s), p̂
↓↓
s (x<s))

↘
T∑

s=t0+1

max
x<s→Vs↑1

M(q̃s(x<s), p̂
↓↓
s (x<s))

↘
T∑

s=t0+1

EX<s↔Q̃(P̂→)[M(q̃s(X<s), p̂
↓
s(X<s))],

namely

RT (Q(P̂↓↓), P̂↓↓)≃Rt0(Q(P̂↓↓), P̂↓↓) ↘ R̃T (P̂↓)≃ R̃t0(P̂↓). (5)

With (4) and (5), we conclude that

inf
P̂
RT (Q(P̂), P̂) ↘ RT (Q(P̂↓↓), P̂↓↓) ↘ R̃T (P̂↓) = inf

P̂
R̃T (P̂),

which proves the result.
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A.2 PROOF OF THEOREM 4.7

We shall only prove the general theorem, as Theorem 4.3 and 4.4 are direct consequences.

Consider the minimization problem

min
p→N(p̂)

q↑
f(p), (6)

where N(p̂) = {p → !(V) : dTV(p, q) ↘ ω}.
The feasible region N(p̂) is a convex polytope since it is the intersection of two convex polytopes—
the probability simplex !(V) and the ω-TV-distance ball {p : 1

2 ⇐p≃ p̂⇐1 ↘ ω}. Moreover, due to
concavity of f , it is easy to show that q↑

f(p) is concave in p. It is well-known that minimizers of
a concave function over a polytope are attained at one of the vertices (Horst, 1984). Now, we let U
be the set of the vertices of N(p̂).

We will consider the two cases of the theorem separately, due to their differences in the geometry of
the feasibility.

Case 1: ω < p̂d, and
∑d↗1

i=1
f(p̂i)↗f(p̂d+ω)
f(p̂i)↗f(p̂i↗ω) ⇒ 1.

Since ω < p̂d, the set U can be written as U = {p̂≃ ωei + ωej : i ↗= j}. Hence, we have

min
p→N(p̂)

q↑
f(p) = min

p→U
q↑

f(p)

= q↑
f(p̂) + min

i,j:i ↘=j
{qi (f(p̂i ≃ ω)≃ f(p̂i)) + qj (f(p̂j + ω)≃ f(p̂j))}

= q↑
f(p̂)≃ max

i,j:i ↘=j

{
qig

↗(p̂i)≃ qjg
+(p̂i)

}
,

where g↗(x) := f(x)≃ f(x≃ ω), and g
+(x) := f(x+ ω)≃ f(x). Taking this result into our game,

the remaining q-maximization part is equivalent to

min
q→!(V)

[
≃q↑

f(p̂) + max
i,j:i ↘=j

{
qig

↗(p̂i)≃ qjg
+(p̂i)

}]
. (7)

Ordering of the optimal solution. We claim that any optimal q↓ has ordered elements, with q
↓
1 ⇒

· · · ⇒ q
↓
d . Observe that both g

+ and g
↗ are non-increasing, since f is a concave and non-decreasing

function. Therefore, if a q has unordered elements, we can rearrange its elements it in descending
order, and rearrangement inequality (Hardy et al., 1952) implies that that the term ≃q↑

f(p̂) will
decrease. Moreover, by reordering, the term maxi,j:i ↘=j {qig↗(p̂i)≃ qjg

+(p̂i)} will also decrease.
This is because

max
i ↘=j

{
qig

↗(p̂i)≃ qjg
+(p̂j)

}
= max

i

{
qig

↗(p̂i)≃ min
j:j ↘=i

qjg
+(p̂j)

}

= max
j

{
max
i:i ↘=j

qig
↗(p̂i)≃ qjg

+(p̂j)

}
,

Thus, for any fixed i, if we reorder the rest of the elements, minj ↘=i qjg
+(p̂j) will increase, making

the entire term smaller. Further, by fixing j and reordering by placing qi in the correct position,
maxi ↘=j qig

↗(p̂i) will decrease. In total, rearranging q in descending order will decrease both terms,
resulting in a lower overall objective.

Analyzing KKT optimality. Introducing dual variables ω → Rd
+, ε → R, the Lagrangian of (7) is

given by

L(q,ω, ε) := ≃q↑
f(p̂) + max

i,j:i ↘=j

{
qig

↗(p̂i)≃ qjg
+(p̂j)

}
≃ ω↑q + ε

(
d∑

i=1

qi ≃ 1

)
.

One can check that the objective in (7) is convex in q. Moreover, since there exists q̃ → relint(!(V))
with q̃ > 0, strong duality holds. Therefore, q↓ is optimal if and only if there exists ω↓

, ε
↓ such that

the following Karush-Kuhn-Tucker (KKT) conditions are satisfied (Boyd & Vandenberghe, 2004):

0 → ≃f(p̂) + ϑ

(
max
i,j:i ↘=j

{
q
↓
i g

↗(p̂i)≃ q
↓
j g

+(p̂j)
})

≃ ω↓ + ε
↓1, (first-order stationarity)
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q↓ → !(V), ω↓ ⇒ 0, (primal-dual feasibility)
ϖ
↓
i q

↓
i = 0 ↔i, (complementary slackness)

where the subdifferential ϑ (Rockafellar, 1970) of the nonsmooth function inside represents the
convex hull of the subgradients of the maximizing coordinates, given by

ϑ

(
max
i ↘=j

{
q
↓
i g

↗(p̂i)≃ q
↓
j g

+(p̂j)
})

= conv (D) ,

D =

{
g
↗(p̂i)ei ≃ g

+(p̂j)ej : i ↗= j, q
↓
i g

↗(p̂i)≃ q
↓
j g

+(p̂j) = max
i,j:i ↘=j

{
q
↓
i g

↗(p̂i)≃ q
↓
j g

+(p̂j)
}}

.

Now we show that q↓ defined by q
↓
i = c

g↑(p̂i)
1(1≃i≃I→) satisfies KKT conditions for some dual

variables ω↓
, ε

↓, where c is a normalizing constant. Let

J := {i : q↓i g↗(p̂i) = c} = {1 ↘ i ↘ I
↓},

N := {i : q↓i g+(p̂i) = 0} = {I↓ < i ↘ d}.
Then, as SI is non-decreasing in I , we have

I→↗1∑

k=1

f(p̂k)≃ f(p̂i)

g↗(p̂k)
↘ 1, ↔i → J , (8)

and
I→↗1∑

k=1

f(p̂k)≃ f(p̂i)

g↗(p̂k)
> 1, ↔i → N . (9)

Moreover, since

Sd =
d↗1∑

k=1

f(p̂k)≃ f(p̂d)

g↗(p̂k)
>

d↗1∑

k=1

f(p̂k)≃ f(p̂d + ω)

g↗(p̂k)
⇒ 1,

we know that I↓ < d must hold, and N is always non-empty.

To show that KKT conditions are satisfied, it is equivalent to prove that there exist ε↓, ω↓ ⇒ 0 with
ϖ
↓
i = 0 for i → J , and coefficients ϱij ⇒ 0 for (i, j) → J ⇑N with

∑
i→J

∑
j→N ϱij = 1 such that

≃f(p̂i) + g
↗(p̂i)




∑

j→N
ϱij



1(i→J ) ≃ g
+(p̂i)




∑

j→J
ϱji



1(i→N ) ≃ ϖ
↓
i1(i→N ) + ε

↓ = 0,

which is equivalent to

≃f(p̂i) + g
↗(p̂i)




∑

j→N
ϱij



+ ε
↓ = 0, i → J , (10)

≃f(p̂i)≃ g
+(p̂i)




∑

j→J
ϱji



+ ε
↓ = ϖ

↓
i ⇒ 0, i → N . (11)

The above linear system is satisfied for

ε
↓ =

(
∑

k→J

1

g↗(p̂k)

)↗1 (∑

k→J

f(p̂k)

g↗(p̂k)
≃ 1

)
,

ϱij =
f(p̂i)≃ ε

↓

g↗(p̂i)
1(j=d),

ϖ
↓
i =


≃f(p̂i)≃ g

+(p̂d)1(i=d) + ε
↓1(i→N ).
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Moreover, (8) and (9) respectively imply that ϱij ⇒ 0 and ϖ
↓
i ⇒ 0 for all I↓ < i < d. We also have

ϖ
↓
d ⇒ 0 because

d↗1∑

k=1

f(p̂k)≃ f(p̂d)≃ g
+(p̂d)

g↗(p̂k)
=

d↗1∑

k=1

f(p̂k)≃ f(p̂d + ω)

g↗(p̂k)
⇒ 1.

Therefore, the above choices of ε↓, ϱij , and ϖ
↓ satisfy the linear system and all constraints. Thus,

(q↓
,ω↓

, ε
↓) satisfy the KKT conditions, and hence q↓ is the optimal solution to problem (f -ODG).

Case 2: p̂d ↘ ω < p̂1, and limx⇐0 f(x) = ≃⇓.

Let A = {i : p̂i ↘ ω} and Q = {q → !(V) : qi = 0 ↔i → A}. Suppose we use some strategy
q /→ Q, i.e., there is some j → A such that qj ↗= 0. Since limx⇐0 f(x) = ≃⇓, the adversary can
always find p = p̂≃ p̂jej that makes the objective ≃⇓. Thus, an optimal strategy must come from
Q. Similar to Case 1, the p-minimization part can be written in terms of the vertex set U as follows:

min
p→N(p̂)

q↑
f(p) = min

p→U
q↑

f(p)

= min
p→UA

q↑
f(p)

= q↑
f(p̂) + min

(i,j)→C
{qi (f(p̂i ≃ ω)≃ f(p̂i)) + qj (f(p̂j + ω)≃ f(p̂j))}

= q↑
f(p̂)≃ max

(i,j)→C

{
qig

↗(p̂i)≃ qjg
+(p̂i)

}

= q↑
f(p̂)≃max

i/→A
qig

↗(p̂i), (12)

where UA = {p̂≃ ωei + ωej : i ↗= j, i /→ A}, and C = {(i, j) : i ↗= j, i /→ A}. (12) follows because
qj = 0 for any j → A. Thus, the problem of interest is equivalent to

min
q→Q

[
≃q↑

f(p̂) + max
i/→A

qig
↗(p̂i)

]
.

In other words, we only need to solve q↓ from a lower-dimensional problem

min
q→!(VA)


≃q↑

f(p̂) + max
i

qig
↗(p̂i)


,

where VA is a truncated vocabulary with |VA| = d≃ |A|.
Ordering of the optimal solution. Similar to Case 1, an optimal q↓ is ordered with q

↓
1 ⇒ · · · ⇒ q

↓
d .

Analyzing KKT optimality. The Lagrangian can be similarly defined as

L(q,ω, ε) := ≃q↑
f(p̂) + max

i
qig

↗(p̂i)≃ ω↑q + ε




d↗|A|∑

i=1

qi ≃ 1



 ,

and strong duality holds as well. The KKT conditions are

0 → ≃f(p̂) + ϑ


max

i
q
↓
i g

↗(p̂i)

≃ ω↓ + ε

↓1, (first-order stationarity)

q↓ → !(VA), ω↓ ⇒ 0, (primal-dual feasibility)
ϖ
↓
i q

↓
i = 0 ↔i, (complementary slackness)

where ϑ (maxi q↓i g
↗(p̂i)) := conv ({g↗(p̂i)ei : q↓i g↗(p̂i) = maxi q↓i g

↗(p̂i)}). Let

J = {i : q↓i g↗(p̂i) = c} = {1 ↘ i ↘ I
↓}, N = {i : q↓i g↗(p̂i) = 0} = {I↓ < i ↘ d≃ |A|},

where c := maxi q↓i g
↗(p̂i). It is sufficient to show that there exist ε↓, ω↓ ⇒ 0 with ϖ

↓
i = 0 for

i → J , and coefficients ϱi ⇒ 0 for i → J with
∑

i→J ϱi = 1, such that

≃f(p̂i) + ϱig
↗(p̂i)1{i→J} ≃ ϖ

↓
i1{i→N} + ε

↓ = 0.
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This is achieved by setting

ε
↓ =

(
∑

k→J

1

g↗(p̂k)

)↗1 (∑

k→J

f(p̂k)

g↗(p̂k)
≃ 1

)
,

ϱi =
f(p̂i)≃ ε

↓

g↗(p̂i)
⇒ 0, for i → J ,

ϖ
↓
i = (ε↓ ≃ f(p̂i))1(i→N ) ⇒ 0.

Moreover, ϱi ⇒ 0 and ϖ
↓
i ⇒ 0 follow from the fact that SI ↘ 1 ↔I → J and SI > 1 ↔I → N ,

respectively.

B ADDITIONAL EXPERIMENTS

In Tables 2 and 3, we present additional experimental results obtained using various choices of ω and
ς in Game sampling algorithm. These experiments provide further insights into the performance
and sensitivity of the model under different parameter settings. We also explored different values of
ω → {0.1, 0.3, 0.5, 0.8, 0.9} alongside different ς values. However, since the best performance was
consistently achieved with ω = 0.95 or ω = 0.99, we report only those values here to highlight the
effect of changing ς .

As part of this evaluation, we also analyzed the point at which probabilities are truncated and renor-
malized in Game sampling and Nucleus sampling for a randomly selected article from the WebText
test set, using the GPT-2 XL model. The GPT-2 model has a total vocabulary size of 50,000 tokens,
so truncating the probability distribution can significantly reduce the set of candidate words for the
next token. Figures 1a and 1b illustrate how these sampling strategies truncate the probability distri-
bution. Figure 1a shows the distribution for the next word when using only 1 token as context, along
with the index where probabilities are truncated and set to zero. In contrast, Figure 1b presents the
distribution for the next word when using the first 35 tokens as context, providing more information
for the model to generate the next word. With more context, the model is expected to be more certain
about the next word, and the figure highlights the corresponding truncation points. Notably, Game
sampling truncates a substantial portion of the 50,000-token distribution and dynamically adjusts
the cutoff point based on the shape of the distribution (see Algorithm 1).

(a) context: 1 token (b) context: 35 tokens

Figure 1: Next-token probability distribution in GPT-2 XL model and truncation threshold of Game sampling
and Nucleus sampling.
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ω ς Perplexity Repetition MAUVE

0.95 1.0 6.874 0.087 0.739
0.95 1.1 7.960 0.058 0.809
0.95 1.5 13.336 0.015 0.898
0.95 2.0 23.592 0.003 0.926
0.95 2.5 40.129 0.002 0.908
0.95 3.0 66.481 0.001 0.815
0.95 3.5 107.544 0.001 0.699
0.95 4.0 172.822 0.001 0.474

0.99 1.0 7.067 0.081 0.746
0.99 1.1 8.275 0.055 0.820
0.99 1.5 14.231 0.012 0.897
0.99 2.0 26.783 0.002 0.917
0.99 2.5 48.508 0.002 0.864
0.99 3.0 89.308 0.001 0.745
0.99 3.5 161.402 0.001 0.529
0.99 4.0 296.453 0.001 0.273

GPT-2 Small

ω ς Perplexity Repetition MAUVE

0.95 1.0 6.067 0.048 0.858
0.95 1.1 6.804 0.037 0.883
0.95 1.5 10.423 0.010 0.926
0.95 2.0 17.499 0.003 0.945
0.95 2.5 28.738 0.001 0.919
0.95 3.0 46.973 0.001 0.858
0.95 3.5 78.152 0.001 0.721
0.95 4.0 132.77 0.001 0.475

0.99 1.0 6.176 0.047 0.845
0.99 1.1 6.947 0.033 0.879
0.99 1.5 11.019 0.008 0.941
0.99 2.0 19.482 0.002 0.938
0.99 2.5 34.662 0.002 0.911
0.99 3.0 63.555 0.001 0.792
0.99 3.5 120.889 0 0.497
0.99 4.0 243.844 0 0.257

GPT-2 Medium

ω ς Perplexity Repetition MAUVE

0.95 1.0 4.596 0.066 0.823
0.95 1.1 4.972 0.050 0.856
0.95 1.5 6.851 0.013 0.909
0.95 2.0 9.883 0.005 0.942
0.95 2.5 14.084 0.002 0.942
0.95 3.0 19.634 0.002 0.930
0.95 3.5 27.779 0.001 0.913
0.95 4.0 39.256 0.001 0.837

0.99 1.0 4.683 0.066 0.826
0.99 1.1 5.083 0.046 0.861
0.99 1.5 7.130 0.010 0.917
0.99 2.0 10.629 0.006 0.947
0.99 2.5 15.958 0.001 0.947
0.99 3.0 24.128 0.001 0.919
0.99 3.5 37.613 0.001 0.845
0.99 4.0 60.031 0.001 0.685

GPT-2 Large

ω ς Perplexity Repetition MAUVE

0.95 1.0 5.146 0.050 0.861
0.95 1.1 5.559 0.033 0.891
0.95 1.5 7.475 0.014 0.935
0.95 2.0 10.541 0.004 0.950
0.95 2.5 14.636 0.002 0.948
0.95 3.0 20.458 0.002 0.929
0.95 3.5 28.410 0.001 0.919
0.95 4.0 39.374 0.001 0.873

0.99 1.0 5.219 0.044 0.852
0.99 1.1 5.660 0.032 0.886
0.99 1.5 7.784 0.010 0.943
0.99 2.0 11.333 0.003 0.958
0.99 2.5 16.690 0.003 0.952
0.99 3.0 24.796 0.002 0.924
0.99 3.5 38.056 0.001 0.885
0.99 4.0 60.236 0.001 0.739

GPT-2 XL

Table 2: Evaluations on the text generated by different types of GPT-2 models using Game sampling under
different hyperparameters.
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ω ς Perplexity Repetition MAUVE

0.95 1.0 5.757 0.069 0.640
0.95 1.1 6.285 0.049 0.670
0.95 1.5 8.528 0.015 0.759
0.95 2.0 12.313 0.005 0.794
0.95 2.5 17.210 0.003 0.811
0.95 3.0 24.362 0.001 0.801
0.95 3.5 33.905 0.002 0.778
0.95 4.0 48.921 0.001 0.664

0.99 1.0 5.897 0.066 0.664
0.99 1.1 6.436 0.046 0.687
0.99 1.5 8.957 0.013 0.762
0.99 2.0 13.263 0.004 0.809
0.99 2.5 19.729 0.002 0.833
0.99 3.0 29.696 0.002 0.791
0.99 3.5 46.506 0 0.720
0.99 4.0 77.289 0.001 0.522

GPT-J-6B

ω ς Perplexity Repetition MAUVE

0.95 1.0 8.500 0.131 0.842
0.95 1.1 9.938 0.134 0.831
0.95 1.5 14.000 0.128 0.858
0.95 2.0 23.875 0.149 0.843
0.95 2.5 36.250 0.162 0.834
0.95 3.0 52.000 0.173 0.813
0.95 3.5 63.750 0.174 0.797
0.95 4.0 87.000 0.182 0.753

0.99 1.0 8.938 0.130 0.831
0.99 1.1 10.250 0.134 0.845
0.99 1.5 15.625 0.136 0.854
0.99 2.0 26.625 0.153 0.840
0.99 2.5 41.750 0.165 0.822
0.99 3.0 60.000 0.181 0.806
0.99 3.5 84.500 0.178 0.759
0.99 4.0 119.500 0.177 0.686

Llama-2-7B

Table 3: Evaluations on the text generated by GPT-J-6B and Llama-2-7B models using Game sampling under
different hyperparameters.
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