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A PROOFS

A.1 PROOF OF PROPOSITION[3.3]

For probability vectors g, p,p € A(V), define M(q,p) = minyen(p) q' logp, and M(p) =
maxg Minpe N (p) q " log p. Then, the t-step total rewards of no-foresight strategy Q(I@) and locally
optimal strategy Q(HA") are respectively given by

L (Q(P),P* (P, Q) Z Yoo M(@:(X <), (X 2))] = RYQ(P), P),

LY(Q(P), P (P, Z Ex_ . g@M®s(X<,))] = R'(B).

Since € < max; p;, M(p) is always bounded from below. Moreover, as the set-valued mapping

p — N(p) satisfies upper and lower hemicontinuity and N (p) is compact, M is continuous in p
by Berge’s Maximum Theorem (Aliprantis & Border, [2006), which further implies the cont1nu1ty of

R!. Since the space of Pis compact, we conclude that infimum of R* can be attained at some P*,
namely inf R!(P) = R'(P*).

Now, if q:(z<¢; ]IAD*) = qt(:v<t, *) Vt, we are done. Otherwise, let ¢ be the first step such that
di, (Z‘<to ; ]P*) 7£ qto (x<t0a ]P) ) We have

to—1 to—1
Z ]EX<SNQ(@*)[M(QS(X<S)713:(X<S))] = Z EX<S~@(@*)[M(‘§S(X<S)»I)S (X<s))l;
=1 s=1

]EX<,LUNQ(§P7*) [M(qto (X<to)7ﬁr0 (X<to))] < ]EX<tUN@(ﬁ*) [M((jto (X<to)7ﬁr0 (X<to))]7

~

which implies R' (Q(P*), P*) < R (P*). Consider P** defined as follows. For each z, € V1,
A*(x<s)a s < to,
*(xt) where ok, = argming .1 M(Gs(x), pi(z)), s> to.

In words, P** can be understood as shifting the future structure of P* after to. Since the strategy
Q(P) is defined to have no foresight, we have gs(z<4; P**) = qs(x<,; P*) for s < to. Hence,

Rto (Q(@**),@**) < ﬁto(@*) (4)
holds as well.

Due to our construction of I@**, the future rewards after ¢ satisfy

T T
> Exog o M@(Xc) BT (X S D0 max M(gs(ea). B (0<)
s=to+1 s=to+1 =
T
< Z max 1M(qs(x<s)7ps (z<s))
s:t0+1m<9€V
T
S Z ]EX<SN@(@*)[M(qNS(X<b)7p5(X<b))]
s=tg+1
namely
RT(Q(@**),@**) — Rto (Q(@**),@**) < ﬁT(@*) _ ﬁto (@*) 5)

With (@) and (5), we conclude that
inf R (Q(P),P) < RT(Q(P*),P**) < RT(P*) = inf R” (P),
P P

which proves the result.
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A.2 PROOF OF THEOREM [4.7]

We shall only prove the general theorem, as Theorem [4.3]and [4.4]are direct consequences.

Consider the minimization problem

uin g f(p), (6)

where N(p) = {p € A(V) : drv(p, q) < €}

The feasible region N (p) is a convex polytope since it is the intersectlon of two convex polytopes—
the probability simplex A()) and the e-TV-distance ball {p : 3 ||p — p||; < e}. Moreover, due to

concavity of £, it is easy to show that ¢ f(p) is concave in p. It is well-known that minimizers of
a concave function over a polytope are attained at one of the vertices (Horst, |1984). Now, we let I/
be the set of the vertices of N (p).

We will consider the two cases of the theorem separately, due to their differences in the geometry of
the feasibility.

Case 1: € < g4, and Ef 11 % > 1.

Since € < pg, the set U can be written as U = {p — ee; + €e; : i # j}. Hence, we have
min g f(p) = ming' f(p)
pelU

PEN(P)
=q' f(P)+ _Ijr_}in_{qi (f(Di —€) = f(D:) + a5 (f(D; +€) — f(P;))}

=q' f(p) - max {aig” (h) — 439" (P1)}
where g~ (z) == f(z) — f(x —€),and g+ () := f(x + €) — f(x). Taking this result into our game,
the remaining g-maximization part is equivalent to

. T ~ — A + /A
i =g f(p) + max {a:97(51) — aj97 (P) } | - (7)
Ordering of the optimal solution. We claim that any optimal g* has ordered elements, with ¢ >

- > ¢4. Observe that both g™ and g~ are non-increasing, since f is a concave and non-decreasing
function. Therefore, if a g has unordered elements, we can rearrange its elements it in descending
order, and rearrangement inequality (Hardy et al., |1952) implies that that the term —q ' f(p) will
decrease. Moreover, by reordering, the term max; j.;+; {¢;9~ (P;) — ¢;97 (p;)} will also decrease.
This is because

max {aig(B:) — a;97 (B;)} = max {qig‘(ﬁl) — min g;g (pj)}

= max {m_ax a9~ (Di) — qu*(ﬁj)} ,
J 1]

Thus, for any fixed ¢, if we reorder the rest of the elements, min;; g; gt (ﬁj) will increase, making
the entire term smaller. Further, by fixing j and reordering by placing ¢; in the correct position,
max;-; ¢;9~ (p;) will decrease. In total, rearranging q in descending order will decrease both terms,
resulting in a lower overall objective.

Analyzing KKT optimality. Introducing dual variables A € R? v € R, the Lagrangian of (7)) is
given by

d
L(g,\v):=—q f(p )+ max Ha9™ i) —a597 ()} —ATg+v <Z% —~ 1)

=1

One can check that the objective in (7) is convex in g. Moreover, since there exists g € relint(A()V))
with g > 0, strong duality holds. Therefore, g* is optimal if and only if there exists A*, v* such that
the following Karush-Kuhn-Tucker (KKT) conditions are satisfied (Boyd & Vandenberghe, 2004):

0c—f(p)+0 (‘ma;(‘ {a;g=(ps) — q}ngr(ﬁj)}) D N (first-order stationarity)
1] FE]
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g e A(V), X >0, (primal-dual feasibility)
Afgi =0 Vi, (complementary slackness)

where the subdifferential 9 (Rockafellar, [1970) of the nonsmooth function inside represents the
convex hull of the subgradients of the maximizing coordinates, given by

0 (max {ao™ ()~ 635" ()} ) = comv (D).

D= {g_(ﬁi)ei — gt (Dy)e; i #j, 479 (Bi) — aj9" (By) = nax {79~ (B:) —a;9™" (B; )}}-

Now we show that g* defined by ¢ = mﬂ(KK 1+ satisfies KKT conditions for some dual
variables A*, v*, where c is a normalizing constant. Let

J=A{iqig (p;)=ct={1<i<I"},
N ={i:qgt(p;) =0} ={I" <i<d}.
Then, as St is non-decreasing in I, we have

I"—1

Zf )gl, Vie J, ®)
and ,
*—1
f(®x) = f(Di) ‘
JWPk) ZJWPi) 1 yie . 9
kz::l 9 (Pr) g ‘e ®

Moreover, since

d—1
f(Pr) — f(Pa) f® )
Sq = —_— >
,; 9~ (Pr) Z_:
we know that I* < d must hold, and A is always non-empty.

To show that KKT conditions are satisfied, it is equivalent to prove that there exist v*, A* > 0 with
A; = 0fori € 7, and coefficients v;; > 0 for (i,7) € J x N with 3, 7 >\ 7ij = 1 such that

_f(ﬁz) +g9 pz Z Yij ]1(16.7 - g pz Z Vji ZG./\/) - )‘r]l(ZGN) +v* =0,

JEN jeT
which is equivalent to
) +9 B | Y ws | +v =0, i€J, (10)
JjEN
—fB) —gTB) | D |+ =X =0, ieN. (11)
Jj€T

The above linear system is satisfied for

(2ra) (255

f(pi) —
g (pL)
A5 = (=fBi) — g7 (Pa)Lima) + V) Lsen).

ij = ]l(J d)»

16



Published as a conference paper at ICLR 2025

Moreover, (8) and (9) respectively imply that ;; > 0 and A} > 0 for all I* < i < d. We also have
A} > 0 because

F(o) = f(pa) — gt (a) Z Fpr) — f(Pa+e)

- A > 1.
Pt 9 (Pr) Pt 9~ (Pr)

Therefore, the above choices of v*, 7;;, and \* satisfy the linear system and all constraints. Thus,
(g*, A", v*) satisfy the KKT conditions, and hence g* is the optimal solution to problem (f-ODG).

Case 2: py < € < p1, and lim, o f(x) = —o0.

Let A={i:p; <etand Q = {q € A(V) : ¢ = 0Vi € A}. Suppose we use some strategy
q ¢ Q,i.e., there is some j € A such that ¢; # 0. Since lim, o f(2) = —oo, the adversary can
always find p = p — p;e; that makes the objective —oco. Thus, an optimal strategy must come from
Q. Similar to Case 1, the p-minimization part can be written in terms of the vertex set I/ as follows:

. T . T
min = min
Jmin g f(p) min g f(p)

T
= min
Jain g f(p)

=q' f(p)+ [nin, {a: (f(Bi —€) = f(Bi)) + a5 (f(Bj +€) — f(P;))}
=q' f(p) - [max {aig= (i) — 497 (Bi)}

=q' f(p)— rz_rﬁcqig*(m (12)

where Uy = {p —ce; +ee; 1 i # j,i ¢ A}, andC = {(4,5) : i # j,1 ¢ A}. follows because
g; = 0 for any j € A. Thus, the problem of interest is equivalent to
1 — T N .a (D
min [ q f(p)+ mAX g3 (pz)} :

In other words, we only need to solve g* from a lower-dimensional problem

S [*qTf (P) + max g;g~ (ﬁi)} :
where V4 is a truncated vocabulary with |V4| = d — | AJ.

Ordering of the optimal solution. Similar to Case 1, an optimal g* is ordered with ¢f > --- > ¢.
Analyzing KKT optimality. The Lagrangian can be similarly defined as

d—| A
L(g, A v) = —q" f(p) + maxqig~ (pi) — Ag+v| > a-1],
i=1

and strong duality holds as well. The KKT conditions are

0c—f(p)+0 (max q;‘g*(ﬁi)> — A"+, (first-order stationarity)
g€ AVy), A" >0, (primal-dual feasibility)
Aigl =0 Vi, (complementary slackness)

where 0 (max; ¢ g~ (p;)) == conv ({g~ (P:)ei : ¢f g~ (H;) = max; g7 g~ (pi)}). Let
J=H{izgig () =ct={1<i<I"}, N={i:qig”(h) =0} ={I"<i<d—|A]},

where ¢ := max; ¢f g~ (p;). It is sufficient to show that there exist v*, A* > 0 with A} = 0 for
1 € J, and coefficients v; > 0 for ¢ € J with Zie g = 1, such that

—f(Pi) +7vig” (Pi)lgieqy — A Lpieny +v° = 0.
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This is achieved by setting

* pk) o
o (k:ej > <k€.7 (Px) 1>’

%‘Z ( ) >0, forieJ,

AL = (" = f(Bi) Liien = 0.

Moreover, v; > 0 and Af > 0 follow from the fact that S; < 1 VI € Jand S; > 1 VI € N,
respectively.

B ADDITIONAL EXPERIMENTS

In Tables[2and[3] we present additional experimental results obtained using various choices of € and
7 in Game sampling algorithm. These experiments provide further insights into the performance
and sensitivity of the model under different parameter settings. We also explored different values of
e € {0.1,0.3,0.5,0.8,0.9} alongside different 7 values. However, since the best performance was
consistently achieved with € = 0.95 or € = 0.99, we report only those values here to highlight the
effect of changing 7.

As part of this evaluation, we also analyzed the point at which probabilities are truncated and renor-
malized in Game sampling and Nucleus sampling for a randomly selected article from the WebText
test set, using the GPT-2 XL model. The GPT-2 model has a total vocabulary size of 50,000 tokens,
so truncating the probability distribution can significantly reduce the set of candidate words for the
next token. Figures[la and [Ib|illustrate how these sampling strategies truncate the probability distri-
bution. Figure[Ta]shows the distribution for the next word when using only 1 token as context, along
with the index where probabilities are truncated and set to zero. In contrast, Figure [Tb] presents the
distribution for the next word when using the first 35 tokens as context, providing more information
for the model to generate the next word. With more context, the model is expected to be more certain
about the next word, and the figure highlights the corresponding truncation points. Notably, Game
sampling truncates a substantial portion of the 50,000-token distribution and dynamically adjusts
the cutoff point based on the shape of the distribution (see Algorithm [I).

—— Original probability vector os] —— Original probability vector

006 --- £=095,7=10 --- £=095,71=10

-- £=095,1=20 --- £=095,71=20

--- £=099,7=1.0 °41 --- £=0.99,7=1.0
£=0.99,7=2.0 £=0.99,7=20

--- p=0.9 --- p=0.9
p=0.95

--- p=0.99

Probability
Probability

0 500 1000 1500 2000 2500 3000 3500 000 o 50 100 150 200 250
Token Index (sorted) Token Index (sorted)

(a) context: 1 token (b) context: 35 tokens

Figure 1: Next-token probability distribution in GPT-2 XL model and truncation threshold of Game sampling
and Nucleus sampling.
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€ T Perplexity Repetition MAUVE € T Perplexity Repetition MAUVE

095 1.0 6.874 0.087 0.739 095 1.0 6.067 0.048 0.858
095 1.1 7.960 0.058 0.809 095 1.1 6.804 0.037 0.883
095 1.5 13.336 0.015 0.898 095 1.5 10.423 0.010 0.926
095 2.0 23.592 0.003 0.926 095 20 17.499 0.003 0.945
095 25 40.129 0.002 0.908 095 25 28.738 0.001 0.919
095 3.0 66.481 0.001 0.815 095 3.0 46.973 0.001 0.858
095 35 107.544 0.001 0.699 095 35 78.152 0.001 0.721
095 4.0 172.822 0.001 0.474 095 4.0 132.77 0.001 0.475
099 1.0 7.067 0.081 0.746 099 1.0 6.176 0.047 0.845
099 1.1 8.275 0.055 0.820 0.99 1.1 6.947 0.033 0.879
099 1.5 14.231 0.012 0.897 099 1.5 11.019 0.008 0.941
099 2.0 26.783 0.002 0.917 099 20 19.482 0.002 0.938
099 25 48.508 0.002 0.864 0.99 25 34.662 0.002 0.911
099 3.0 89.308 0.001 0.745 099 3.0 63.555 0.001 0.792
099 35 161.402 0.001 0.529 0.99 35 120.889 0 0.497
099 4.0 296.453 0.001 0.273 099 4.0 243.844 0 0.257
GPT-2 Small GPT-2 Medium

€ T Perplexity Repetition MAUVE € T Perplexity Repetition MAUVE

095 1.0 4.596 0.066 0.823 095 1.0 5.146 0.050 0.861
095 1.1 4.972 0.050 0.856 095 1.1 5.559 0.033 0.891
095 1.5 6.851 0.013 0.909 095 1.5 7.475 0.014 0.935
095 20 9.883 0.005 0.942 095 20 10.541 0.004 0.950
095 25 14.084 0.002 0.942 095 25 14.636 0.002 0.948
095 3.0 19.634 0.002 0.930 095 3.0 20.458 0.002 0.929
095 3.5 27.779 0.001 0.913 095 35 28.410 0.001 0919
095 4.0 39.256 0.001 0.837 095 4.0 39.374 0.001 0.873
099 1.0 4.683 0.066 0.826 099 1.0 5.219 0.044 0.852
099 1.1 5.083 0.046 0.861 099 1.1 5.660 0.032 0.886
099 1.5 7.130 0.010 0.917 099 1.5 7.784 0.010 0.943
099 2.0 10.629 0.006 0.947 099 2.0 11.333 0.003 0.958
099 25 15.958 0.001 0.947 099 25 16.690 0.003 0.952
0.99 3.0 24.128 0.001 0.919 099 3.0 24.796 0.002 0.924
099 35 37.613 0.001 0.845 099 35 38.056 0.001 0.885
099 4.0 60.031 0.001 0.685 099 4.0 60.236 0.001 0.739
GPT-2 Large GPT-2 XL

Table 2: Evaluations on the text generated by different types of GPT-2 models using Game sampling under
different hyperparameters.
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€ T Perplexity Repetition MAUVE € T Perplexity Repetition MAUVE
095 1.0 5.757 0.069 0.640 095 1.0 8.500 0.131 0.842
095 1.1 6.285 0.049 0.670 095 1.1 9.938 0.134 0.831
095 1.5 8.528 0.015 0.759 095 15 14.000 0.128 0.858
095 2.0 12.313 0.005 0.794 095 2.0 23.875 0.149 0.843
095 25 17.210 0.003 0.811 095 25 36.250 0.162 0.834
095 3.0 24.362 0.001 0.801 095 3.0 52.000 0.173 0.813
095 35 33.905 0.002 0.778 095 35 63.750 0.174 0.797
095 4.0 48.921 0.001 0.664 095 4.0 87.000 0.182 0.753
099 1.0 5.897 0.066 0.664 099 1.0 8.938 0.130 0.831
099 1.1 6.436 0.046 0.687 099 1.1 10.250 0.134 0.845
099 15 8.957 0.013 0.762 099 15 15.625 0.136 0.854
099 2.0 13.263 0.004 0.809 099 20 26.625 0.153 0.840
099 25 19.729 0.002 0.833 099 25 41.750 0.165 0.822
099 3.0 29.696 0.002 0.791 099 3.0 60.000 0.181 0.806
099 3.5 46.506 0 0.720 099 35 84.500 0.178 0.759
099 4.0 77.289 0.001 0.522 099 4.0 119.500 0.177 0.686
GPT-J-6B Llama-2-7B

Table 3: Evaluations on the text generated by GPT-J-6B and Llama-2-7B models using Game sampling under
different hyperparameters.
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