## A PROOFS

## A.1 PROOF OF PROPOSITION 3.3

For probability vectors  $\boldsymbol{q}, \boldsymbol{p}, \hat{\boldsymbol{p}} \in \Delta(\mathcal{V})$ , define  $\mathcal{M}(\boldsymbol{q}, \hat{\boldsymbol{p}}) = \min_{\boldsymbol{p} \in N(\hat{\boldsymbol{p}})} \boldsymbol{q}^{\top} \log \boldsymbol{p}$ , and  $\overline{\mathcal{M}}(\hat{\boldsymbol{p}}) = \max_{\boldsymbol{q}} \min_{\boldsymbol{p} \in N(\hat{\boldsymbol{p}})} \boldsymbol{q}^{\top} \log \boldsymbol{p}$ . Then, the *t*-step total rewards of no-foresight strategy  $\mathbb{Q}(\widehat{\mathbb{P}})$  and locally optimal strategy  $\widetilde{\mathbb{Q}}(\widehat{\mathbb{P}})$  are respectively given by

$$\mathcal{L}^{t}(\mathbb{Q}(\widehat{\mathbb{P}}), \mathbb{P}^{*}(\widehat{\mathbb{P}}, \mathbb{Q})) = \sum_{s=1}^{t} \mathbb{E}_{X_{< s} \sim \mathbb{Q}(\widehat{\mathbb{P}})} [\mathcal{M}(\boldsymbol{q}_{s}(X_{< s}), \hat{\boldsymbol{p}}_{s}(X_{< s}))] \coloneqq \mathcal{R}^{t}(\mathbb{Q}(\widehat{\mathbb{P}}), \widehat{\mathbb{P}}),$$
$$\mathcal{L}^{t}(\widetilde{\mathbb{Q}}(\widehat{\mathbb{P}}), \mathbb{P}^{*}(\widehat{\mathbb{P}}, \widetilde{\mathbb{Q}})) = \sum_{s=1}^{t} \mathbb{E}_{X_{< s} \sim \widetilde{\mathbb{Q}}(\widehat{\mathbb{P}})} [\overline{\mathcal{M}}(\hat{\boldsymbol{p}}_{s}(X_{< s}))] \coloneqq \widetilde{\mathcal{R}}^{t}(\widehat{\mathbb{P}}).$$

Since  $\epsilon < \max_i \hat{p}_i$ ,  $\overline{\mathcal{M}}(\hat{p})$  is always bounded from below. Moreover, as the set-valued mapping  $\hat{p} \mapsto N(\hat{p})$  satisfies upper and lower hemicontinuity and  $N(\hat{p})$  is compact,  $\overline{\mathcal{M}}$  is continuous in  $\hat{p}$  by Berge's Maximum Theorem (Aliprantis & Border, 2006), which further implies the continuity of  $\widetilde{\mathcal{R}}^t$ . Since the space of  $\widehat{\mathbb{P}}$  is compact, we conclude that infimum of  $\widetilde{\mathcal{R}}^t$  can be attained at some  $\widehat{\mathbb{P}}^*$ , namely inf  $\widetilde{\mathcal{R}}^t(\widehat{\mathbb{P}}) = \widetilde{\mathcal{R}}^t(\widehat{\mathbb{P}}^*)$ .

Now, if  $q_t(x_{<t}; \widehat{\mathbb{P}}^*) = \tilde{q}_t(x_{<t}; \widehat{\mathbb{P}}^*) \quad \forall t$ , we are done. Otherwise, let  $t_0$  be the first step such that  $q_{t_0}(x_{<t_0}; \widehat{\mathbb{P}}^*) \neq \tilde{q}_{t_0}(x_{<t_0}; \widehat{\mathbb{P}}^*)$ . We have

$$\sum_{s=1}^{t_0-1} \mathbb{E}_{X_{
$$\mathbb{E}_{X_{$$$$

which implies  $\mathcal{R}^{t_0}(\mathbb{Q}(\widehat{\mathbb{P}}^*), \widehat{\mathbb{P}}^*) \leq \widetilde{\mathcal{R}}^{t_0}(\widehat{\mathbb{P}}^*)$ . Consider  $\widehat{\mathbb{P}}^{**}$  defined as follows. For each  $x_{< s} \in \mathcal{V}^{s-1}$ ,

$$\hat{\boldsymbol{p}}_{s}^{**}(x_{< s}) = \begin{cases} \hat{\boldsymbol{p}}_{s}^{*}(x_{< s}), & s \leq t_{0}, \\ \hat{\boldsymbol{p}}_{s}^{*}(x_{< s}^{*}) \text{ where } x_{< s}^{*} = \operatorname{argmin}_{x \in \mathcal{V}^{s-1}} \mathcal{M}(\tilde{\boldsymbol{q}}_{s}(x), \hat{\boldsymbol{p}}_{s}^{*}(x)), & s > t_{0}. \end{cases}$$

In words,  $\widehat{\mathbb{P}}^{**}$  can be understood as shifting the future structure of  $\widehat{\mathbb{P}}^*$  after  $t_0$ . Since the strategy  $\mathbb{Q}(\widehat{\mathbb{P}})$  is defined to have no foresight, we have  $q_s(x_{< s}; \widehat{\mathbb{P}}^{**}) = q_s(x_{< s}; \widehat{\mathbb{P}}^*)$  for  $s \leq t_0$ . Hence,

$$\mathcal{R}^{t_0}(\mathbb{Q}(\widehat{\mathbb{P}}^{**}), \widehat{\mathbb{P}}^{**}) \le \widetilde{\mathcal{R}}^{t_0}(\widehat{\mathbb{P}}^*)$$
(4)

holds as well.

Due to our construction of  $\widehat{\mathbb{P}}^{**}$ , the future rewards after  $t_0$  satisfy

$$\sum_{s=t_{0}+1}^{T} \mathbb{E}_{X_{
$$\leq \sum_{s=t_{0}+1}^{T} \max_{x_{
$$\leq \sum_{s=t_{0}+1}^{T} \mathbb{E}_{X_{$$$$$$

namely

$$\mathcal{R}^{T}(\mathbb{Q}(\widehat{\mathbb{P}}^{**}),\widehat{\mathbb{P}}^{**}) - \mathcal{R}^{t_{0}}(\mathbb{Q}(\widehat{\mathbb{P}}^{**}),\widehat{\mathbb{P}}^{**}) \le \widetilde{\mathcal{R}}^{T}(\widehat{\mathbb{P}}^{*}) - \widetilde{\mathcal{R}}^{t_{0}}(\widehat{\mathbb{P}}^{*}).$$
(5)

With (4) and (5), we conclude that

$$\inf_{\widehat{\mathbb{P}}} \mathcal{R}^T(\mathbb{Q}(\widehat{\mathbb{P}}), \widehat{\mathbb{P}}) \le \mathcal{R}^T(\mathbb{Q}(\widehat{\mathbb{P}}^{**}), \widehat{\mathbb{P}}^{**}) \le \widetilde{\mathcal{R}}^T(\widehat{\mathbb{P}}^*) = \inf_{\widehat{\mathbb{P}}} \widetilde{\mathcal{R}}^T(\widehat{\mathbb{P}})$$

which proves the result.

## A.2 PROOF OF THEOREM 4.7

We shall only prove the general theorem, as Theorem 4.3 and 4.4 are direct consequences.

Consider the minimization problem

$$\min_{\boldsymbol{p}\in N(\hat{\boldsymbol{p}})} \boldsymbol{q}^{\top} f(\boldsymbol{p}), \tag{6}$$

where  $N(\hat{\boldsymbol{p}}) = \{ \boldsymbol{p} \in \Delta(\mathcal{V}) : d_{\text{TV}}(\boldsymbol{p}, \boldsymbol{q}) \leq \epsilon \}.$ 

The feasible region  $N(\hat{p})$  is a convex polytope since it is the intersection of two convex polytopes the probability simplex  $\Delta(\mathcal{V})$  and the  $\epsilon$ -TV-distance ball  $\{p : \frac{1}{2} \|p - \hat{p}\|_1 \le \epsilon\}$ . Moreover, due to concavity of f, it is easy to show that  $q^{\top} f(p)$  is concave in p. It is well-known that minimizers of a concave function over a polytope are attained at one of the vertices (Horst, 1984). Now, we let  $\mathcal{U}$ be the set of the vertices of  $N(\hat{p})$ .

We will consider the two cases of the theorem separately, due to their differences in the geometry of the feasibility.

**Case 1**: 
$$\epsilon < \hat{p}_d$$
, and  $\sum_{i=1}^{d-1} \frac{f(\hat{p}_i) - f(\hat{p}_d + \epsilon)}{f(\hat{p}_i) - f(\hat{p}_i - \epsilon)} \ge 1$ .

Since  $\epsilon < \hat{p}_d$ , the set  $\mathcal{U}$  can be written as  $\mathcal{U} = \{\hat{p} - \epsilon e_i + \epsilon e_j : i \neq j\}$ . Hence, we have

$$\begin{split} \min_{\boldsymbol{p}\in N(\hat{\boldsymbol{p}})} \boldsymbol{q}^{\top} f(\boldsymbol{p}) &= \min_{\boldsymbol{p}\in\mathcal{U}} \boldsymbol{q}^{\top} f(\boldsymbol{p}) \\ &= \boldsymbol{q}^{\top} f(\hat{\boldsymbol{p}}) + \min_{i,j:i\neq j} \left\{ q_i \left( f(\hat{p}_i - \epsilon) - f(\hat{p}_i) \right) + q_j \left( f(\hat{p}_j + \epsilon) - f(\hat{p}_j) \right) \right\} \\ &= \boldsymbol{q}^{\top} f(\hat{\boldsymbol{p}}) - \max_{i,j:i\neq j} \left\{ q_i g^{-}(\hat{p}_i) - q_j g^{+}(\hat{p}_i) \right\}, \end{split}$$

where  $g^-(x) \coloneqq f(x) - f(x-\epsilon)$ , and  $g^+(x) \coloneqq f(x+\epsilon) - f(x)$ . Taking this result into our game, the remaining *q*-maximization part is equivalent to

$$\min_{\boldsymbol{q}\in\Delta(\mathcal{V})} \left[ -\boldsymbol{q}^{\top} f(\hat{\boldsymbol{p}}) + \max_{i,j:i\neq j} \left\{ q_i g^{-}(\hat{p}_i) - q_j g^{+}(\hat{p}_i) \right\} \right].$$
(7)

**Ordering of the optimal solution**. We claim that any optimal  $q^*$  has ordered elements, with  $q_1^* \ge \cdots \ge q_d^*$ . Observe that both  $g^+$  and  $g^-$  are non-increasing, since f is a concave and non-decreasing function. Therefore, if a q has unordered elements, we can rearrange its elements it in descending order, and rearrangement inequality (Hardy et al., 1952) implies that that the term  $-q^{\top}f(\hat{p})$  will decrease. Moreover, by reordering, the term  $\max_{i,j:i\neq j} \{q_ig^-(\hat{p}_i) - q_jg^+(\hat{p}_i)\}$  will also decrease. This is because

$$\max_{i \neq j} \left\{ q_i g^-(\hat{p}_i) - q_j g^+(\hat{p}_j) \right\} = \max_i \left\{ q_i g^-(\hat{p}_i) - \min_{j:j \neq i} q_j g^+(\hat{p}_j) \right\}$$
$$= \max_j \left\{ \max_{i:i \neq j} q_i g^-(\hat{p}_i) - q_j g^+(\hat{p}_j) \right\},$$

Thus, for any fixed *i*, if we reorder the rest of the elements,  $\min_{j \neq i} q_j g^+(\hat{p}_j)$  will increase, making the entire term smaller. Further, by fixing *j* and reordering by placing  $q_i$  in the correct position,  $\max_{i \neq j} q_i g^-(\hat{p}_i)$  will decrease. In total, rearranging *q* in descending order will decrease both terms, resulting in a lower overall objective.

Analyzing KKT optimality. Introducing dual variables  $\lambda \in \mathbb{R}^d_+, \nu \in \mathbb{R}$ , the Lagrangian of (7) is given by

$$L(\boldsymbol{q},\boldsymbol{\lambda},\nu) \coloneqq -\boldsymbol{q}^{\top}f(\hat{\boldsymbol{p}}) + \max_{i,j:i \neq j} \left\{ q_i g^{-}(\hat{p}_i) - q_j g^{+}(\hat{p}_j) \right\} - \boldsymbol{\lambda}^{\top} \boldsymbol{q} + \nu \left( \sum_{i=1}^d q_i - 1 \right).$$

One can check that the objective in (7) is convex in q. Moreover, since there exists  $\tilde{q} \in \operatorname{relint}(\Delta(\mathcal{V}))$  with  $\tilde{q} > 0$ , strong duality holds. Therefore,  $q^*$  is optimal if and only if there exists  $\lambda^*, \nu^*$  such that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied (Boyd & Vandenberghe) (2004):

$$\mathbf{0} \in -f(\hat{\mathbf{p}}) + \partial \left( \max_{i,j:i \neq j} \left\{ q_i^* g^-(\hat{p}_i) - q_j^* g^+(\hat{p}_j) \right\} \right) - \mathbf{\lambda}^* + \nu^* \mathbf{1}, \qquad \text{(first-order stationarity)}$$

$$\begin{array}{ll} \boldsymbol{q}^{*} \in \Delta(\mathcal{V}), & \boldsymbol{\lambda}^{*} \geq 0, \\ \lambda_{i}^{*} \boldsymbol{q}_{i}^{*} = 0 & \forall i, \end{array} \tag{primal-dual feasibility} \\ \begin{array}{ll} \text{(complementary slackness)} \end{array} \end{array}$$

where the subdifferential  $\partial$  (Rockafellar) [1970) of the nonsmooth function inside represents the convex hull of the subgradients of the maximizing coordinates, given by

$$\partial \left( \max_{i \neq j} \left\{ q_i^* g^-(\hat{p}_i) - q_j^* g^+(\hat{p}_j) \right\} \right) = \operatorname{conv} \left( \mathcal{D} \right),$$
$$\mathcal{D} = \left\{ g^-(\hat{p}_i) \boldsymbol{e}_i - g^+(\hat{p}_j) \boldsymbol{e}_j : i \neq j, \ q_i^* g^-(\hat{p}_i) - q_j^* g^+(\hat{p}_j) = \max_{i,j:i \neq j} \left\{ q_i^* g^-(\hat{p}_i) - q_j^* g^+(\hat{p}_j) \right\} \right\}.$$

Now we show that  $q^*$  defined by  $q_i^* = \frac{c}{g^-(\hat{p}_i)} \mathbb{1}_{\{1 \le i \le I^*\}}$  satisfies KKT conditions for some dual variables  $\lambda^*, \nu^*$ , where c is a normalizing constant. Let

$$\begin{split} \mathcal{J} &\coloneqq \{i : q_i^* g^-(\hat{p}_i) = c\} = \{1 \le i \le I^*\}, \\ \mathcal{N} &\coloneqq \{i : q_i^* g^+(\hat{p}_i) = 0\} = \{I^* < i \le d\}. \end{split}$$

Then, as  $S_I$  is non-decreasing in I, we have

$$\sum_{k=1}^{I^*-1} \frac{f(\hat{p}_k) - f(\hat{p}_i)}{g^-(\hat{p}_k)} \le 1, \quad \forall i \in \mathcal{J},$$
(8)

and

$$\sum_{k=1}^{I^*-1} \frac{f(\hat{p}_k) - f(\hat{p}_i)}{g^-(\hat{p}_k)} > 1, \quad \forall i \in \mathcal{N}.$$
(9)

Moreover, since

$$S_d = \sum_{k=1}^{d-1} \frac{f(\hat{p}_k) - f(\hat{p}_d)}{g^-(\hat{p}_k)} > \sum_{k=1}^{d-1} \frac{f(\hat{p}_k) - f(\hat{p}_d + \epsilon)}{g^-(\hat{p}_k)} \ge 1,$$

we know that  $I^* < d$  must hold, and  ${\mathcal N}$  is always non-empty.

To show that KKT conditions are satisfied, it is equivalent to prove that there exist  $\nu^*$ ,  $\lambda^* \ge 0$  with  $\lambda_i^* = 0$  for  $i \in \mathcal{J}$ , and coefficients  $\gamma_{ij} \ge 0$  for  $(i, j) \in \mathcal{J} \times \mathcal{N}$  with  $\sum_{i \in \mathcal{J}} \sum_{j \in \mathcal{N}} \gamma_{ij} = 1$  such that

$$-f(\hat{p}_i) + g^{-}(\hat{p}_i) \left(\sum_{j \in \mathcal{N}} \gamma_{ij}\right) \mathbb{1}_{(i \in \mathcal{J})} - g^{+}(\hat{p}_i) \left(\sum_{j \in \mathcal{J}} \gamma_{ji}\right) \mathbb{1}_{(i \in \mathcal{N})} - \lambda_i^* \mathbb{1}_{(i \in \mathcal{N})} + \nu^* = 0,$$

which is equivalent to

$$-f(\hat{p}_i) + g^-(\hat{p}_i) \left(\sum_{j \in \mathcal{N}} \gamma_{ij}\right) + \nu^* = 0, \quad i \in \mathcal{J},$$
(10)

$$-f(\hat{p}_i) - g^+(\hat{p}_i) \left(\sum_{j \in \mathcal{J}} \gamma_{ji}\right) + \nu^* = \lambda_i^* \ge 0, \quad i \in \mathcal{N}.$$
 (11)

The above linear system is satisfied for

$$\nu^* = \left(\sum_{k \in \mathcal{J}} \frac{1}{g^{-}(\hat{p}_k)}\right)^{-1} \left(\sum_{k \in \mathcal{J}} \frac{f(\hat{p}_k)}{g^{-}(\hat{p}_k)} - 1\right),$$
  
$$\gamma_{ij} = \frac{f(\hat{p}_i) - \nu^*}{g^{-}(\hat{p}_i)} \mathbb{1}_{(j=d)},$$
  
$$\lambda_i^* = \left(-f(\hat{p}_i) - g^{+}(\hat{p}_d) \mathbb{1}_{(i=d)} + \nu^*\right) \mathbb{1}_{(i \in \mathcal{N})}.$$

Moreover, (8) and (9) respectively imply that  $\gamma_{ij} \ge 0$  and  $\lambda_i^* \ge 0$  for all  $I^* < i < d$ . We also have  $\lambda_d^* \ge 0$  because

$$\sum_{k=1}^{d-1} \frac{f(\hat{p}_k) - f(\hat{p}_d) - g^+(\hat{p}_d)}{g^-(\hat{p}_k)} = \sum_{k=1}^{d-1} \frac{f(\hat{p}_k) - f(\hat{p}_d + \epsilon)}{g^-(\hat{p}_k)} \ge 1.$$

Therefore, the above choices of  $\nu^*$ ,  $\gamma_{ij}$ , and  $\lambda^*$  satisfy the linear system and all constraints. Thus,  $(q^*, \lambda^*, \nu^*)$  satisfy the KKT conditions, and hence  $q^*$  is the optimal solution to problem (*f*-ODG).

**Case 2**:  $\hat{p}_d \leq \epsilon < \hat{p}_1$ , and  $\lim_{x \downarrow 0} f(x) = -\infty$ .

Let  $\mathcal{A} = \{i : \hat{p}_i \leq \epsilon\}$  and  $\mathcal{Q} = \{q \in \Delta(\mathcal{V}) : q_i = 0 \ \forall i \in \mathcal{A}\}$ . Suppose we use some strategy  $q \notin \mathcal{Q}$ , i.e., there is some  $j \in \mathcal{A}$  such that  $q_j \neq 0$ . Since  $\lim_{x \downarrow 0} f(x) = -\infty$ , the adversary can always find  $p = \hat{p} - \hat{p}_j e_j$  that makes the objective  $-\infty$ . Thus, an optimal strategy must come from  $\mathcal{Q}$ . Similar to Case 1, the *p*-minimization part can be written in terms of the vertex set  $\mathcal{U}$  as follows:

$$\min_{\boldsymbol{p}\in N(\hat{\boldsymbol{p}})} \boldsymbol{q}^{\top} f(\boldsymbol{p}) = \min_{\boldsymbol{p}\in\mathcal{U}} \boldsymbol{q}^{\top} f(\boldsymbol{p}) 
= \min_{\boldsymbol{p}\in\mathcal{U}_{\mathcal{A}}} \boldsymbol{q}^{\top} f(\boldsymbol{p}) 
= \boldsymbol{q}^{\top} f(\hat{\boldsymbol{p}}) + \min_{(i,j)\in\mathcal{C}} \left\{ q_i \left( f(\hat{p}_i - \epsilon) - f(\hat{p}_i) \right) + q_j \left( f(\hat{p}_j + \epsilon) - f(\hat{p}_j) \right) \right\} 
= \boldsymbol{q}^{\top} f(\hat{\boldsymbol{p}}) - \max_{(i,j)\in\mathcal{C}} \left\{ q_i g^{-}(\hat{p}_i) - q_j g^{+}(\hat{p}_i) \right\} 
= \boldsymbol{q}^{\top} f(\hat{\boldsymbol{p}}) - \max_{i\notin\mathcal{A}} q_i g^{-}(\hat{p}_i),$$
(12)

where  $\mathcal{U}_{\mathcal{A}} = \{\hat{p} - \epsilon e_i + \epsilon e_j : i \neq j, i \notin \mathcal{A}\}$ , and  $\mathcal{C} = \{(i, j) : i \neq j, i \notin \mathcal{A}\}$ . (12) follows because  $q_j = 0$  for any  $j \in \mathcal{A}$ . Thus, the problem of interest is equivalent to

$$\min_{\boldsymbol{q}\in\mathcal{Q}}\left[-\boldsymbol{q}^{\top}f(\hat{\boldsymbol{p}}) + \max_{i\notin\mathcal{A}}q_{i}g^{-}(\hat{p}_{i})\right].$$

In other words, we only need to solve  $q^*$  from a lower-dimensional problem

$$\min_{\boldsymbol{q}\in\Delta(\mathcal{V}_{\mathcal{A}})} \left[ -\boldsymbol{q}^{\top} f(\hat{\boldsymbol{p}}) + \max_{i} q_{i} g^{-}(\hat{p}_{i}) \right],$$

where  $\mathcal{V}_{\mathcal{A}}$  is a truncated vocabulary with  $|\mathcal{V}_{\mathcal{A}}| = d - |\mathcal{A}|$ .

**Ordering of the optimal solution**. Similar to Case 1, an optimal  $q^*$  is ordered with  $q_1^* \ge \cdots \ge q_d^*$ . **Analyzing KKT optimality**. The Lagrangian can be similarly defined as

$$L(\boldsymbol{q},\boldsymbol{\lambda},\nu) \coloneqq -\boldsymbol{q}^{\top}f(\hat{p}) + \max_{i} q_{i}g^{-}(\hat{p}_{i}) - \boldsymbol{\lambda}^{\top}\boldsymbol{q} + \nu \left(\sum_{i=1}^{d-|\mathcal{A}|} q_{i} - 1\right),$$

and strong duality holds as well. The KKT conditions are

$$\mathbf{0} \in -f(\hat{p}) + \partial \left(\max_{i} q_{i}^{*} g^{-}(\hat{p}_{i})\right) - \boldsymbol{\lambda}^{*} + \nu^{*} \mathbf{1}, \qquad \text{(first-order stationarity)}$$

$$q^{*} \in \Delta(\mathcal{V}_{\mathcal{A}}), \quad \boldsymbol{\lambda}^{*} \geq 0, \qquad \text{(primal-dual feasibility)}$$

$$\lambda_{i}^{*} q_{i}^{*} = 0 \quad \forall i, \qquad \text{(complementary slackness)}$$

where  $\partial (\max_i q_i^* g^-(\hat{p}_i)) \coloneqq \operatorname{conv} (\{g^-(\hat{p}_i) e_i : q_i^* g^-(\hat{p}_i) = \max_i q_i^* g^-(\hat{p}_i)\})$ . Let

$$\mathcal{J} = \{i : q_i^* g^-(\hat{p}_i) = c\} = \{1 \le i \le I^*\}, \quad \mathcal{N} = \{i : q_i^* g^-(\hat{p}_i) = 0\} = \{I^* < i \le d - |\mathcal{A}|\},\$$

where  $c \coloneqq \max_i q_i^* g^-(\hat{p}_i)$ . It is sufficient to show that there exist  $\nu^*$ ,  $\lambda^* \ge 0$  with  $\lambda_i^* = 0$  for  $i \in \mathcal{J}$ , and coefficients  $\gamma_i \ge 0$  for  $i \in \mathcal{J}$  with  $\sum_{i \in \mathcal{J}} \gamma_i = 1$ , such that

$$-f(\hat{p}_i) + \gamma_i g^-(\hat{p}_i) \mathbb{1}_{\{i \in \mathcal{J}\}} - \lambda_i^* \mathbb{1}_{\{i \in \mathcal{N}\}} + \nu^* = 0$$

This is achieved by setting

$$\nu^* = \left(\sum_{k \in \mathcal{J}} \frac{1}{g^-(\hat{p}_k)}\right)^{-1} \left(\sum_{k \in \mathcal{J}} \frac{f(\hat{p}_k)}{g^-(\hat{p}_k)} - 1\right)$$
$$\gamma_i = \frac{f(\hat{p}_i) - \nu^*}{g^-(\hat{p}_i)} \ge 0, \quad \text{for } i \in \mathcal{J},$$
$$\lambda_i^* = (\nu^* - f(\hat{p}_i)) \mathbb{1}_{(i \in \mathcal{N})} \ge 0.$$

Moreover,  $\gamma_i \geq 0$  and  $\lambda_i^* \geq 0$  follow from the fact that  $S_I \leq 1 \ \forall I \in \mathcal{J}$  and  $S_I > 1 \ \forall I \in \mathcal{N}$ , respectively.

## **B** ADDITIONAL EXPERIMENTS

In Tables 2 and 3, we present additional experimental results obtained using various choices of  $\epsilon$  and  $\tau$  in Game sampling algorithm. These experiments provide further insights into the performance and sensitivity of the model under different parameter settings. We also explored different values of  $\epsilon \in \{0.1, 0.3, 0.5, 0.8, 0.9\}$  alongside different  $\tau$  values. However, since the best performance was consistently achieved with  $\epsilon = 0.95$  or  $\epsilon = 0.99$ , we report only those values here to highlight the effect of changing  $\tau$ .

As part of this evaluation, we also analyzed the point at which probabilities are truncated and renormalized in Game sampling and Nucleus sampling for a randomly selected article from the WebText test set, using the GPT-2 XL model. The GPT-2 model has a total vocabulary size of 50,000 tokens, so truncating the probability distribution can significantly reduce the set of candidate words for the next token. Figures [a] and [b] illustrate how these sampling strategies truncate the probability distribution. Figure [a] shows the distribution for the next word when using only 1 token as context, along with the index where probabilities are truncated and set to zero. In contrast, Figure [b] presents the distribution for the next word when using the first 35 tokens as context, providing more information for the model to generate the next word. With more context, the model is expected to be more certain about the next word, and the figure highlights the corresponding truncation points. Notably, Game sampling truncates a substantial portion of the 50,000-token distribution and dynamically adjusts the cutoff point based on the shape of the distribution (see Algorithm []).



Figure 1: Next-token probability distribution in GPT-2 XL model and truncation threshold of Game sampling and Nucleus sampling.

| $\epsilon$                                                                                  | au                                                                                                                                                     | Perplexity                                                                                                                                                          | Repetition                                                                                                                                        | MAUVE                                                                                                                                                          | $\epsilon$                                                                 | au                                                                                                                                                     | Perplexity                                                                                                                                                           | Repetition                                                                                                                                                 | MAUVE                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0.95                                                                                        | 1.0                                                                                                                                                    | 6.874                                                                                                                                                               | 0.087                                                                                                                                             | 0.739                                                                                                                                                          | 0.95                                                                       | 1.0                                                                                                                                                    | 6.067                                                                                                                                                                | 0.048                                                                                                                                                      | 0.858                                                                                                                                        |  |  |
| 0.95                                                                                        | 1.1                                                                                                                                                    | 7.960                                                                                                                                                               | 0.058                                                                                                                                             | 0.809                                                                                                                                                          | 0.95                                                                       | 1.1                                                                                                                                                    | 6.804                                                                                                                                                                | 0.037                                                                                                                                                      | 0.883                                                                                                                                        |  |  |
| 0.95                                                                                        | 1.5                                                                                                                                                    | 13.336                                                                                                                                                              | 0.015                                                                                                                                             | 0.898                                                                                                                                                          | 0.95                                                                       | 1.5                                                                                                                                                    | 10.423                                                                                                                                                               | 0.010                                                                                                                                                      | 0.926                                                                                                                                        |  |  |
| 0.95                                                                                        | 2.0                                                                                                                                                    | 23.592                                                                                                                                                              | 0.003                                                                                                                                             | 0.926                                                                                                                                                          | 0.95                                                                       | 2.0                                                                                                                                                    | 17.499                                                                                                                                                               | 0.003                                                                                                                                                      | 0.945                                                                                                                                        |  |  |
| 0.95                                                                                        | 2.5                                                                                                                                                    | 40.129                                                                                                                                                              | 0.002                                                                                                                                             | 0.908                                                                                                                                                          | 0.95                                                                       | 2.5                                                                                                                                                    | 28.738                                                                                                                                                               | 0.001                                                                                                                                                      | 0.919                                                                                                                                        |  |  |
| 0.95                                                                                        | 3.0                                                                                                                                                    | 66.481                                                                                                                                                              | 0.001                                                                                                                                             | 0.815                                                                                                                                                          | 0.95                                                                       | 3.0                                                                                                                                                    | 46.973                                                                                                                                                               | 0.001                                                                                                                                                      | 0.858                                                                                                                                        |  |  |
| 0.95                                                                                        | 3.5                                                                                                                                                    | 107.544                                                                                                                                                             | 0.001                                                                                                                                             | 0.699                                                                                                                                                          | 0.95                                                                       | 3.5                                                                                                                                                    | 78.152                                                                                                                                                               | 0.001                                                                                                                                                      | 0.721                                                                                                                                        |  |  |
| 0.95                                                                                        | 4.0                                                                                                                                                    | 172.822                                                                                                                                                             | 0.001                                                                                                                                             | 0.474                                                                                                                                                          | 0.95                                                                       | 4.0                                                                                                                                                    | 132.77                                                                                                                                                               | 0.001                                                                                                                                                      | 0.475                                                                                                                                        |  |  |
| 0.99                                                                                        | 1.0                                                                                                                                                    | 7.067                                                                                                                                                               | 0.081                                                                                                                                             | 0.746                                                                                                                                                          | 0.99                                                                       | 1.0                                                                                                                                                    | 6.176                                                                                                                                                                | 0.047                                                                                                                                                      | 0.845                                                                                                                                        |  |  |
| 0.99                                                                                        | 1.1                                                                                                                                                    | 8.275                                                                                                                                                               | 0.055                                                                                                                                             | 0.820                                                                                                                                                          | 0.99                                                                       | 1.1                                                                                                                                                    | 6.947                                                                                                                                                                | 0.033                                                                                                                                                      | 0.879                                                                                                                                        |  |  |
| 0.99                                                                                        | 1.5                                                                                                                                                    | 14.231                                                                                                                                                              | 0.012                                                                                                                                             | 0.897                                                                                                                                                          | 0.99                                                                       | 1.5                                                                                                                                                    | 11.019                                                                                                                                                               | 0.008                                                                                                                                                      | 0.941                                                                                                                                        |  |  |
| 0.99                                                                                        | 2.0                                                                                                                                                    | 26.783                                                                                                                                                              | 0.002                                                                                                                                             | 0.917                                                                                                                                                          | 0.99                                                                       | 2.0                                                                                                                                                    | 19.482                                                                                                                                                               | 0.002                                                                                                                                                      | 0.938                                                                                                                                        |  |  |
| 0.99                                                                                        | 2.5                                                                                                                                                    | 48.508                                                                                                                                                              | 0.002                                                                                                                                             | 0.864                                                                                                                                                          | 0.99                                                                       | 2.5                                                                                                                                                    | 34.662                                                                                                                                                               | 0.002                                                                                                                                                      | 0.911                                                                                                                                        |  |  |
| 0.99                                                                                        | 3.0                                                                                                                                                    | 89.308                                                                                                                                                              | 0.001                                                                                                                                             | 0.745                                                                                                                                                          | 0.99                                                                       | 3.0                                                                                                                                                    | 63.555                                                                                                                                                               | 0.001                                                                                                                                                      | 0.792                                                                                                                                        |  |  |
| 0.99                                                                                        | 3.5                                                                                                                                                    | 161.402                                                                                                                                                             | 0.001                                                                                                                                             | 0.529                                                                                                                                                          | 0.99                                                                       | 3.5                                                                                                                                                    | 120.889                                                                                                                                                              | 0                                                                                                                                                          | 0.497                                                                                                                                        |  |  |
| 0.99                                                                                        | 4.0                                                                                                                                                    | 296.453                                                                                                                                                             | 0.001                                                                                                                                             | 0.273                                                                                                                                                          | 0.99                                                                       | 4.0                                                                                                                                                    | 243.844                                                                                                                                                              | 0                                                                                                                                                          | 0.257                                                                                                                                        |  |  |
|                                                                                             |                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                |                                                                            |                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                                            |                                                                                                                                              |  |  |
| GPT-2 Small                                                                                 |                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                |                                                                            | GPT-2 Medium                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                            |                                                                                                                                              |  |  |
|                                                                                             |                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                |                                                                            |                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                                            |                                                                                                                                              |  |  |
| $\epsilon$                                                                                  | τ                                                                                                                                                      | Perplexity                                                                                                                                                          | Repetition                                                                                                                                        | MAUVE                                                                                                                                                          | $\epsilon$                                                                 | $\tau$                                                                                                                                                 | Perplexity                                                                                                                                                           | Repetition                                                                                                                                                 | MAUVE                                                                                                                                        |  |  |
| ε<br>0.95                                                                                   | $\frac{\tau}{1.0}$                                                                                                                                     | Perplexity                                                                                                                                                          | Repetition                                                                                                                                        | MAUVE<br>0.823                                                                                                                                                 | $\epsilon$                                                                 | $\frac{\tau}{1.0}$                                                                                                                                     | Perplexity                                                                                                                                                           | Repetition                                                                                                                                                 | MAUVE<br>0.861                                                                                                                               |  |  |
| $\epsilon$<br>0.95<br>0.95                                                                  | au 1.0 1.1                                                                                                                                             | Perplexity<br>4.596<br>4.972                                                                                                                                        | Repetition<br>0.066<br>0.050                                                                                                                      | MAUVE<br>0.823<br>0.856                                                                                                                                        | $\epsilon$<br>0.95<br>0.95                                                 | au 1.0 1.1                                                                                                                                             | Perplexity<br>5.146<br>5.559                                                                                                                                         | Repetition<br>0.050<br>0.033                                                                                                                               | MAUVE<br>0.861<br>0.891                                                                                                                      |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95                                                          | au<br>1.0<br>1.1<br>1.5                                                                                                                                | Perplexity<br>4.596<br>4.972<br>6.851                                                                                                                               | Repetition<br>0.066<br>0.050<br>0.013                                                                                                             | MAUVE<br>0.823<br>0.856<br>0.909                                                                                                                               | $\epsilon$<br>0.95<br>0.95<br>0.95                                         | au<br>1.0<br>1.1<br>1.5                                                                                                                                | Perplexity<br>5.146<br>5.559<br>7.475                                                                                                                                | Repetition<br>0.050<br>0.033<br>0.014                                                                                                                      | MAUVE<br>0.861<br>0.891<br>0.935                                                                                                             |  |  |
| <ul> <li> <i>ϵ</i><br/>0.95<br/>0.95<br/>0.95<br/>0.95         </li> </ul>                  | au<br>1.0<br>1.1<br>1.5<br>2.0                                                                                                                         | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883                                                                                                                      | Repetition<br>0.066<br>0.050<br>0.013<br>0.005                                                                                                    | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942                                                                                                                      | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95                                 | au<br>1.0<br>1.1<br>1.5<br>2.0                                                                                                                         | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541                                                                                                                      | Repetition<br>0.050<br>0.033<br>0.014<br>0.004                                                                                                             | MAUVE<br>0.861<br>0.891<br>0.935<br>0.950                                                                                                    |  |  |
| <ul> <li>ϵ</li> <li>0.95</li> <li>0.95</li> <li>0.95</li> <li>0.95</li> <li>0.95</li> </ul> | au<br>1.0<br>1.1<br>1.5<br>2.0<br>2.5                                                                                                                  | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084                                                                                                            | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002                                                                                           | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942                                                                                                             | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                         | au<br>1.0<br>1.1<br>1.5<br>2.0<br>2.5                                                                                                                  | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636                                                                                                            | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002                                                                                                    | MAUVE<br>0.861<br>0.891<br>0.935<br>0.950<br>0.948                                                                                           |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                                  | au<br>1.0<br>1.1<br>1.5<br>2.0<br>2.5<br>3.0                                                                                                           | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634                                                                                                  | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002                                                                                  | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930                                                                                                    | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                 | au<br>1.0<br>1.1<br>1.5<br>2.0<br>2.5<br>3.0                                                                                                           | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458                                                                                                  | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002                                                                                           | MAUVE<br>0.861<br>0.891<br>0.935<br>0.950<br>0.948<br>0.929                                                                                  |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                          | au<br>1.0<br>1.1<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5                                                                                                    | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779                                                                                        | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.002<br>0.001                                                                | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.942<br>0.930<br>0.913                                                                                  | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95         | au<br>1.0<br>1.1<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5                                                                                                    | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410                                                                                        | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002<br>0.002<br>0.001                                                                         | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919                                                                                  |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | au<br>1.0<br>1.1<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0                                                                                             | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256                                                                              | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.001<br>0.001                                                                | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837                                                                                  | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \end{array}$                                                            | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374                                                                              | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002<br>0.002<br>0.001<br>0.001                                                                | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873                                                                         |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \end{array}$                                                     | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256<br>4.683                                                                     | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.001<br>0.001<br>0.001                                                       | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837<br>0.826                                                                         | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | au<br>1.0<br>1.1<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>1.0                                                                                      | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374<br>5.219                                                                     | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002<br>0.001<br>0.001<br>0.004                                                                | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873<br>0.852                                                                |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \end{array}$                                              | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256<br>4.683<br>5.083                                                            | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.001<br>0.001<br>0.001<br>0.066<br>0.046                                     | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837<br>0.826<br>0.861                                                                | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \end{array}$                                              | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374<br>5.219<br>5.660                                                            | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002<br>0.001<br>0.001<br>0.004<br>0.044<br>0.032                                              | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873<br>0.852<br>0.886                                                       |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \end{array}$                                       | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256<br>4.683<br>5.083<br>7.130                                                   | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.001<br>0.001<br>0.001<br>0.066<br>0.046<br>0.010                            | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837<br>0.826<br>0.861<br>0.917                                                       | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \end{array}$                                       | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374<br>5.219<br>5.660<br>7.784                                                   | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002<br>0.001<br>0.001<br>0.001<br>0.044<br>0.032<br>0.010                                     | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873<br>0.852<br>0.886<br>0.943                                              |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \end{array}$                                | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256<br>4.683<br>5.083<br>7.130<br>10.629                                         | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.001<br>0.001<br>0.001<br>0.066<br>0.046<br>0.010<br>0.006                   | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837<br>0.826<br>0.861<br>0.917<br>0.947                                              | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \end{array}$                                | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374<br>5.219<br>5.660<br>7.784<br>11.333                                         | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002<br>0.001<br>0.001<br>0.001<br>0.044<br>0.032<br>0.010<br>0.003                            | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873<br>0.852<br>0.886<br>0.943<br>0.958                                     |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \end{array}$                         | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256<br>4.683<br>5.083<br>7.130<br>10.629<br>15.958                               | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.001<br>0.001<br>0.066<br>0.046<br>0.010<br>0.006<br>0.001                   | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837<br>0.826<br>0.861<br>0.917<br>0.947<br>0.947                                     | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \end{array}$                         | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374<br>5.219<br>5.660<br>7.784<br>11.333<br>16.690                               | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002<br>0.001<br>0.001<br>0.004<br>0.044<br>0.032<br>0.010<br>0.003<br>0.003                   | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873<br>0.852<br>0.886<br>0.943<br>0.958<br>0.952                            |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \end{array}$                  | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256<br>4.683<br>5.083<br>7.130<br>10.629<br>15.958<br>24.128                     | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.001<br>0.001<br>0.066<br>0.046<br>0.010<br>0.006<br>0.001<br>0.001          | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837<br>0.826<br>0.861<br>0.917<br>0.947<br>0.947<br>0.947<br>0.919                   | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \end{array}$                  | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374<br>5.219<br>5.660<br>7.784<br>11.333<br>16.690<br>24.796                     | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.002<br>0.001<br>0.001<br>0.004<br>0.044<br>0.032<br>0.010<br>0.003<br>0.003<br>0.003<br>0.002 | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873<br>0.852<br>0.886<br>0.943<br>0.958<br>0.952<br>0.924                   |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \end{array}$           | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256<br>4.683<br>5.083<br>7.130<br>10.629<br>15.958<br>24.128<br>37.613           | Repetition<br>0.066<br>0.050<br>0.013<br>0.005<br>0.002<br>0.002<br>0.001<br>0.001<br>0.066<br>0.046<br>0.010<br>0.006<br>0.001<br>0.001<br>0.001 | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837<br>0.826<br>0.861<br>0.917<br>0.947<br>0.947<br>0.947<br>0.919<br>0.845          | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \end{array}$           | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374<br>5.219<br>5.660<br>7.784<br>11.333<br>16.690<br>24.796<br>38.056           | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.001<br>0.001<br>0.004<br>0.044<br>0.032<br>0.010<br>0.003<br>0.003<br>0.002<br>0.001          | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873<br>0.852<br>0.886<br>0.943<br>0.958<br>0.952<br>0.924<br>0.885          |  |  |
| $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                  | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ \end{array}$ | Perplexity<br>4.596<br>4.972<br>6.851<br>9.883<br>14.084<br>19.634<br>27.779<br>39.256<br>4.683<br>5.083<br>7.130<br>10.629<br>15.958<br>24.128<br>37.613<br>60.031 | Repetition 0.066 0.050 0.013 0.005 0.002 0.002 0.001 0.001 0.006 0.046 0.010 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.001                      | MAUVE<br>0.823<br>0.856<br>0.909<br>0.942<br>0.942<br>0.930<br>0.913<br>0.837<br>0.826<br>0.861<br>0.917<br>0.947<br>0.947<br>0.947<br>0.919<br>0.845<br>0.685 | $\epsilon$<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | $\begin{array}{c} \tau \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 1.0 \\ 1.1 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ \end{array}$ | Perplexity<br>5.146<br>5.559<br>7.475<br>10.541<br>14.636<br>20.458<br>28.410<br>39.374<br>5.219<br>5.660<br>7.784<br>11.333<br>16.690<br>24.796<br>38.056<br>60.236 | Repetition<br>0.050<br>0.033<br>0.014<br>0.004<br>0.002<br>0.001<br>0.001<br>0.044<br>0.032<br>0.010<br>0.003<br>0.003<br>0.002<br>0.001<br>0.001          | MAUVE<br>0.861<br>0.935<br>0.950<br>0.948<br>0.929<br>0.919<br>0.873<br>0.852<br>0.886<br>0.943<br>0.958<br>0.952<br>0.924<br>0.885<br>0.739 |  |  |

Table 2: Evaluations on the text generated by different types of GPT-2 models using Game sampling under different hyperparameters.

| $\epsilon$ | au  | Perplexity | Repetition | MAUVE | $\epsilon$ | au  | Perplexity | Repetition | MAUVE |
|------------|-----|------------|------------|-------|------------|-----|------------|------------|-------|
| 0.95       | 1.0 | 5.757      | 0.069      | 0.640 | 0.95       | 1.0 | 8.500      | 0.131      | 0.842 |
| 0.95       | 1.1 | 6.285      | 0.049      | 0.670 | 0.95       | 1.1 | 9.938      | 0.134      | 0.831 |
| 0.95       | 1.5 | 8.528      | 0.015      | 0.759 | 0.95       | 1.5 | 14.000     | 0.128      | 0.858 |
| 0.95       | 2.0 | 12.313     | 0.005      | 0.794 | 0.95       | 2.0 | 23.875     | 0.149      | 0.843 |
| 0.95       | 2.5 | 17.210     | 0.003      | 0.811 | 0.95       | 2.5 | 36.250     | 0.162      | 0.834 |
| 0.95       | 3.0 | 24.362     | 0.001      | 0.801 | 0.95       | 3.0 | 52.000     | 0.173      | 0.813 |
| 0.95       | 3.5 | 33.905     | 0.002      | 0.778 | 0.95       | 3.5 | 63.750     | 0.174      | 0.797 |
| 0.95       | 4.0 | 48.921     | 0.001      | 0.664 | 0.95       | 4.0 | 87.000     | 0.182      | 0.753 |
| 0.99       | 1.0 | 5.897      | 0.066      | 0.664 | 0.99       | 1.0 | 8.938      | 0.130      | 0.831 |
| 0.99       | 1.1 | 6.436      | 0.046      | 0.687 | 0.99       | 1.1 | 10.250     | 0.134      | 0.845 |
| 0.99       | 1.5 | 8.957      | 0.013      | 0.762 | 0.99       | 1.5 | 15.625     | 0.136      | 0.854 |
| 0.99       | 2.0 | 13.263     | 0.004      | 0.809 | 0.99       | 2.0 | 26.625     | 0.153      | 0.840 |
| 0.99       | 2.5 | 19.729     | 0.002      | 0.833 | 0.99       | 2.5 | 41.750     | 0.165      | 0.822 |
| 0.99       | 3.0 | 29.696     | 0.002      | 0.791 | 0.99       | 3.0 | 60.000     | 0.181      | 0.806 |
| 0.99       | 3.5 | 46.506     | 0          | 0.720 | 0.99       | 3.5 | 84.500     | 0.178      | 0.759 |
| 0.99       | 4.0 | 77.289     | 0.001      | 0.522 | 0.99       | 4.0 | 119.500    | 0.177      | 0.686 |

GPT-J-6B

Llama-2-7B

Table 3: Evaluations on the text generated by GPT-J-6B and Llama-2-7B models using Game sampling under different hyperparameters.