
Published as a conference paper at ICLR 2025

GRAPH NEURAL NETWORKS GONE HOGWILD

Olga Solodova, Nick Richardson, Deniz Oktay, Ryan P. Adams
Department of Computer Science
Princeton University
Princeton, NJ, USA
{solodova, njkrichardson, doktay, rpa}@princeton.edu

ABSTRACT

Graph neural networks (GNNs) appear to be powerful tools to learn state representations
for agents in distributed, decentralized multi-agent systems, but generate catastrophically
incorrect predictions when nodes update asynchronously during inference. This failure under
asynchrony effectively excludes these architectures from many potential applications where
synchrony is difficult or impossible to enforce, e.g., robotic swarms or sensor networks. In
this work we identify “implicitly-defined” GNNs as a class of architectures which is provably
robust to asynchronous “hogwild” inference, adapting convergence guarantees from work
in asynchronous and distributed optimization. We then propose a novel implicitly-defined
GNN architecture, which we call an energy GNN. We show that this architecture outperforms
other GNNs from this class on a variety of synthetic tasks inspired by multi-agent systems.

1 INTRODUCTION

Coordination and control of distributed and decentralized multi-agent systems is a major project spanning
engineering and computational science. Success in this program has implications across a broad spectrum of
applications; autonomous vehicle navigation, energy/resource management and distribution in smart grids, and
robotic swarms (for exploration, search and rescue, environmental monitoring, and construction), to name
a few. Agents in these systems must take action based on direct observation and communication with the
collective. At the level of any individual, a controller takes as input the agent’s ‘state representation’, which
ideally unifies direct measurements and peer-derived messages in a coherent manner.

In the distributed/decentralized regime, the communication constraints associated with the system can be
encoded as a graph in which each node is associated with an agent, and each edge with an agent-to-agent
communication link. Adopting the graph view of the system, graph neural networks (in particular, message-
passing variants (Gilmer et al., 2017; Hamilton, 2020)) have been widely studied as methods for deriving
flexible, data-dependent, and parametric state representations. GNN-based state representations have been
explored in a variety of applications; for example, flock formation, target tracking, path planning, goal
assignment, and channel allocation in wireless networks (Jiang and Lu, 2018; Nakashima et al., 2019; Li
et al., 2019; Khan et al., 2019; Jiang et al., 2020; Gama et al., 2020; Blumenkamp et al., 2021; Grattarola
et al., 2021; Zhou et al., 2021; Gosrich et al., 2022; Jiang et al., 2023; Goarin and Loianno, 2024). The
motivation to use GNNs can be traced to three core features. First, a GNN is a parametric family of functions
for deriving a state representation, enabling domain-specificity by choosing from this family and optimizing
the state representation for a given task end-to-end. Second, message passing within a given GNN layer
satisfies the constraint that agents must derive state representations using only information obtained through
local communication with neighbors. Third, GNNs with multiple layers allows state representations to depend
on information outside of a given agent’s local neighborhood.

All that said, there is a major conundrum in applying GNNs to these problems. On the one hand, asynchronous
execution and unreliable communication are ubiquitous in real-world decentralized/distributed multi-agent
systems. On the other hand, these features render conventional GNNs inoperable in the multi-layer regime, the
very setting in which GNNs offer a putative advantage through longer range communication/coordination.
This is because GNN architectures implicitly assume that a synchronization barrier is enforced across all
nodes between layers of message passing. If nodes update asynchronously or if messages can be delayed or
lost, embeddings from neighbors do not necessarily correspond with the intended layer in the GNN (from
the perspective of the receiving node). The effective architecture (and therefore output) of the GNN diverges
catastrophically from that used in training. Figure 1 illustrates the issue on a toy problem.

1

Published as a conference paper at ICLR 2025

Figure 1: Modifications to the computation graph of an L-layer message-passing GNN resulting from asynchronous,
distributed, per-node inference with communication delays. (a) An undirected linear graph with binary features written in
the node body. (b) Synchronous per-layer execution of a 3-layer GNN on the graph from (a); all nodes update at the same
time, using neighbor information from the previous layer. Arrows represent network weights. For demonstration, weights
are all equal to 1, and the value of a node embedding at the next layer is the sum of incoming values. (c) Asynchronous
inference of the GNN from (b). Nodes update at random times and can use neighbor information corresponding to the
incorrect layer, which introduces modifications to the computation graph. Gray arrows correspond to connections that
were removed from the original computation graph, and red arrows are unintended connections resulting from asynchrony
and/or message delays. (d) To demonstrate the effect of asynchrony, we show the output of the GNN varies significantly
over asynchronous runs with different node update orderings.

Unfortunately, enforcing synchronization in a distributed and decentralized system is costly (e.g. throughput is
limited by the slowest node) and is particularly difficult to enforce in systems where nodes can join or leave
the network, or are prone to failure. Existing work on using GNNs for computing agent state embeddings
either use single layer GNNs (where synchronization is unnecessary), or ignore the constraint of asynchronous
execution altogether, limiting the prospect of fielding the method. If it were possible to perform “hogwild”
inference in multi-layer GNNs (nodding to the asynchronous optimization work of Niu et al. (2011)), GNNs
would be a significantly more powerful tool in computing state embeddings for decentralized multi-agent
systems.

In this work we present a unified framework for GNNs which can execute inference asynchronously, adapting
classical results from the distributed optimization literature. Our analysis illuminates the boundary between
GNNs which are/are not amenable to asynchronous inference, and we articulate sufficient conditions for
a given architecture’s robustness to asynchrony. We call the class of GNNs which are provably robust to
asynchronous inference ‘implicitly-defined’; in an implicitly-defined GNN, node embeddings correspond
with a solution to an optimization problem (Gu et al., 2020; Liu et al., 2021; Yang et al., 2021; Zhu et al.,
2021; Ma et al., 2021; Scarselli et al., 2009). This is in contrast to GNNs in which node embeddings are
computed as the output of a statically defined feed-forward computation, such as graph attention networks
(GAT, Veličković et al. (2018)) and graph convolutional networks (GCN, Kipf and Welling (2017)); we refer
to these architectures as ‘explicitly-defined’.

In addition to an analysis of GNNs under asynchronous execution, we contribute a novel asynchronous-capable
(implicitly-defined) architecture, which we call energy GNN. Our architecture exposes a rich parameterization
of optimization problems using input-convex neural networks operating over nodal neighborhoods. We show
that energy GNNs outperform other implicitly-defined GNNs on a variety of synthetic tasks motivated by
problems which are relevant to multi-agent systems, where synchronous inference may be undesirable. We
also achieve competitive performance on tasks with benchmark graph datasets, certifying the merit of our
approach even as a stand-alone GNN architecture.

2

Published as a conference paper at ICLR 2025

2 PRELIMINARIES

2.1 PARTIALLY ASYCHRONOUS ALGORITHMS

Computational models for asynchronous algorithms vary depending on the constraints imposed on the
sequencing or frequency of computation or communication. We consider partial asynchronism as defined by
Bertsekas and Tsitsiklis (1989), which we summarize here.

Consider a collection of n nodes carrying out a distributed computation. Each node has hidden state de-
noted hi ∈ Rk, which corresponds to one “block” (row) of the aggregate state H := (h1, . . . ,hn)

T ∈ Rn×k.
The algorithm being executed consists of iterative node updates, where each node i = 1, 2, . . . , n iteratively
updates its state according to hi := f i(H) using some node-specific update function f i : Rn×k → Rk.

We are given a set T i ⊆ {0, 1, 2, . . . } of times at which each node i is updated; this accounts for asynchrony
in the execution of the algorithm. Additionally, for each t ∈ T i we are given variables 0 ≤ τ ij(t) ≤ t which
represent the time associated with node i’s view of node j at time t. If communication is instantaneous and
reliable, then τ ij(t) is always equal to t, as node i’s view of all other nodes is the actual value those nodes
hold at time t. Staleness (i.e. τ ij(t) < t) results from delays or losses in communication between nodes. For
instance, suppose T 3 = {0, 4, 7}, T 1 = {2, 3, 5}, and τ31 (4) = 2. This means that when node 3 executes its
second update (at t = 4), it uses the stale value of node 1 that was computed at t = 2 rather than its actual
value at t = 4 (due to loss or delay of the message containing the value of node 1 which was computed
at t = 3).

We can now describe the asynchronous algorithm using the following node update equations:

hi(t+1) = hi(t) if t /∈ T i, (1)

hi(t+1) = f i(h1(τ
i
1(t)), . . . ,hn(τ

i
n(t))) if t ∈ T i, (2)

for t ≥ 0. Partial asynchronism corresponds to the following assumptions:
Assumption 2.1 (Partial Asynchronism)
(Bertsekas and Tsitsiklis (1989) Assumption 5.3) There exists an integer B > 0 such that:

(a) (Bounded time to next update) For every node i and for every t ≥ 0, at least one of the elements of
the set {t, t+ 1, . . . , t+B − 1} belongs to T i.

(b) (Bounded staleness) There holds t−B < τ ij(t) ≤ t, for all i, j, and all t ≥ 0 belonging to T i.

(c) There holds τ ii (t) = t for all i = 1, 2, . . . , n and t ∈ T i.

Informally, (a) states that each node updates at least once every B time units, (b) states that information from
other nodes can be stale by at most B time units, and (c) states that node i maintains the current value of hi.

2.2 GRAPH NEURAL NETWORKS

Consider a directed graph with a collection of n vertices V = {1, ..., n}, and edges E ⊆ V × V . The
connectivity of the graph is contained in its adjacency matrix A ∈ {0, 1}n×n, where Ai,j = 1 if there
is an edge from node i to node j, and 0 otherwise. The graph may also have associated node and edge
features X ∈ Rn×p and E ∈ R|E|×r, so we use G = (A,X,E) to denote the graph. We use N (i) to denote
the set of neighbors of node i.

In a GNN, each node i is associated with a k-vector embedding hi which is updated through iterations (or
layers) of message passing. Each node constructs a “message” mi by aggregating information from nodes
j ∈ N (i) in its local neighborhood, then uses this aggregate message to update its embedding. The node
update equation for all nodes i and layers ℓ ∈ {0, ..., L− 1} is as follows:

hℓ+1
i = f ℓ

θ

(
hℓ
i ,xi, {hℓ

j ,xj , eij |j ∈ N (i)}
)
= uℓ

θ

hℓ
i ,xi,

⊕
j∈N (i)

mℓ
θ(h

ℓ
i ,h

ℓ
j ,xi,xj , eij)

 = uℓ
θ

(
hℓ
i ,xi,m

ℓ
i

)
,

(3)

3

Published as a conference paper at ICLR 2025

where
⊕

is an aggregation function, and uθ and mθ are, e.g., neural networks. We use H := (h1, . . . ,hn)
T ∈

Rn×k to denote the aggregate embedding of nodes in the graph. H0 is typically initialized as the node features
X . For convenience, we omit the layer index ℓ from f ℓ

θ in contexts where there is only one parameterized layer,
or when referring generally to a message passing layer. In the final layer, a readout function oϕ : Rk → RJ is
applied to each embedding, which results in node predictions Ŷ = (oϕ(h

L
1), ..., oϕ(h

L
n))

T ∈ Rn×J .

3 EXPLICITLY-DEFINED VS. IMPLICITLY-DEFINED GNNS

In a conventional feed-forward message passing architecture that consists of L layers, it is assumed that
all update functions for a given layer are applied in a synchronized manner. That is, each node embedding
is derived from the previous layer embeddings. In distributed systems synchrony is either impossible or
comes with substantial overhead. If nodes update asynchronously according to Equations (1) and (2),
GNN architectures that assume synchronicity will fail catastrophically and nondeterministically because the
architecture at inference time is different than it was during training. This effect is illustrated in Figure 1.

This failure motivates us to distinguish between two types of GNN architectures: explicitly-defined GNNs
which specify a specific feed-forward layer-wise computation, and implicitly-defined GNNs in which the
layer-wise message passing updates correspond to iterations toward a fixed point. We further subdivide
implicitly-defined GNNs into two types: fixed-point GNNs and the important special case of optimization-
based GNNs. Explicitly-defined GNNs are susceptible to failure under asynchrony, while implicitly-defined
GNNs are robust (as we discuss in Section 4).

3.1 FIXED-POINT GNNS

Fixed-point GNNs obtain node embeddings as the fixed point of a contractive message passing function.
Using h ∈ Rnk to denote the unrolled embeddings H and taking Fθ : G × Rnk → Rnk to be the aggregate
update of the hidden state from applying fθ to the neighborhood subgraph of each node i = 1, ...n in a graph G,
a fixed-point GNN iterates Fθ until numerical convergence of node embeddings, i.e., Fθ(h) ≈ h.

Convergence to a unique fixed point is guaranteed provided the update function Fθ is a contraction map with
respect to the embeddings, i.e. ||Fθ(h) − Fθ(h

′)|| ≤ µ||h − h′|| holds for 0 < µ < 1 and ∀h,h′ ∈ Rnk.
Since it is difficult to design non-trivial parameterizations of Fθ which are contractive by construction, existing
fixed-point GNN architectures (e.g. IGNN (Gu et al., 2020), EIGNN (Liu et al., 2021), and APPNP (Gasteiger
et al., 2019)) are limited in diversity. These architectures use linear transformations of the node embeddings in
computing messages mi, where the parameters can easily be constrained such that Fθ is contractive. Gu et al.
(2020) apply a component-wise non-expansive nonlinearity to compute updated node embeddings from these
messages, while Liu et al. (2021); Gasteiger et al. (2019) directly take mi as the node embeddings for the next
iteration.

The original ‘nonlinear GNN’ proposed by Scarselli et al. (2009), in which fθ contains general multi-layer
neural networks operating on the input data, represents another approach to parameterizing a fixed-point GNN.
Their method encourages rather than guarantees contraction via a multi-objective problem that includes the
norm of the Jacobian of the update function as a quantity to be minimized. This heuristic can work in practice,
but the sequence of iterates does not definitively converge, particularly if node embeddings are initialized far
from the fixed point (as the norm of the Jacobian is only penalized at the fixed point). We thus do not consider
this non-linear GNN to be a true fixed-point GNN. We provide more details on existing fixed-point GNN
architectures in appendix A.

3.2 OPTIMIZATION-BASED GNNS

Optimization-based GNNs obtain node embeddings by minimizing a convex scalar-valued graph func-
tion Eθ : G × Rn×k → R with respect to the aggregate graph node embeddings H , where θ are parameters:

H∗ = argminH Eθ(G,H). (4)

Assuming Eθ is separable per node, Eθ can be expressed as:

Eθ(G,H) =
∑n

i=1 eθ (hi,xi, {hj ,xj , eij | j ∈ N (i)}) =
∑n

i=1 e
i
θ. (5)

4

Published as a conference paper at ICLR 2025

Crucially, due to the dependence of each eiθ on only local information, gradient-based minimization of Eθ can
be expressed per node via message passing:

hi(t+ 1) = hi(t)− α
∑

j∈N (i)∪{i} gji(t) (6)

gji(t) := ∇hie
j
θ(hj(t), {hj′(t)|j′ ∈ N (j)}), (7)

where α ∈ R>0, and node and edge features are omitted for clarity. We assume that at time t, node i obtains
the values gji and hj (needed to compute gii) from neighbors j ∈ N (i). The number of iterations is dictated
by the convergence of the embeddings to a fixed point.

Existing optimization-based GNNs (Yang et al., 2021; Zhu et al., 2021; Ma et al., 2021) use an objective Eθ

where node embeddings arise as:

H∗ = argminH γ||H − gθ(X)||2F + βtr(HTLH), (8)

where gθ : Rp → Rk and is applied independently to each node feature, L is a function of A and can be
viewed as a generalized incidence matrix (assumed to be symmetric and positive semi-definite), γ and β
are constants, and tr() is the trace. The first term drives node embeddings to approximate some function
of the node features X , and the second term is a regularizer that rewards smoothness of neighboring node
embeddings. The overall objective Eθ is separable per node. We refer to optimization-based GNNs which use
this form of objective as GSDGNNs, since minimizing the objective can be interpreted as performing graph
signal denoising (GSD).

Previous work has shown that embeddings obtained by the fixed-point message passing scheme defined by
APPNP (Gasteiger et al., 2019) and EIGNN (Liu et al., 2021) correspond to minimization of this form of
objective (Ma et al., 2021; Yang et al., 2021). Correspondence between fixed-point GNNs and optimization-
based GNNs does not always exist; while node embeddings in optimization-based GNNs can always be
expressed as satisfying a fixed-point equation (i.e., the gradient of the convex graph function is equal to zero at
the solution), not all fixed-point equations correspond with convex optimization problems. For this reason, we
distinguish between these two types of implicit GNNs.

4 ASYNCHRONOUS GNN INFERENCE

In this section, we discuss GNN inference under the asynchronous execution model presented in Section 2.1.
In the general asynchronous update in Equation (2) it is assumed that node i has access to all of the values
h1, ...hn required for performing its update. In general these values could be obtained, for example, by
providing nodes access to a shared memory structure which contains these values. However, in this work, we
are interested the setting where neither centralized memory nor a centralized controller are used. We assume
that individual nodes store their own values hi (and xj , eij), and if these values are needed by other nodes to
perform their update, they must obtain them by communicating with neighbors. Our aim in this section is to
demonstrate that node updates can be performed only using information that can be obtained through local
communication.

4.1 EXPLICITLY-DEFINED GNN AND FIXED-POINT GNN INFERENCE UNDER PARTIAL
ASYNCHRONISM

Without loss of generality, assume that the embedding dimension k is fixed for all layers of parameterized
node update functions. We do not write fθ indexed by layer, but this is straightforwardly generalized to the
case of layer-specific parameters and functions described in Section 2.2. As a slight abuse of notation, let f i

θ
denote fθ applied to node i’s neighborhood. Without loss of generality, assume the embedding update function
fθ is continuously differentiable, so that the following restriction can be stated:

j /∈ N (i) =⇒ ∂f i
θ

∂hj
(z) = 0 ∀z ∈ Rk. (9)

With this restriction, the general node update from Equation (2) can be adapted to describe partially asyn-
chronous message passing, in which node updates are performed using only information from a node’s local
neighborhood. In particular, for node i and for t ≥ 0 and t ∈ T i, the update equation is:

hi(t+ 1) = fθ(hi(t), {hj(τ
i
j(t)) | j ∈ N (i)}) (10)

5

Published as a conference paper at ICLR 2025

where we omit node and edge features for clarity. Note the crucial difference introduced by asynchrony: the
neighbor data hj(τ

i
j(t)) may correspond to the incorrect layer in the network. For explicitly-defined GNNs

such as GCN or GAT, the number of iterations |Ti| executed by each node is fixed and equal to the number of
layers L in the GNN. For fixed point GNNs, the number of iterations is not pre-specified.

Since explicitly-defined GNNs implement a specific feed-forward neural network architecture, inference using
Equation (10) corrupts the computation performed by the network. We illustrate this in Figure 1, where
asynchrony results in a (different) computation graph with some connections removed, and new connections
that are not present in the original synchronous computation graph. This means that there are no convergence
guarantees under partial asynchrony, and in general the final node embeddings may vary significantly with
respect to the particular node update sequence.

In contrast, fixed-point GNNs in which Fθ is contractive with respect to embeddings h are provably robust
to partially asynchronous inference. In particular, they satisfy the assumptions of the following proposition
(Bertsekas, 1983).
Proposition 4.1. If Fθ : G × Rnk → Rnk is contractive with respect to node embeddings h, then under the
bounded staleness conditions in Theorem 2.1, the fixed-point iteration of Equation 10 converges.

4.2 OPTIMIZATION-BASED GNN INFERENCE UNDER PARTIAL ASYNCHRONY

In order to examine inference of optimization-based GNNs under partial asynchrony, we assume gradient-based
optimization is used in computing node embeddings. Recall that optimization-based GNNs are performing a
minimization of a separable objective Eθ, as defined in Equation (5). We thus state the following restriction,
analogous to the restriction in Equation (9):

j /∈ N (i) =⇒ ∂eiθ
∂hj

(z) = 0 for all z ∈ Rk. (11)

We could then naively adapt the general node update equations from Equation (1) to describe partially
asynchronous, gradient-based minimization of Eθ as follows:

hi(t+ 1) = hi(t)− α
∑

j∈N (i)∪{i} gji(τ
i
j(t)) (12)

gji(τ
i
j(t)) := ∇hi

ejθ(hj(τ
i
j(t)), {hj′(τ

i
j′(t))|j′ ∈ N (j)}), (13)

where α ∈ R>0 is the step size, and node and edge features are omitted for clarity. This formulation would
allow us to directly cite a proof of convergence from Bertsekas and Tsitsiklis (1989), as we did in Section 4.1
for partially asynchronous fixed-point GNN inference.

However, recall that for a node to perform an update using only local communication, we previously assumed
that gji was obtained by node i from its neighbor j. With the formulation in Equations 12 and 13, node j
cannot provide node i with gji since the value depends on node i’s view of the embeddings (and features) of
the neighbors of node j, rather than deferring to node j’s view of its neighbors. That is, node i needs access to
information about its 2-hop neighbors in addition to its 1-hop neighbors. Since we assume communication
is only possible with 1-hop neighbors, 2-hop neighbor information would need to be forwarded by direct
neighbors of node i. This inflates the cost of communication, requiring a number of bits per transmission
which is proportional to |N (j)|. Furthermore, as the number of neighbors that are shared between node i and
node j increases, the contents of these messages become increasingly redundant.

Instead, we preserve fully local communication and fixed-size transmissions where neighbors j send fixed-size
packets containing only (hj , gji) to node i by defining gji(τ

i
j(t)) as follows:

gji(τ
i
j(t)) := ∇hie

j
θ(hj(τ

i
j(t)), {hj′(τ

j
j′(τ

i
j(t))) : j

′ ∈ N (j)}). (14)

The crucial difference between equations Equation (13) and Equation (14) is that instead of gji(τ
i
j(t))

depending on node i’s view of 2-hop neighbors j′ at time t, it now depends on neighbor j’s view of its
neighbors at time τ ij(t), the time corresponding to node i’s view of j at time t.
Proposition 4.2. If Eθ is strongly convex and separable per node, and is twice differentiable (w.r.t. H) with
a Hessian of bounded norm, then for a sufficiently small step size and the bounded staleness conditions in
Theorem 2.1, the optimization procedure of Equations 12 and 14 will converge when executed under partial
asynchrony.

See Appendix D for a proof adapting results from Bertsekas and Tsitsiklis (1989).

6

Published as a conference paper at ICLR 2025

5 ENERGY GNNS

Under the assumptions of Section 2.1, implicitly-defined GNNs in which node embeddings are updated
iteratively using local information are well suited for partially asynchronous, decentralized, and distributed
inference. However, the diversity of existing implicit GNN architectures is limited (see Section 3).

We propose a novel implicitly-defined, optimization-based GNN architecture which we call the energy GNN.
Energy GNNs compute node embeddings that minimize a parameterized, convex graph function Eθ, which
we refer to as the ‘energy’ function. In contrast to previous work on optimization-based GNNs, our energy
function makes use of partially input-convex neural networks (PICNNs, Amos et al. (2017)). PICNNs are
scalar-valued neural networks that constrain the parameters in such a way that the network is convex with
respect to a specified subset of the inputs. This exposes a rich and flexible class of convex energy functions Eθ

of the form:

Eθ(G,H) =
∑n

i=1 e
i
θ where (15)

eiθ = u (mi,hi,xi; θu) + (β/2)||hi||22 (16)
mi =

∑
j∈N (i) m(hi,hj ,xi,xj , eij ; θm) (17)

where m is a function that is both convex and nondecreasing (in each dimension) with respect to hj and hi,
and the function u is convex with respect to mi and hi. These functions are both implemented as PICNNs and
their composition is convex. Summing these functions along with the squared norm penalty results in Eθ being
strongly convex with respect to the node embeddings H . This architecture for the energy can be described as
a (single layer) partially input-convex GNN; we provide more details in Appendix B.

This formulation for Eθ offers significantly more flexibility than the architectures of other implicitly-defined
GNNs. The functions m and u are parameterized by multi-layer PICNNs, and any combination of inputs to m
and u are valid provided that Eθ remains a convex function of H . This means that edge features are easily
incorporated into the model, and neighbor-specific or neighbor agnostic messages can be used (e.g., m can
take in information from just a node’s neighbor, or information pertaining to both a node and its neighbor); in
our experiments in Section 6.3 we show that this translates empirically to improved performance on various
tasks. Since the aggregation in Equation (17) is only constrained to be a non-negative sum over neighbors, it
can be replaced with, for example, a mean or a sum weighted by the entries of the symmetric renormalized
adjacency matrix (as in GCNs, see Appendix A). Alternatively, Equation (17) can easily incorporate a neighbor
attention mechanism (as in GATs), where neighbor contributions to the sum are scaled by neighbor-specific
attention weights (see Appendix B). The attention weights can depend on any of the non-convex inputs (i.e.,
the features).

6 EXPERIMENTS

6.1 SYNTHETIC MULTI-AGENT TASKS

We perform experiments on several synthetic datasets, motivated by prediction tasks which are of interest
for multi-agent systems where distributed, asynchronous inference is desirable. We describe each task and
associated dataset below.

Chains The ability to communicate information across long distances in a group of agents is important when
agent predictions depend on global information. This communication is made more difficult in the absence of
a central controller (as is the case for distributed, asynchronous inference). The chains dataset, used in Gu et al.
(2020); Liu et al. (2021), is meant to evaluate the ability to capture long-range dependencies between nodes.
The dataset consists of p undirected linear graphs with l nodes, with each graph having a label k ∈ {1, ..., p}.
The task is node classification of the graph label, where class information is contained only in the feature of
the first node in the chain; the node feature matrix X ∈ Rn×p for a graph with class k has X1,k = 1 and zeros
at all other indices. Perfect classification accuracy indicates that information is successfully propagated from
the first node to the final node in the chain. For our dataset, we use chains with length l = 100.

Counting Counting the number of agents in a group may be important in various multi-agent tasks. This
value can be used, for example, to calculate means, or in agent decisions which rely on group size. We
construct a dataset meant to evaluate the ability of GNNs to count in undirected chain graphs. Our dataset
consists of 50 graphs with 1-50 nodes. Since no informative node features are present for this task, we set

7

Published as a conference paper at ICLR 2025

node features as one-hot embeddings of node degrees. The prediction target for each node in a given graph is
the total number of nodes in that graph.

Sums For this task, we consider summation, a basic functional building block relevant for many multi-agent
tasks. For instance, in reinforcement learning tasks, agents might aim to perform actions that optimize their
collective rather than individual rewards, requiring each agent to sum the rewards associated with all other
agents. Many distributed and asynchronous algorithms exist for summation (Kempe et al., 2003). We construct
a dataset to evaluate the ability of GNNs to perform binary sums in undirected chain graphs. Our data are 2000
graphs with 50 nodes each, with different instantiations of binary node features xi ∈ {0, 1}. The prediction
target for each node in a given graph is ŷi :=

∑
i xi.

Coordinates A common task for multi-agent collectives such as robot swarms is localization. This problem
has previously been tackled in various ways that all employ a bespoke algorithm tailored for the task (Todescato
et al., 2016; Huang and Tian, 2017; 2018). We test the ability of GNNs to solve this problem on static graphs.
We construct a dataset where each node has a position in R2 and neighbors within some radius are connected
by an edge. We do not assume a global coordinate system; instead, we focus on relative localization, where
pairwise distances between nodes are maintained. Each node predicts a position in R2, and the objective is the
mean squared error between true pairwise node distances, and distances between their predicted positions. In
order to break symmetries, each node has a unique ID which is one-hot encoded and used as the node feature.
Distances to connected neighbors are provided as edge features. We generate 1500 random graphs where all
graphs consist of 20 nodes. We sample uniformly in the unit square to get node positions and connect nodes
by an edge if they are within a distance of 0.5.

MNIST “Terrain" The final synthetic task we consider is “terrain” classification. Suppose a number of
agents are placed in an environment where each agent performs some local measurement, and the agents must
collectively make predictions about some global state of the environment using only local communication.
For this experiment, we use MNIST images (those with 0/1 labels only) to represent the environment (LeCun
et al., 2010). Agents are placed at random locations in the image, and use the coordinates and pixel value at
their location as their node features. The prediction target for each agent is the image label. We resize the
images to 10× 10 pixels, and sample 10 random pixels for agent locations. Nodes share an edge if they are
within 5 pixels of each other. Unlike the previous synthetic tasks, in which existing distributed algorithms
can be applied, no bespoke algorithm exists for the MNIST terrain task. This is precisely the type of problem
which motivates the development of GNNs which are robust to asynchronous and distributed inference.

6.2 EXPERIMENTAL SETUP

For each synthetic task, we compare performance of energy GNNs to other implicitly-defined GNNs we
identified in Section 3. We employ three energy GNN architecture variants; node-wise, where messages
are constructed using information from individual nodes, edge-wise, where messages are constructed using
information pertaining to both nodes on an edge, including edge features, and edge-wise energy GNN with
neighborhood attention. In terms of other implicitly-defined GNNs, we focus on the fixed-point GNN
architecture IGNN defined by Gu et al. (2020) which is described in Appendix A, and against GSDGNN, an
optimization-based GNN which uses the objective from Equation (8). Two fixed point GNN architectures
identified in Section 3 are excluded: EIGNN (Liu et al., 2021) and the GNN proposed by Scarselli et al.
(2009). The former is excluded because the fixed point is solved for directly in the forward pass using
global information rather than iteratively using local information; the latter is excluded because fixed point
convergence may not be achieved. In addition to implicitly-defined GNNs, we also compare against two
common explicitly-defined GNN architectures; GCN (Kipf and Welling, 2017), and GAT (Veličković et al.,
2018).

The cost of the forward and backward pass (in terms of computation and/or memory) for implicitly-defined
GNNs is variable, depending on the number of iterations required for convergence. We mitigate this cost
during training in two ways. Since convergence for both fixed-point GNNs and optimization-based GNNs is
guaranteed implicit differentiation can be used to obtain gradients of the task-specific loss function L with
respect to parameters θ. This avoids unrolling the fixed-point iterations in the backward pass, and requires
a fixed amount of computation and memory. We derive the gradient in Appendix C. Furthermore, since the
solution of the forward pass is unique (i.e. not dependent on the initialization of H), the number of iterations
in the forward pass can be reduced by initializing H to be the solution from the previous epoch of training.

8

Published as a conference paper at ICLR 2025

In our work we employ both of these strategies during training. Additional training details for the synthetic
experiments are in Appendix F.

We additionally perform experiments on benchmark datasets MUTAG (Srinivasan et al., 1996), PROTEINS
(Borgwardt et al., 2005), and PPI (Hamilton et al., 2017) for node and graph classification to evaluate energy
GNNs as a synchronous GNN architecture. Although our objective is not performance in the synchronous
setting, we show that they are nevertheless competitive on each dataset. Details are provided in Appendix G.

6.3 RESULTS

In Table 1, we report synchronous performance of each GNN architecture on the synthetic tasks. For regression
tasks (counting, sums, coordinates) task performance is calculated as the root mean squared error over the
test dataset normalized by the root mean value of the test dataset prediction targets. For classification tasks
(chains, MNIST) task performance is calculated as the mean test dataset classification error. Table 1 reports
performance for each task, with mean and standard deviation taken across 10 dataset folds and 5 random
parameter seeds.

The results of the synthetic experiments empirically demonstrate the superiority of our energy GNN architecture
compared to other implicitly-defined GNNs. The node-wise energy GNN architecture improves performance
over IGNN and GSDGNN, which we attribute to the use of PICNNs. When edge-wise rather than node-wise
information is used in constructing messages to neighbors, further improvements in performance are observed.
The strong performance on tasks requiring long-distance communication between nodes for correct predictions
(chains, counting, and sums) shows that our architecture is capable of capturing long-range dependencies
between node predictions.

Table 1: Task performance on test data, reported as percentage error (relative root mean squared error for COUNT, SUM,
COORDINATES). Mean and standard deviation are across 10 random seeds and 5 train/test splits. Although inference on
these experiments is done synchronously, the poor performance of the explicitly-defined GCN and GAT can be attributed
to their depth-limited ability to propagate information.

MODEL CHAINS COUNT SUM COORDINATES MNIST

IGNN 26.9± 13.3 40.2± 5.5 12.8± 0.8 52.0± 5.5 30.4± 0.7
GSDGNN 35.9± 6.3 40.3± 0.6 13.3± 0.2 44.0± 1.0 29.3± 0.6
ENERGY GNN NODE-WISE 15.8± 17.9 19.5± 1.7 12.2± 0.7 41.3± 2.4 13.8± 0.8
ENERGY GNN EDGE-WISE 1.2± 2.2 4.0± 3.6 4.9± 3.3 33.5± 3.2 13.0± 0.6
ENERGY GNN + ATTENTION 0.25± 0.5 3.6± 3.8 6.0± 4.0 30.9± 1.8 13.8± 0.8

GCN 47.0± 0.0 40.7± 1.0 13.1± 0.3 53.2± 0.9 29.7± 0.5
GAT 47.0± 0.0 41.5± 0.8 12.9± 0.5 39.3± 1.0 15.3± 3.2

Table 2: Decrease in task performance (decrease in accuracy for CHAINS, MNIST, and increase in relative RMSE for
COUNT, SUM, COORDINATES) observed from switching from synchronous to asynchronous inference on sub-sample
of test data (10 samples) using one trained model instance. Mean and standard deviation are across 5 asynchronous runs.
The poor performance of GCN and GAT are consistent with the expected unreliability of explicitly-defined GNNs with
asynchronous inference. Decreases in task performance for all implicitly-defined GNNs (IGNN, GSDGNN, and energy
GNN variants) is less than 0.1% (i.e. result from numerical error); these values are omitted from the table for concision.

MODEL CHAINS COUNT SUM COORDINATES MNIST

GCN 38.8± 3.3 584.6± 42.4 2.6± 0.2 63.4± 0.0 37.4± 10.3
GAT 6.6± 1.8 250.3± 58.6 45.1± 2.1 97.0± 34.4 50.4± 3.5

In Table 2, we demonstrate empirically that explicitly-defined architectures such as GCN and GAT perform
poorly and unreliably under asynchrony, with task performance decreasing for all experiments. In our
experiments, we simulate asynchronous inference; our algorithm is in Appendix E. In most cases the variance
of the performance decrease is large as a result of inconsistent predictions under different random node
update schedules and communication delays. In cases where the variance is low, we observe that predictions

9

Published as a conference paper at ICLR 2025

for different random schedules collapse to the same/similar values due to non-linearities in the architecture.
For implicitly-defined GNNs, the decrease in performance under asynchronous inference is less than 0.1%,
empirically confirming the convergence guarantees given by Proposition 4.1 and Proposition 4.2.

7 RELATED WORK

Dudzik et al. (2023) axiomatically derive GNN layers which are invariant to asynchrony. For instance, using
max-aggregation for messages is by construction invariant to asynchrony; messages from neighbors can be
processed as they arrive rather than waiting for all inputs to be available, and the final aggregated message will
still be correct. Later work in this thread aims at enforcing asyncrony invariance through a self-supervised loss
function rather than using layers which are asynchrony invariant by construction (Monteagudo-Lago et al.,
2024). The motivation for this line of work is to apply GNNs for neural algorithmic reasoning, where the GNN
is trained to emulate classical algorithms such as the Bellman-Ford algorithm. Enforcing asyncrony invariance
in the GNN serves to improve alignment between the algorithm to be learned and the GNN computation.
The asynchronous model of computation used in these works differs from ours in that nodes must maintain
information from all layers in the GNN, rather than executing layer-wise.

Faber and Wattenhofer (2024) also explore asynchronous communication between nodes during GNN inference.
Their approach consists of processing node updates in a queue, rather than applying all node updates in a
layer in parallel. The goal of their work is to leverage sequential node updates to improve under-reaching and
over-squashing in learned node embeddings. Asynchronous execution in their model is deterministic in that
there are no random delays in communication between nodes; nodes receive messages and perform updates
in the same order across different runs. They show that random delays and node update orderings leads to
unstable training and results in decreased task performance. This makes their approach unsuitable for the
settings we consider, in which asynchrony is not controlled.

8 CONCLUSION

GNNs have the potential to provide learning frameworks for decentralized multi-agent systems, with appli-
cations to robotics, remote sensing, and other domains. However, asynchronous execution and unreliable
communication between agents are common features in real-world deployment, and conventional GNN
architectures do not generate reliable predictions in this setting. In this work, we characterize the class of
implicitly-defined GNNs as being provably robust to partially asynchronous inference. Motivated by lack
of diversity in this class of architectures, we contribute a novel addition in the form of energy GNNs, which
achieve better performance than other implicitly-defined GNNs on a number of synthetic multi-agent tasks.

The positive results of our synthetic experiments motivates additional work in applying GNN architectures to
multi-agent systems, particularly making use of implicitly-defined GNNs to generate state representations for
control tasks, rather than for prediction tasks. A specific line of work which we expect to be interesting is
real-time inference on dynamic graphs because of the relevance to problems in, e.g., robotics. Distributed and
asynchronous inference for datasets consisting of large graphs, where inference must be distributed among
multiple processors due to scale, is another application for implicitly-defined GNNs which should be explored.

There are several limitations of this work, particularly in training implicitly-defined GNNs. The forward pass re-
quires convergence of node embeddings via a fixed point iteration, and requires an amount of time/computation
that cannot be known in advance. During training, we decrease the number of iterations required for conver-
gence by initializing node embeddings to those from the previous epoch of training. Real-time inference in
multi-agent systems is likely to also enjoy the benefits of a warm-start initialization. This is because the graph
features and structure are often expected to change slowly over time, meaning that after an initial “boot-up”
from random initialization, a continuously operating implicitly-defined GNN is likely to have embeddings
initialized close to the solution from one time step to the next (assuming the node embeddings H∗ are not
extremely sensitive to small changes in the graph). For optimization-based GNNs using gradient-based
optimization in the forward pass, the condition number of the Hessian of Eθ affects the convergence rate, but
is difficult to control. Similarly, if Fθ is poorly conditioned in fixed-point GNNs, convergence can be slow
and is susceptible to numerical instability. During training, we use implicit differentiation to obtain gradients
w.r.t. parameters rather than simple backpropagation; this avoids unrolling through the iterative process
in the forward pass, but requires solving a linear system using the Hessian of Eθ (for optimization-based
GNNs) or the Jacobian of Fθ (for fixed-point GNNs), either of which may be poorly conditioned. Finally,
operationalizing the theoretical results may require constants that are not readily available.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was partially supported by NSF grants IIS-2007278 and OAC-2118201.

11

Published as a conference paper at ICLR 2025

REFERENCES

B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, pages 146–155. PMLR, 2017.

D. P. Bertsekas. Distributed asynchronous computation of fixed points. Mathematical Programming, 27(1):
107–120, 1983.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: Numerical methods, 1989.

J. Blumenkamp, S. D. Morad, J. Gielis, Q. Li, and A. Prorok. A framework for real-world multi-robot systems
running decentralized gnn-based policies. 2022 International Conference on Robotics and Automation
(ICRA), pages 8772–8778, 2021.

K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P. Kriegel. Protein function
prediction via graph kernels. Bioinformatics, 21:i47–i56, 2005.

A. J. Dudzik, T. von Glehn, R. Pascanu, and P. Veličković. Asynchronous algorithmic alignment with cocycles.
In The Second Learning on Graphs Conference, 2023. URL https://openreview.net/forum?
id=ba4bbZ4KoF.

V. P. Dwivedi, L. Rampášek, M. Galkin, A. Parviz, G. Wolf, A. T. Luu, and D. Beaini. Long range graph
benchmark. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022. URL https://openreview.net/forum?id=in7XC5RcjEn.

L. Faber and R. Wattenhofer. Gwac: Gnns with asynchronous communication. In Proceedings of the Second
Learning on Graphs Conference, Proceedings of Machine Learning Research. PMLR, 27–30 Nov 2024.
URL https://proceedings.mlr.press/v231/faber24a.html.

F. Gama, Q. Li, E. V. Tolstaya, A. Prorok, and A. Ribeiro. Synthesizing decentralized controllers with graph
neural networks and imitation learning. IEEE Transactions on Signal Processing, 70:1932–1946, 2020.

J. Gasteiger, A. Bojchevski, and S. Günnemann. Combining neural networks with personalized pagerank for
classification on graphs. In International Conference on Learning Representations, 2019.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum
chemistry. In International Conference on Machine Learning, pages 1263–1272. PMLR, 2017.

M. Goarin and G. Loianno. Graph neural network for decentralized multi-robot goal assignment. IEEE
Robotics and Automation Letters, 9(5):1–8, May 2024. ISSN 2377-3766. doi: 10.1109/LRA.2024.3371254.
Publisher Copyright: © 2016 IEEE.

W. Gosrich, S. Mayya, R. Li, J. Paulos, M. Yim, A. Ribeiro, and V. Kumar. Coverage control in multi-robot
systems via graph neural networks. In 2022 International Conference on Robotics and Automation (ICRA),
pages 8787–8793, 2022. doi: 10.1109/ICRA46639.2022.9811854.

D. Grattarola, L. Livi, and C. Alippi. Learning graph cellular automata. Advances in Neural Information
Processing Systems, 34:20983–20994, 2021.

F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui. Implicit graph neural networks. In Advances in
Neural Information Processing Systems, volume 33, pages 11984–11995, 2020.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30, 2017.

W. L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 14(3):1–159, 2020.

X. Huang and Y.-P. Tian. Localization in sensor networks with communication delays and package losses.
In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 3974–3979, 2017. doi:
10.1109/CDC.2017.8264244.

X.-Z. Huang and Y.-P. Tian. Asynchronous distributed localization in networks with communication delays
and packet losses. Automatica, 96:134–140, 10 2018.

12

https://openreview.net/forum?id=ba4bbZ4KoF
https://openreview.net/forum?id=ba4bbZ4KoF
https://openreview.net/forum?id=in7XC5RcjEn
https://proceedings.mlr.press/v231/faber24a.html

Published as a conference paper at ICLR 2025

C. Jiang, X. Huang, and Y. Guo. End-to-end decentralized formation control using a graph neural network-
based learning method. Frontiers in Robotics and AI, 10, 2023. ISSN 2296-9144. doi: 10.3389/
frobt.2023.1285412. URL https://www.frontiersin.org/journals/robotics-and-ai/
articles/10.3389/frobt.2023.1285412.

J. Jiang and Z. Lu. Learning attentional communication for multi-agent cooperation. In Neural Information
Processing Systems, 2018.

J. Jiang, C. Dun, T. Huang, and Z. Lu. Graph convolutional reinforcement learning. In ICLR, 2020.

D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In 44th Annual
IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages 482–491. IEEE, 2003.

A. Khan, E. V. Tolstaya, A. Ribeiro, and V. R. Kumar. Graph policy gradients for large scale robot control. In
Conference on Robot Learning, 2019.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Q. Li, F. Gama, A. Ribeiro, and A. Prorok. Graph neural networks for decentralized multi-robot path planning.
CoRR, abs/1912.06095, 2019. URL http://arxiv.org/abs/1912.06095.

J. Liu, K. Kawaguchi, B. Hooi, Y. Wang, and X. Xiao. Eignn: Efficient infinite-depth graph neural networks.
In Advances in Neural Information Processing Systems, 2021.

Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah. A unified view on graph neural networks as graph signal
denoising, 2021.

Monteagudo-Lago, A. Rosinski, A. J. Dudzik, and P. Veličković. Asynchrony invariance loss functions for
graph neural networks. In ICML 2024 Workshop on Geometry-grounded Representation Learning and
Generative Modeling, 2024. URL https://openreview.net/forum?id=eeEMjpO2Kv.

K. Nakashima, S. Kamiya, K. Ohtsu, K. Yamamoto, T. Nishio, and M. Morikura. Deep reinforcement
learning-based channel allocation for wireless lans with graph convolutional networks. 2019 IEEE 90th
Vehicular Technology Conference (VTC2019-Fall), pages 1–5, 2019.

F. Niu, B. Recht, C. Re, and S. Wright. Hogwild!: A lock-free approach to parallelizing stochastic gradient
descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 24, 2011.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605.

A. Srinivasan, S. H. Muggleton, M. J. Sternberg, and R. D. King. Theories for mutagenicity: A study in
first-order and feature-based induction. Artificial Intelligence, 85(1-2):277–299, 1996.

M. Todescato, A. Carron, R. Carli, A. Franchi, and L. Schenato. Multi-robot localization via gps and relative
measurements in the presence of asynchronous and lossy communication. In 2016 European Control
Conference (ECC), pages 2527–2532, 2016. doi: 10.1109/ECC.2016.7810670.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks. In
International Conference on Learning Representations, 2018.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
ryGs6iA5Km.

Y. Yang, T. Liu, Y. Wang, Z. Huang, and D. Wipf. Implicit vs unfolded graph neural networks, 2021.

L. Zhou, V. D. Sharma, Q. Li, A. Prorok, A. Ribeiro, P. Tokekar, and V. R. Kumar. Graph neural networks
for decentralized multi-robot target tracking. 2022 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), pages 195–202, 2021.

M. Zhu, X. Wang, C. Shi, H. Ji, and P. Cui. Interpreting and unifying graph neural networks with an
optimization framework. In Proceedings of the Web Conference 2021, pages 1215–1226, 2021.

13

https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2023.1285412
https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2023.1285412
http://arxiv.org/abs/1912.06095
https://openreview.net/forum?id=eeEMjpO2Kv
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Published as a conference paper at ICLR 2025

A GNN ARCHITECTURES

Graph Convolutional Networks GCNs (Kipf and Welling, 2017) replace the adjacency matrix A with the
symmetric normalized adjacency matrix with added self-loops, Ã = (D + I)−

1
2 (A+ I)(D + I)−

1
2 . With

node embeddings initialized to be equal to the node features, f ℓ
θ is defined as:

mℓ
i :=

∑
j∈N (i) Ãi,jθ

ℓ
mhℓ

j hℓ+1
i := ReLU(mℓ

i), (18)

where θℓm ∈ Rk(ℓ)×k(ℓ)

. This update can be succinctly described at the graph level
as Hℓ+1 = ReLU(ÃHℓW ℓ). Note that for explicitly-defined message passing GNNs which have
L layers, such as GCN, it is impossible to propagate information farther than L hops.

Graph Attention Networks GATs (Veličković et al., 2018) apply an attention mechanism to determine the
weighting of information from different neighbors. With node embeddings initialized to be equal to the node
features, f ℓ

θ is defined as:

αi,j =
exp

(
LeakyReLU((θℓa)

T [θℓmhi||θℓmhj])
)∑

k∈N (i) exp
(
LeakyReLU((θℓa)

T [θℓmhi||θℓmhj])
) (19)

mℓ
i :=

∑
j∈N (i) αi,jθ

ℓ
mhℓ

j (20)

hℓ+1
i := ReLU(mℓ

i), (21)

where θℓm ∈ Rq×k(ℓ)

, and θℓa ∈ R2q are additional parameters used in aggregation. Multiple attention heads
can be used, in which there are k aggregation functions with their own parameters. The messages generated by
each of the attention heads are either concatenated or averaged to generate a single message mℓ

i .

Implicit Graph Neural Networks (IGNNs) IGNNs Gu et al. (2020) are a fixed point GNN architecture,
in which each parameterized node update layer is contractive with respect to the node embeddings. For
simplicity, we assume a single parameterized layer fθ and exclude the layer superscript from our notation.
The parameterized node embedding update is repeated for steps t = 0, ..., T − 1, where the stopping point T
is determined by when node embeddings converge (within some numerical tolerance). IGNNs use a similar
embedding update function as GCN, but add node features as an additional input to the update function. A
layer fθ is defined as:

mi(t) :=
∑

j∈N (i) Ãi,jθmhj(t) hi(t+ 1) := u(mi(t) + g(xi; θu)), (22)

where θm ∈ Rk×k, gθ : Rn×p → Rn×k and ϕ is a component-wise non-expansive function such as ReLU.
Convergence is guaranteed by constraining ||θm||∞ < λpf (Ã)−1, where λpf (Ã) is the maximum eigenvalue
of ˜|A|. This ensures that the update is contractive, a sufficient condition for convergence. Since the fixed point
is unique, hi(0) can be initialized arbitrarily (although convergence time will vary).

Efficient Implicit Graph Neural Networks (EIGNNs) EIGNNs Liu et al. (2021) are another fixed point
GNN architecture which are very similar to IGNNs. The message passing iteration is constructed such that
a closed-form solution can be obtained for the fixed point of a layer, which is more efficient than iterating
message passing to convergence. A layer fθ is defined as:

mi(t) :=
∑

j∈N (i) γαÃi,j(θm)T (θm)hj(t) hi(t+ 1) := mi(t) + xi, (23)

where θm ∈ Rk×k, α > 0 is a scaling factor equal to 1
||(θm)T (θm)||F+ϵ

with arbitrarily small ϵ, and γ ∈ (0, 1]

is an additional scaling factor. The overall scaling factor γα is chosen to ensure that the update is contractive,
from which it follows that the sequence of iterates converges.

Nonlinear Fixed Point GNN Scarselli et al. (2009) introduce a general nonlinear fixed point GNN whose
update can be written as

mi(t) =
∑

j∈N (i)

m(hi(t),hj(t),xi,xj , eij ; θm) (24)

hi(t+ 1) = u(mi(t),hi(t),xi; θu). (25)
where m and u are multi-layer neural networks. As we discuss in Section 3, this flexible parameterization of
message passing comes at a cost: it is difficult to enforce that the overall update is definitely contractive.

14

Published as a conference paper at ICLR 2025

B INPUT-CONVEX GNN ARCHITECTURE DETAILS

As in Amos et al. (2017), we construct a parametric family of neural networks fθ(x,y) with inputs x ∈
Rn,y ∈ Rm which are convex with respect to y (i.e. a subset of the inputs). An L-layer partially convex
neural network is defined by the following recurrences:

uℓ+1 = g̃ℓ(W̃ℓuℓ + b̃ℓ)

zℓ+1 = gℓ(

W
(z)
ℓ (zℓ ◦ [W (zu)

ℓ uℓ + b
(z)
ℓ]+)+

W
(y)
ℓ (y ◦ (W (yu)

ℓ uℓ + b
(y)
ℓ))+

W
(u)
ℓ uℓ + bℓ)

fθ(x,y) = zL, u0 = x, z0 = 0

Provided the W (z) are elementwise nonnegative for all layers ℓ, and the activation functions gℓ are non-
decreasing in each argument, it follows that fθ is convex in y.

In the context of an energy GNN, Eθ is comprised of two PICNNs, specialized to operate on graph structures;
we refer to the resulting architecture as a partially input-convex GNN (PICGNN). The message function
m in Equation (17) corresponds to a PICNN which has node embeddings hi, i = 1, . . . , n as its convex
inputs (all other features are non-convex inputs). A second PICNN corresponds with the update function u in
Equation (16), which is convex in the node embeddings and the messages computed by the message function,
and nonconvex in the node features. The graph energy Eθ can then be written as the sum of the outputs of the
second PICNN.

B.1 NEIGHBORHOOD ATTENTION

We can incorporate a neighborhood attention mechanism in the PICGNN by modifying the aggregation of
messages mi as follows:

mi =
∑

j∈N (i) αi,jm(hi,hj ,xi,xj , eij ; θm) where (26)

αi,j =
exp

(
LeakyReLU(θa)

T [θmx
xi||θmx

xj ||θme
eij])

)∑
k∈N (i) exp

(
LeakyReLU((θa)

T [θmxxi||θmxxj ||θmeeij])
) (27)

where θmx
∈ Rq×p, θme

∈ Rs×r and θa ∈ R2q+s are additional parameters used in aggregation. As in GATs,
multiple attention heads can be used, in which there are k aggregation functions with their own parameters.
The messages generated by each of the attention heads are either concatenated or averaged to generate a single
message mi.

C IMPLICIT DIFFERENTIATION

Since we use an optimization procedure to compute the node embeddings within the forward pass in implicitly-
defined GNNs, we need to obtain derivatives of the node embeddings with respect to the parameters of the
model. We compute derivatives by implicitly differentiating the optimality conditions. For fixed-point GNNs,
we use the fact that at the fixed point, we have parameters θ∗ ∈ Rp and node embeddings H∗ ∈ Rn×k such
that:

g(H∗, θ) = fθ(H
∗)−H∗ = 0. (28)

For optimization-based GNNs, we use the fact that at the solution of the minimization problem, we have:

g(H∗, θ) =
∂Eθ∗

∂H
(H∗) = 0. (29)

Let h∗(θ∗) = H∗, so that we can write the optimality conditions in terms of the parameters only:

g(h∗(θ∗), θ∗) = 0. (30)

15

Published as a conference paper at ICLR 2025

Given an objective L : Rp 7→ R, the desired quantity is the total derivative of L with respect to the parameters.
By the chain rule,

dL
dθ

=
∂L
∂h∗

dh∗

dθ
+

∂L
∂θ

. (31)

We compute ∂L
∂h∗ and ∂L

∂θ using normal automatic differentiation, and the solution Jacobian dh∗

dθ using implicit
differentiation. Notice that, at the fixed point (where the optimality constraint is satisfied), we have:

d

dθ
g(h∗(θ), θ) = 0 (32)

∂g

∂h∗
dh∗

dθ
+

∂g

∂θ
= 0 (33)

∂g

∂h∗
dh∗

dθ
= −∂g

∂θ
. (34)

This is the primal (or tangent) system associated with the constraint function g. In our setup we utilize reverse
mode automatic differentiation, since p≫ 1 parameters are mapped to a single scalar objective. Provided ∂g

∂h∗

is invertible, we can rewrite the solution Jacobian as:
dh∗

dθ
= −(∂g

∂h∗)
−1 ∂g

∂θ
, (35)

and substitute this expression into Equation (31) as follows:

dL
dθ

= − ∂L
∂h∗ (

∂g

∂h∗)
−1 ∂g

∂θ
+

∂L
∂θ

. (36)

For reverse mode, we compute the dual (or adjoint) of this equation,

dL
dθ

T

= −∂g

∂θ

T

(
∂g

∂h∗)
−T ∂L

∂h∗

T

+
∂L
∂θ

T

, (37)

And solve the dual system:
∂g

∂h∗

T

λ = − ∂L
∂h∗

T

(38)

for the dual variable λ.

D PROOF OF CONVERGENCE UNDER PARTIAL ASYNCHRONY

Our guarantee of convergence uses the classical result from Bertsekas and Tsitsiklis (1989, Chapter 7.5),
which depends on several formal assumptions. We reproduce these assumptions here, in the notation used
in the present paper, and address how they are satisfied in our problem setting. In the following, si(t) is
the “search direction” taken by node i, i.e., the vector used by node i to take optimization step. Ideally, this
would be the negative gradient −∇hi

Eθ, but partial asynchrony means it may be a vector constructed from
stale information. Our goal is to show that convergence of the optimization is nevertheless guaranteed. We
use h ∈ Rnk to denote the unrolled embeddings H .
Assumption D.1 (Bertsekas and Tsitsiklis (1989) Assumption 5.1)

(a) There holds Eθ(h) ≥ 0 for every h ∈ Rnk.

(b) (Lipschitz Continuity of ∇Eθ) The function Eθ is continuously differentiable and there exists a
constant K1 such that

||∇Eθ(h)−∇Eθ(h
′)|| ≤ K1||h− h′||, ∀h,h′ ∈ Rnk

For part (a), since both convexity and absolute continuity are preserved under nonnegative summation, the
graph energy E given in Equation (5) is a smooth, strictly convex function. Without loss of generality,
we can assume the node energies eiθ described in Equation (5) satisfy eiθ(hi) ≥ 0 for all hi ∈ Rdi . This
follows because the eiθ are strictly convex, therefore the optimal value p∗i = inf{eiθ(hi)} is achieved and
thus ẽi = eiθ + p∗i is nonnegative. Thus, we have that the graph energy is the sum of nonnegative terms:
Eθ(h1,h2, . . . ,hn) ≥ 0 for all (h1,h2, . . . ,hn) ∈ Rnk.

For part (b), the assumption of the eiθ having a bounded Hessian implies that their sum also has a bounded
Hessian, which further implies Lipschitz continuity of the gradient of Eθ.

16

Published as a conference paper at ICLR 2025

Assumption D.2 (Bertsekas and Tsitsiklis (1989) Assumption 5.5)
(a) (Block-Descent) There holds si(t)⊤∇hi

Eθ(h(t)) ≤ −||si(t)||2/K3 for all i and all t ∈ T i.

(b) There holds ||si(t)|| ≥ K2||∇hiEθ(h(t))|| for all i and all t ∈ T i.

For part (a), the situation is slightly more complex than the conventional optimization setup, as the gradients
for the search direction si(t) are being computed from potentially-outdated neighbor embeddings, rather than
it being the gradients themselves that are outdated. Writing the negative search direction for node i at time t in
terms of the update times τ(t), we have

s̄i(t) := −si(t) (39)

= ∇hi
eiθ(h1(τ

i
1(t)), . . . ,hn(τ

i
n(t))) +

∑
j∈N (i)

∇hi
ejθ(h1(τ

j
1 (τ

i
j(t))), . . . ,hn(τ

j
n(τ

i
j(t)))), (40)

where the the gradient communicated from node j may have used stale versions of the embedding both for
node i itself and for other nodes connected to j. Contrast this with the “true” gradient computed at i which
would be computed from its current estimate of the complete state of the graph:

∇hi
Eθ(h(t)) = ∇hi

eiθ(h1(τ
i
1(t)), . . . ,hn(τ

i
n(t))) +

∑
j∈N (i)

∇hi
ejθ(h1(τ

i
1(t)), . . . ,hn(τ

i
n(t))) . (41)

We introduce the following notation to simplify the exposition:

g
k/k′

j/i (t) := ∇hie
j
θ(h1(τ

k
1 (τ

k′

j (t))), . . .hn(τ
k
n(τ

k′

j (t)))) , (42)

which can be read as “gradient of ejθ with respect to hi from the perspective of node k at the time corresponding
to some node k′’s view of node j at time t.”. With this notation, we define

s̄i(t) = g
i/i
i/i(t) +

∑
j∈N (i)

g
j/i
j/i(t) ∇hi

Eθ(h(t)) = g
i/i
i/i(t) +

∑
j∈N (i)

g
i/j
j/i(t) . (43)

We wish to show that the inner product between s̄i(t) and ∇hiEθ(h(t)) is greater than ||si(t)||2/K3, for
some K3 > 0 and all i and t.
Lemma D.3
There exists an α > 0 such that s̄i(t)⊤∇hi

Eθ(h(t)) ≥ ||si(t)||2/K3.
Proof. Starting with the squared error in the negative search direction:

||s̄i(t)−∇hiEθ(h(t))||22 = (s̄i(t)−∇hi
Eθ(h(t)))

⊤(s̄i(t)−∇hi
Eθ(h(t))) (44)

= ||s̄i(t)||22 + ||∇hi
Eθ(h(t))||22 − 2s̄i(t)

⊤∇hi
Eθ(h(t)) (45)

we find an expression for the inner product:

s̄i(t)
⊤∇hiEθ(h(t)) =

1

2

(
||s̄i(t)||22 + ||∇hiEθ(h(t))||22 − ||s̄i(t)−∇hiEθ(h(t))||22

)
. (46)

and so we require the following to be greater than or equal to zero:

s̄i(t)
⊤∇hi

Eθ(h(t))− ||s̄i(t)||2/K3

=
1

2

(
(1− 2

K3
)||s̄i(t)||22 + ||∇hiEθ(h(t))||22 − ||s̄i(t)−∇hiEθ(h(t))||22

)
(47)

We can use the triangle inequality to find an upper bound on the term being subtracted:

||s̄i(t)−∇hi
Eθ(h(t))||2 =

∥∥∥∥∥∥
g

i/i
i/i(t) +

∑
j∈N (i)

g
j/i
j/i(t)

−
g

i/i
i/i(t) +

∑
j∈N (i)

g
i/j
j/i(t)

∥∥∥∥∥∥
2

(48)

=

∥∥∥∥∥∥
∑

j∈N (i)

g
j/i
j/i(t)− g

i/j
j/i(t)

∥∥∥∥∥∥
2

(49)

≤
∑

j∈N (i)

||gj/ij/i(t)− g
i/j
j/i(t)||2 (50)

=
∑

j∈N (i)

||∇hie
j
θ(h1(τ

j
1 (τ

i
j(t))), . . . ,hn(τ

j
n(τ

i
j(t))))−∇hie

j
θ(h(τ

i(t)))||2 .

(51)

17

Published as a conference paper at ICLR 2025

Any difference between the states h(τ j(τ ij(t))) and h(τ i(t)) would arise because node i and node j observe
different staleness states of one or more of their shared neighbors j′; these different staleness states correspond
to differences in the number of gradient steps taken by shared neighbors j′, as observed by node i and j. Note
that we can assume that node i and j agree on the values of neighbors j′ of either node i or j which are not
shared between them. Assuming the norm of the gradient is bounded, i.e., ||∇hj′ e

k
θ ||2 ≤ K0, and the number

of neighbors a node has is bounded, i.e., |N (j′)| ≤ nmax, then the staleness bound B and the step size α imply

||h(τ j(τ ij(t)))− h(τ i(t))||2 ≤ αB0K0 where B0 := 2nmax|N (i) ∩N (j)|B , (52)

where we assume N (k) includes node k itself. The constant 2 in the inequality above arises because the
staleness of the gradient received by node i from node j is outdated by at most B time units, and node j’s
view of its neighbor embeddings is also outdated by at most B time units; this means the staleness of the
embeddings in the gradient received by node i is stale by at most 2B time units. The Lipschitz continuity
condition then gives

||∇hi
ejθ(h(τ

j(τ ij(t))))−∇hi
ejθ(h(τ

i(t)))||2 ≤ αB0K0K1 (53)

and therefore

s̄i(t)
⊤∇hi

Eθ(h(t))− ||s̄i(t)||2/K3 (54)

=
1

2

(
(1− 2

K3
)||s̄i(t)||22 + ||∇hiEθ(h(t))||22 − ||s̄i(t)−∇hiEθ(h(t))||22

)
(55)

≥ 1

2

(
(1− 2

K3
)||s̄i(t)||22 + ||∇hi

Eθ(h(t))||22 − (α|N (i)|B0K0K1)
2

)
. (56)

We can therefore satisfy the assumption by choosing α > 0 such that

(1− 2
K3

)||si(t)||22 + ||∇hi
Eθ(h(t))||22

(|N (i)|B0K0K1)2
≥ α2 . (57)

For part (b) we require there to exist a lower bound on the magnitude of si(t) relative to the magnitude of the
true gradient; this prevents the step from being too small.
Lemma D.4
There exists an α > 0 such that s̄i(t)⊤∇hiEθ(h(t)) ≥ K2||∇hiEθ(h(t))||2.

Proof. We can use a nearly identical argument to that done above in part (a), but instead of Equation (54) we
write

s̄i(t)
⊤∇hi

Eθ(h(t))−K2||∇hi
Eθ(h(t))||2 (58)

=
1

2

(
||s̄i(t)||22 + (1− 2K2)||∇hi

Eθ(h(t))||22 − ||s̄i(t)−∇hi
Eθ(h(t))||22

)
(59)

≥ 1

2

(
||s̄i(t)||22 + (1− 2K2)||∇hi

Eθ(h(t))||22 − (α|N (i)|B0K0K1)
2
)
. (60)

We can then choose α to be

||si(t)||22 + (1− 2K2)||∇hiEθ(h(t))||22
(|N (i)|B0K0K1)2

≥ α2 . (61)

Lemma D.5
If s̄i(t)⊤∇hi

Eθ(h(t)) ≥ K2||∇hi
Eθ(h(t))||2 then ||si(t)|| ≥ K2||∇hi

Eθ(h(t))||.
Proof. Noting that ||si(t)|| = ||s̄i(t)||, we have

||si(t)|| · ||∇hiEθ(h(t))|| ≥ s̄i(t)
⊤∇hiEθ(h(t)) ≥ K2||∇hiEθ(h(t))||2 . (62)

Dividing both the left and right sides by ||∇hiEθ(h(t))|| gives the desired result.

Having satisfied the assumptions, we can now apply the result that guarantees convergence.
Proposition D.1 (Bertsekas and Tsitsiklis (1989), Proposition 5.1). Under Assumptions 2.1, D.1, and
D.2, there exists some α0 > 0 (depending on n, B, K1, and K3) such that if 0 < α < α0

then limt→∞∇Eθ(h(t)) = 0.

18

Published as a conference paper at ICLR 2025

E ASYNCHRONOUS GNN IMPLEMENTATION

In our asynchronous inference experiments, we simulate partially asynchronous execution (see Algorithm 1).
We fix the maximum staleness bound to B = 5. Node updates are staggered across time and messages sent
between nodes can incur delays. In particular, when a node updates, its next update time is selected randomly
between time t+ 1 and t+ S, where S := 5 is the “stagger” time, and one of the last D := 2 values of its
neighbors is chosen for performing the node update. This satisfies assumptions 1 and 2 of partial asynchronism;
nodes update at least every S time units, and messages a node’s view of its neighbors is stale due to message
delay by at most D time steps.

F EXPERIMENT DETAILS (SYNTHETIC EXPERIMENTS)

F.1 ARCHITECTURE DETAILS

For all implicitly-defined GNN architectures, we use the same node embedding size with hi ∈ R2. The
architectures are chosen such that the number of parameters is approximately equal between models (with the
constraint of using the same node embedding size). All architectures employ an output function oϕ which is
parameterized as an MLP with layers (4, 4, 1) ((4, 4, 2) for the coordinates experiment, as node predictions
are positions in R2).

Energy GNN For energy GNN, we use a PICNN with layer sizes (4, 4, 2) for the message function m
in Equation (17) and a PICNN with layer sizes (4, 4, 1) for the update function u in Equation (16). The
aggregation in Equation (17) uses the entries of the unnormalized adjacency matrix A with no self-loops
added. We add an independently parameterized self-loop to the message passing function m (instead of using
the same parameters as for neighbors). We set β = 0.04.

Energy GNN + Attention For energy GNN with the attention mechanism, the attention weights αij are
computed as in Equation (19); however, to maintain convexity with respect to the embeddings, the node and
edge features (if present) are used in rather than using the embeddings h. We use 2 attention heads, where the
attention head outputs are concatenated to form the message mi in Equation (17).

GSDGNN For GSDGNN (where Equation (8) describes the optimization objective for obtaining embed-
dings), we parameterize gθ as an MLP with layer sizes (16, 16, 16, 2). We use the symmetric renormalized
Laplacian matrix L̃ = I − Ã = I − (D + I)−

1
2 (A+ I)(D + I)−

1
2 for the Laplacian regularization term,

and set γ = 1.0, β = 5.0. (Note that gradient-based optimization of this objective function has a direct
correspondence to the embedding update function of APPNP Gasteiger et al. (2019).)

IGNN For IGNN (described in Equation (22)), we parameterize gθ : Rn×p → Rn×k as an MLP with layer
sizes (16, 16, 16, 2).

GCN and GAT For GCN, we use 5 layers of message passing with layer sizes (10, 10, 10, 10, 10). For GAT,
we use 5 layers of message passing with layer sizes (3, 3, 3, 3, 3), and concatenate the output of 3 attention
heads at each layer.

F.2 TRAINING DETAILS

For binary classification experiments, we use binary cross entropy loss for training. For regression experiments,
we use mean squared error. We use the Adam optimizer with weight decay, where we set the optimizer
parameters as α = 0.001, β1 = 0.9, β2 = 0.999. We set the learning rate to 0.002, and use exponential decay
with rate 0.98 ever 200 epochs. In the forward pass for IGNN, we iterate on the node update equation until
convergence of node embeddings, with a convergence tolerance of 10−5. The maximum number of iterations
is set to 500. In the forward pass for the optimization-based GNNs, we use L-BFGS to minimize Eθ w.r.t node
embeddings, with a convergence tolerance of 10−5. The maximum number of iterations is set to 50. We train
for a maximum of 5000 epochs. These experiments were performed on a single NVIDIA RTX 2080 Ti.

19

Published as a conference paper at ICLR 2025

Algorithm 1 Simulated asynchronous GNN inference
Initialize each node in G with all GNN parameters, its own node features Xi, and for each of its neighbors
j, the node and edge features Xj , Eij , and weights Ai,j . Let L be the number of layers in the GNN, equal
to∞ for implicitly-defined GNNs. Let T be the total number of simulated node updates. Let n be the
number of nodes in the graph. Let S be the maximum number of time units between updates for any node,
and D be the maximum delay incurred by messages from neighbors.

procedure UPDATENODEOPT(H , X , E, A, θ, t, i)
▷ Sum of nodes current view of neighbors’ gradients ◁
gi ←

∑
j∈N (i)∪i gji(τ

i
j(t))

▷ Node latent update is a single gradient step ◁
hi ← hi − αgi
▷ Node gradient is updated with new latent value ◁

gij ← ∂eiθ
∂hj

(hj(τ
i
j(t))), ∀j ∈ N ∪ i

procedure UPDATENODEFINITE(H , X , E, A, θ, t, i)
▷ Update node message and latent ◁
mi ←

⊕
j∈N (i) m

ti
(
hi,hj(τ

i
j(t)),xi,xj , eij ; θ

ti
m

)
hi ← uti (mi,hi,xi; θ

ti
u)

procedure SIMULATEASYNC(X,E,A, L, T, n, S,D)
update_time← []
for i = 1, . . . , n do

▷ Initialize current iteration count. ◁
ti ← 0
▷ Randomly select first update time in (1, S) ◁
update_timei ∼ Uniform(1, S)
update_time[i]← update_timei
for j ∈ N (i) do

▷ Initialize staleness view of each neighbor ◁
τ ij ← 0

for t = 0, . . . , T do
update_nodes← {i = 1, . . . , n | update_time[i] == t}
for i ∈ update_nodes do

if ti < L then
for neighbors j of node i do

▷ Sample an updated stale view for node j ◁
(τ ij)

′ ∼ Uniform(0,min(t− τ ij , D))

τ ij ← t− (τ ij)
′

▷ Update the current node (finite GNN shown) ◁
UpdateNodeFinite(H , X , E, A, θ, ti, i)

▷ Randomly select next update time in (0, S) ◁
update_timei ∼ Uniform(1, S)
update_time[i]← t+ update_timei
▷ Increment current iteration ◁
ti ← ti + 1

else
▷ Use readout to compute output ◁
ŷi = oϕ(h

L
i)

20

Published as a conference paper at ICLR 2025

G EXPERIMENT DETAILS (BENCHMARK DATASETS)

G.1 DATASET DETAILS

The benchmark datasets we report performance for are MUTAG, PROTEINS, Peptides-func, and Peptides-
struct, where the prediction task is graph classification/regression, and PPI, where the prediction task is node
classification.

MUTAG MUTAG is a dataset consisting of 188 graphs, each of which corresponds to a nitroaromatic
compound (Srinivasan et al., 1996). The goal is to predict the mutagenicity of each compound on Salmonella
typhimurium. Nodes in the graphs correspond to atoms (and are associated with a one-hot encoded feature in
R7 corresponding to the atom type), and edges correspond to bonds. The average number of nodes in a graph
is 17.93, and the average number of edges is 19.79.

PROTEINS The PROTEINS dataset Borgwardt et al. (2005) consists of 1113 graphs, each of which
corresponds to a protein. The task is predicting whether or not the protein is an enzyme. Nodes in the graph
correspond to amino acids in the protein (and are associated with node features in R3 representing amino acid
properties). Edges connect amino acids that are less than some threshold distance from one another in the
protein. The average number of nodes is 39.06, and the average number of edges is 72.82.

Peptides-func & Peptides-struct The peptides-func and peptides-struct datasets Dwivedi et al. (2022)
consist of the same 15535 graphs, with different prediction targets. Each graph corresponds to a peptide;
nodes correspond to heavy atoms (and are associated with 9 categorical node features representing atom
properties) and edges correspond to bonds (and are associated with 3 categorical edge features representing
bond properties). For peptides-func, the prediction task is multi-label graph classification (10 classes) of the
peptide function. For peptides-struct, the prediction task is graph regression of various peptide properties (11
regression targets). The average number of nodes in a graph is 150.94, and average number of edges is 307.30.
We use a train/valid/test split consistent with Dwivedi et al. (2022).

PPI The PPI dataset (Hamilton, 2020) consists of 24 graphs, each of which corresponds to a protein-protein
interaction network found in different areas of the body. Each node in the graph corresponds to a protein,
with edges connecting proteins that interact with one another. Nodes are associated with features in R50,
representing some properties of the protein. Each protein has 121 binary prediction targets, each of which
corresponds to some ontological property that the protein may or may not have. We use a 20/2/2 train/valid/test
split consistent with Hamilton et al. (2017).

G.2 RESULTS

For all experiments with benchmark datasets, we use the same training procedure and architectures as
described in Appendix F. For node classification tasks, the final layer of output function oϕ is modified to
use layer sizes (4, 4, (num_classes)) where num_classes is the number of distinct class labels. For graph
classification/regression tasks, we obtain graph-level predictions by passing the mean of the node-level
predictions through a graph readout function parameterized by an MLP with layers (4, 4, (num_classes)).

For PROTEINS and MUTAG, we perform 10-fold cross validation and report average classification accuracy
and standard deviations in Table 3. For PPI, we use a 20/2/2 train/valid/test split consistent with Hamilton
et al. (2017), and report average micro-f1 scores in Table 4. For Peptides-func and Peptides-struct, we use a
train/valid/test split consistent with Dwivedi et al. (2022) and report average precision and mean average error,
respectively, in Table 5. Non-asterisked values correspond to our experimental setup, where the number of
parameters (and embedding dimension) is equal across architectures. When parameter numbers are equal, the
energy GNN architecture achieves the best performance on MUTAG, PPI, and Peptides-func, and achieves
competitive performance on PROTEINS and Peptides-struct. We note that these reported results are under
synchronous evaluation (similar to the synthetic experiments, Table 6 demonstrates that under asynchronous
execution, we observe a decrease in performance for GCN and GAT, the representative explicitly-defined
GNNs).

In Tables 3 and 4, we also include performance reported by other works (marked by an asterisk), which
correspond to architectures using a higher number of parameters and larger embedding dimensions. Where
layer specifications are not included (for asterisked values), we were unable to determine them from the cited

21

Published as a conference paper at ICLR 2025

DATASET

MODEL MUTAG PROTEINS

Energy GNN (edge-wise) 87.6 ± 3.4 72.5 ± 0.3
Energy GNN + attention 79.5 ± 1.8 72.5 ± 0.5
IGNN (1 layer) 73.0 ± 0.6 71.8 ± 1.3
GSD GNN 78.4 ± 2.2 72.8 ± 0.8
GCN (5 layer) 78.0 ± 1.4 73.7 ± 0.5
GAT (5 layer) 76.1 ± 1.5 71.7 ± 3.2

GCN* (Xu et al., 2019) (5 layer, embedding dimension=64) 85.6 ± 5.8 76.0 ± 3.2
IGNN* (Gu et al., 2020) (3 layer, embedding dimension=32) 89.3 ± 6.7 77.7 ± 3.4
GIN* (Xu et al., 2019) (5 layer, embedding dimension=64) 89.4 ± 5.6 76.2 ± 1.9

Table 3: Graph classification accuracy (%). Results are averaged (and standard deviations are computed) using
10 fold cross validation with 5 random parameter seeds. Asterisked values are obtained from the work cited.
Non-asterisked values correspond to architectures with the same number of parameters and 2-dimensional
embeddings.

MODEL micro f1

Energy GNN (edge-wise) 76.2
Energy GNN + attention 76.0
IGNN (1 layer) 75.5
GSD GNN 76.0
GAT (5 layer) 74.3
GCN (5 layer) 76.2

MLP* (Gu et al., 2020) 46.2
GCN* (Gu et al., 2020) 59.2
GraphSAGE* (Veličković et al., 2018) (3 layer, embedding dimensions=[512, 512, 726]) 76.8
GAT* (Veličković et al., 2018) (3 layer, embedding dimension=1024) 97.3
IGNN* (Gu et al., 2020) (5 layer, embedding dimensions=[1024, 512, 512, 256, 121]) 97.6

Table 4: Mean micro-F1 score for node classification on PPI dataset (%). Asterisked values are obtained from
the work cited. Non-asterisked values correspond to architectures with the same number of parameters and
2-dimensional embeddings.

paper. Experiments with larger energy GNN architectures, including multi-layer energy GNN architectures, is
left to future work.

22

Published as a conference paper at ICLR 2025

DATASET

MODEL Peptides-func (AP) Peptides-struct (MAE)

Energy GNN (edge-wise) 0.348 0.367
Energy GNN + attention 0.381 0.402
IGNN (1 layer) 0.211 0.426
GSD GNN 0.343 0.375
GCN (5 layer) 0.362 0.366
GAT (5 layer) 0.355 0.335

Table 5: Performance on Peptides-func (average precision) and Peptides-struct (mean average error) datasets
from the LRGB benchmarks. Values correspond to architectures with the same number of parameters and
2-dimensional embeddings.

DATASET

MODEL MUTAG (%) PROTEINS (%) PPI (micro f1) Peptides-
func (AP)

Peptides-
struct (MAE)

GCN (5 layer) 16.0 ± 10.2 24.0 ± 4.9 25.1 ± 9.5 0.194 ± 0.085 0.734 ± 0.041
GAT (5 layer) 28.0 ± 11.7 40.0 ± 5.8 29.4 ± 12.3 0.494 ± 0.031 0.335 ± 0.115

Table 6: Decrease in task performance observed from switching from synchronous to asynchronous inference on sub-
sample of test data (10 samples) using one trained model instance. Mean and standard deviation are across 5 asynchronous
runs. The poor performance of GCN and GAT are consistent with the expected unreliability of explicitly-defined GNNs
with asynchronous inference. Decreases in task performance for all implicitly-defined GNNs (IGNN, GSDGNN, and
energy GNN variants) is less than 0.1% of synchronous performance (i.e. result from numerical error); these values are
omitted from the table for concision.

23

	Introduction
	Preliminaries
	Partially Asychronous Algorithms
	Graph Neural Networks

	Explicitly-defined vs. Implicitly-defined GNNs
	Fixed-point GNNs
	Optimization-based GNNs

	Asynchronous GNN Inference
	Explicitly-defined GNN and Fixed-point GNN Inference under Partial Asynchronism
	Optimization-based GNN Inference under Partial Asynchrony

	Energy GNNs
	Experiments
	Synthetic Multi-Agent Tasks
	Experimental Setup
	Results

	Related work
	Conclusion
	GNN architectures
	Input-convex GNN architecture details
	Neighborhood Attention

	Implicit Differentiation
	Proof of Convergence Under Partial Asynchrony
	Asynchronous GNN implementation
	Experiment Details (Synthetic Experiments)
	Architecture details
	Training details

	Experiment Details (Benchmark Datasets)
	Dataset Details
	Results

