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Conclusion, Limitations, and Outlook

◼ Derived and tested a data-efficient and robust approach to 

life testing setups

◼ Potential disadvantage: models are equally considered in 

acquisition function, therefore data collection focussing on a 

highly improbable model may occur

◼ Outlook: enhance the approach to also perform model

selection

In material science and engineering, the lifetime of 

materials and products is estimated in costly and seldomly 

standardized procedures. We investigate a Bayesian life 

testing approach, increasing the data-efficiency of the 

procedure by introduction of prior knowledge. 

Unfortunately, we know that our assumptions may not be 

correct. Therefore, we develop an approach that is robust 

to incorrect assumptions and empirically demonstrate its 

effectiveness.

Accelerated Binary Testing - Setup

A typical life testing approach works as follows:

◼ Probe is put into a test bench

◼ (Accelerated) application of alternating stresses 𝑠, e.g., 

mechanical stresses, temperatures, electrical loads

◼ if probe breaks before predefined number of cycles, it is 

called a failure, else a survivor

◼ Store data in format: {stress 𝑠, outcome (survivor/failure)}

◼ Due to variation of product properties, the outcome is non-

deterministic

◼ Goal of experiments is to generate a sufficient statistic of 

failures and survivors to describe the failure probability of the 

product over stress

◼ The maximum stress a product is thought to withstand for its 

full lifetime is a location parameter ҧ𝑠 of the resulting 

distribution

Data-Efficient Bayesian Life Testing Approach

Please also refer to fig. 1.

Informed Machine Learning Module

◼ Historical life testing data is usually stored in aggregated 

form: {product properties; maximum stress ҧ𝑠}

◼ Use an informed Machine Learning model to connect 

historical data and (if available) expert knowledge to be able 

to predict the maximum stress ҧ𝑠 for other products

◼ Quantify uncertainty of the predictions, by e.g., using 

Bayesian Methods, Conformal Predictions, or Ensemble 

Models

Bayesian Inference Module

Express the Setup Mathematically – Likelihood and 

Posterior

◼ Probability of product to fail at stress 𝑠: 𝑝failure = Φ𝑚(𝑠)

◼ 𝑚 is the failure model, typically the distribution function of a 

heavy-tailed distribution such as a Gumbel, Weibull or Log 

Normal distribution

◼ Model 𝑚 is parametrized by at least location and scale ҧ𝑠, 𝛽

◼ Probability of a survivor: 𝑝survivor = 1 − Φ𝑚(𝑠)

◼ For a test series with failures 𝑖 and survivors 𝑗, we find:

𝑒𝑚 𝑠 = ς𝑖Φ𝑚 𝑠𝑖 ⋅ ς𝑗(1 − Φ𝑚(𝑠𝑗)) 

◼ Posterior, with priors 𝑝 ҧ𝑠 , 𝑝(𝛽) from Module 1: 

𝑔𝑚 ҧ𝑠, 𝛽 = 𝑝 ҧ𝑠 ⋅ 𝑝 𝛽 ⋅ 𝑒𝑚(𝑠)

Derived Quantities from the Posterior

◼ Maximum a Posteriori (MAP) Estimate

◼ Standard deviations of marginals, expressing uncertainty

◼ Acquisition Function: probability-weighted predictive entropy 

of evaluation at new stress 𝑠:

𝛼𝑚 𝑠 = − 𝐻 𝑔𝑚 ҧ𝑠, 𝛽 outcome 𝑠 = failure, 𝑠 ⋅ Φ𝑚 𝑠

+ 𝐻 𝑔𝑚 ҧ𝑠, 𝛽 outcome 𝑠 = failure, 𝑠 ⋅ (1 − Φ𝑚(𝑠)) 

Adversarially Robust Adaption of Acquisition Function

◼ The true underlying model 𝑚 is unknown, take a set of 

potential models 𝑀 into account

◼ find the stress improving the most uncertain model:

𝑠⋆ = argmax
𝑠∈𝑆

argmin
𝑚∈𝑀

𝛼𝑚(𝑠)

Case Study: Fatigue Strength Estimation

Background

◼ Fatigue strength is a quantity specific for steels: the value of 

stress at which failure occurs after 𝑁𝑓 cycles

◼ Costs of a single run: up to 60 days, 10 k€, if probe survives 

the limit of 𝑁𝑓 = 107 load cycles 

◼ Typical estimate: median of fatigue strength distribution – the 

load where half of the probes fails, will be ҧ𝑠 in the following

Machine Learning Module

◼ Learn a Gaussian Process Model for ҧ𝑠, given historical data 

and several steel properties

◼ Engineer the kernel according to the knowledge of the 

material experts

◼ Find a model with performance like the current state-of-the-

art one

Fig. 2: Best function regrets. Underlying ground truth is a 

Gumbel distribution, behavior of acquisition under various

model assumptions 𝑚, 100 repetitions.

Fig. 1: Life Testing Approach. While the similarity of products captured in the Machine Learning model, Bayesian Inference allows for

estimation of multiple relevant quantities given measurements. Data-efficiency is increased by introducing prior knowledge into both

the Machine Learning and the Bayesian Inference module.

Study: Acquisition Functions

◼ C15 steel for reference purposes, with median fatigue 

strength ҧ𝑠 = 400 𝑁, standard deviation of 100.4 𝑁, called Φ⋆ 

◼ Use different ground truth models and compare behavior of 

robust and non-robust acquisition functions 

◼ Compare the best estimate of the found distributions, 

parameterized by their MAP estimates መҧ𝑠, መ𝛽 
min
𝑡∈[1,𝑛]

|Φ⋆ −Φm෠ത𝑠,෡𝛽,𝑡
|

◼ Results see fig. 2
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