
Appendices

A More Training Details

We collect the training hyper-parameters in the following table.

sl-MNIST SHD PTB

batch size 256 256 32
weight decay 0.0 0.1 0.1

gradient norm 1.0 1.0 1.0

train/val/test
45k/5k/10k
samples

8k/1k/2k
samples

930k/74k/82k
words

learning rate 3.16 · 10−4 3.16 · 10−4 3.16 · 10−5

layers width 128, 128 256, 256 1700, 300
label smoothing 0.1 0.1 0.1
time step repeat 2 2 2

SELT factor 0.8 0.436 4.595

The learning rates were chosen after a grid search fixing dampening and sharpness to 1.
The learning rates considered are in the set {10−2, 3.16 · 10−3, 10−3, 3.16 · 10−4, 10−4, 3.16 ·
10−5, 10−5}. The results of the grid search are reported in figure 2. The learning rate
chosen for the rest of the paper was the one that made all the shapes perform reasonably
well, rectangular included. This mostly resulted in a suboptimal learning rate only for the
derivative of the fast sigmoid, which still out-performed the rest in the sl-MNIST and SHD,
and performed comparatively on the PTB.

We train with crossentropy loss, the AdaBelief optimizer (Zhuang et al., 2020), Stochastic
Weight Averaging (Izmailov et al., 2018) and Decoupled Weight Decay (Loshchilov and

Hutter, 2019). For the BiGamma distribution, we choose α = 5 and β =
√
α(α+ 1) =

5.47 to have a variance of 1. For the PTB task, the input passes through an embedding
layer before passing to the first layer, and the output of the last layer is multiplied by the
embedding to produce the output, removing the need for the readout (Woźniak et al., 2020;
Radford et al., 2018).

Notice that we do not implement forced refractory periods that would prevent the neuron
from firing too fast, as sometimes done in the neuromorphic literature, since we want to
reduce the non differentiable steps in the system. Thus, p = 1 is possible if the inputs are
strong and frequent enough.

B Neuron Model Complexity

The energy consumed per layer can be used as a metric of neuron complexity, as done in
(Yin et al., 2021; Hunger, 2005).

13

Neural
model

Energy (Complexity)

LIF (mnpl−1 + nnpl)EAC + nEMAC

ALIF (mnpl−1 + nnpl + 2npl)EAC + 3nEMAC

LSTM 4(mn+ nn)EMAC + 17nEMAC

sLSTM 4(mnpl−1 + nnpl)EAC + 3nplEAC

Table 1: Neuron complexity. We use the energy consumed per layer as a metric of neuron
complexity (Yin et al., 2021; Hunger, 2005). We use n = nl and m = nl−1 as the width
of the layer and its input, pl for the firing rate of the layer l. EMAC is the energy cost of
a multiply-accumulate operation and EAC of an accumulate operation. As shown, ALIF
always results in a larger number of operations and energy consumption than LIF . For
large networks, n,m ≫ 1, the square terms dominates, and the sLSTM results in 4 times
more energy consumption.

C Interplay between SG and Initialization

We show how each initialization has a different preferred SG, and viceversa, how each SG
has a different preferred initialization in figure 6. Best mean across SG is achieved by
the Orthogonal Normal initialization. Best mean across initializations is achieved by the
derivative of the fast-sigmoid and the exponential SG.

rectangular triangular exponential gaussian sigmoid fast sigmoid

(a) (b) (c)

He N
orm

al

He U
nif

orm

He B
iGam

ma

Glor
ot

Norm
al

Glor
ot

Unif
orm

Glor
ot

BiGam
ma

Orth
og

on
al

Norm
al

Orth
og

on
al

BiGam
ma

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Va
lid

at
io

n
Ac

cu
ra

cy

He N
orm

al

He U
nif

orm

Glor
ot

Unif
orm

He B
iGam

ma

Orth
og

on
al

Norm
al

Glor
ot

Norm
al

Orth
og

on
al

BiGam
ma

Glor
ot

BiGam
ma

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

 fa
st

sig
moid

exp
on

en
tia

l

 sig
moid

ga
uss

ian

tria
ng

ula
r

rec
tan

gu
lar

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Figure 6: Orthogonal initialization leads to higher accuracy on the LIF network.
Results for a LIF network trained on the SHD task. (a) Best accuracy when different SG
trainings are initialized with different schemes. (b) Results aggregated across SG shapes.
Overall, He initialization, in orange, achieves the best extreme values, but the Orthogonal
achieves the best mean, in blue. The BiGamma distribution decreases the accuracy variance.
(c) Results aggregated across initializations. Both, the derivative of the fast sigmoid and
the exponential SG achieve the best mean accuracy.

D List of Surrogate Gradients shapes

We list here the shapes that we used in this article as surrogate gradients.

14

SG name f(v)

triangular max(1− |v|, 0)
exponential e−2|v|

gaussian e−πv2

∂ sigmoid 4 sigmoid(4 v) (1− sigmoid(4 v))
∂ fast-sigmoid 1

(1+|2v|)2
rectangular 1|v|< 1

2

q-PseudoSpike

(q > 1) 1

(1+ 2
q−1

|v|)q

Table 2: Mathematical definitions of the surrogate gradients studied in this ar-
ticle. Our Heaviside activation σ(v) = H̃(v), where v is the centered voltage, has the SG
σ′(v) = γf(β · v), where β is the SG sharpness, γ the SG dampening, and f is the shape
of choice. The constants, are chosen for the SG to have a maximal value of 1 and an area
under the curve of 1.

E Detailed derivation of the conditions

We derive the constraints on the hyper-parameters that will lead the LIF to meet the
conditions proposed at initialization. The LIF we will be using is defined by

yt = αdecayyt−1(1− xt−1) + it (1)

where it = Wrecxt−1 + Winzt + b, as described in the main text, and the multiplicative
factor (1− xt−1) represents the reset mechanism.

E.1 Recurrent matrix mean sets the firing rate (I)

We show how condition (I) leads to a constraint on the mean of the recurrent connectivity
with a LIF neuron model, that will lead the network to meet that condition at initialization.

Lemma 1. Applying condition (I), which states that we want Median[v] = 0, to an LIF
network, and further assuming win = 0, b = 0, the approximation Mean[v] ≈ Median[v],
and constant it over time, it results in the constraint

wrec =
1

nrec − 1
(2− αdecay)ϑ (2)

Proof. First we show that Median[v] = 0 =⇒ Mean[x] = 1/2, where x = H̃(v). In equa-
tion 4 we write the marginal distribution of p(x) =

∫
p(x|v)p(v)dv, and the double integral

is represented with one integration symbol. Then, we notice that x has a deterministic
dependence on v, x = H(v), which proprbabilistically is described by the delta function
p(x|v) = δ(x − H(v)). Then, we integrate over x, and in the last equation we notice that
integrating with respect to the Heaviside is equivalent to restricting the integration limits
from zero to infinity.

15

Mean[x] =

∫
xp(x)dx (3)

=

∫
xp(x|v)p(v)dxdv (4)

=

∫
xp(v)δ(x−H(v))dxdv (5)

=

∫
p(v)dvH(v) (6)

=

∫ ∞

0

p(v)dv (7)

If Median[v] = 0, half of it’s probability mass is on each side of 0, so the last integral is
equal to 1/2, QED.

Since working with medians is mathematically harder than working with means, we assume
that Mean[v] ≈ Median[v], with the caveat that it will make the result approximate. To
justify that they are similar, it can be shown that for a unimodal distribution v ∼ p(v) with

the first two moments defined, we have |Mean[v]−Median[v]| ≤
√

0.6V ar[v]

We use the notation x = Mean[x] interchangeably. We calculate how the mean of the
voltage elements is propagated through time, assuming the mean input current to remain
constant over time it = i at initialization, to simplify the mathematical development, and
assuming per condition (I), that x = 1− x = 1/2 we have

yt =αdecay(1− xt−1)yt−1 + i (8)

=
1

2
αdecayyt−1 + i (9)

=
1

2
αdecay

(1
2
αdecayyt−2 + i

)
+ i (10)

=
1

2t−1
αt−1
decayy1 +

(t−2∑
t′=0

1

2t′
αt′

decay

)
i (11)

=
1

2t−1
αt−1
decayy1 +

1− 1
2t−1α

t−1
decay

1− 1
2αdecay

i (12)

where we used the fact that the same LIF definition applies to different time steps, the
geometric series formula, and the fact that for independent random variables E[XY] =
E[X]E[Y]. For t → ∞ and using 0 < αdecay < 1

yt =
1

1− 1
2αdecay

i (13)

yt − ϑ =
1

1− 1
2αdecay

i− ϑ (14)

Assuming we want this condition to hold independently of the dataset, we set Mean[Win] =
0, and assuming that we do not want to promote this behavior with fixed internal currents,
but with the recurrent activity instead, then b = 0.

We remark that we denote Mean[Wx] as the mean vector whose element i is

16

Mean[Wx]i =Mean[
∑
j=1
j ̸=i

wijxj] (15)

=
∑
j=1
j ̸=i

Mean[wijxj] (16)

=
∑
j=1
j ̸=i

Mean[wx] (17)

=(nrec − 1)Mean[wx] (18)

where the condition j ̸= i in the summand reminds that neurons are not connected to
themselves in our recurrent architecture. In the first equality, the index i denoting the
element in the vector, is equivalent as choosing the row i of W , so it is not necessary to
specify it outside the square brakets. The equality before the last one is a consequence of
considering any neuron as mutually independent to any other at initialization, as done by

Then,

Mean[yt − ϑ] =
1

1− 1
2αdecay

(
(nrec − 1)wrecxt−1

)
− ϑ (19)

0 =
1

1− 1
2αdecay

(nrec − 1)wrecxt−1 − ϑ (20)

0 =
1

1− 1
2αdecay

(nrec − 1)wrec
1

2
− ϑ (21)

(nrec − 1)wrec =(2− αdecay) ϑ (22)

wrec =
1

nrec − 1

(
2− αdecay

)
ϑ (23)

where in the second line we applied condition (I) in the form of Mean[vt] ≈ Median[vt] = 0,
so Mean[yt − ϑ] = 0, and in the third line we applied again condition (I), xt = 1/2. In
the main text we turn ϑ, αdecay → ϑ, αdecay, since here we consider the more general case
where those are as well random variables, and we simplify it in the main text for cleanliness,
assuming they are constant.

We therefore found a constraint on the mean of the recurrent matrix initialization, that
leads the LIF network to satisfy condition I at initialization. The constraint is equation 23
with win = 0, and b = 0.

E.2 Recurrent matrix variance can make recurrent and input voltages
comparable (II)

We apply condition (II) to the LIF network, that gives us a constraint that the recurrent
matrix has to meet at initialization for the condition to be true.

Lemma 2. Applying condition (II), which states that we want V ar[Wrecxt−1] =
V ar[Winzt], to an LIF network, and further assuming x = 1/2, and win = 0, it results
in the constraint

V ar[wrec] = 2(V ar[zt] + z2t)
nin

nrec − 1
V ar[win]−

1

2
w2

rec (24)

17

Proof. The second condition, is that the recurrent and the input contribution to the variance
need to match

V ar[Wrecxt−1] = V ar[Winzt] (25)

where the variance is computed at each element, after the matrix multiplication is performed,
following the method described in

V ar[Wx]i =V ar[
∑
j=1

wijxj] (26)

=
∑
j=1

V ar[wijxj] (27)

=
∑
j=1

V ar[wx] (28)

=nWV ar[wx] (29)

The second and third equality are a consequence of considering any neuron as mutually
independent to any other at initialization, as done by

Therefore the vector-wise condition II is equivalent to the element-wise

(nrec − 1)V ar[wrecxt−1] = ninV ar[winzt] (30)

Since the time dimension is averaged out, the time axis can be randomly shuffled, and the
LIF activity is indistinguishable from a Bernouilli process through the mean and variance
of the activity. Therefore if xt = p, we have V ar[xt] = p(1 − p) when averaged over time,

with p the probability of firing. Therefore it is as well true that x2
t = V ar[xt] + x2

t = p.

We apply the fact that for independent w, x

V ar[wx] = w2 x2 − w2x2 (31)

and assuming win = 0 and p = 1/2 we have

V ar[wrecxt−1] =(V ar[wrec] + w2
rec)p− w2

recp
2 (32)

=
1

4
(2V ar[wrec] + w2

rec) (33)

V ar[winzt] =(V ar[zt] + z2t)V ar[win] (34)

Substituting in equation 30 implies

1

4
(2V ar[wrec] + w2

rec) = (V ar[zt] + z2t)
nin

nrec − 1
V ar[win] (35)

V ar[wrec] = 2(V ar[zt] + z2t)
nin

nrec − 1
V ar[win]−

1

2
w2

rec (36)

Therefore condition (II) led us to the constraint that Wrec has to meet at initialization,
equation 36, for the condition to be true. The final equation further assumes that win = 0
and p = 1/2.

18

E.3 SG dampening controls gradient maximum (III)

We apply condition (III) to the LIF network, which gives us a constraint that the dampening
has to meet at initialization for the condition to be true.

Lemma 3. Applying condition (III), which states that we want Max[∂
∂θyt] = Max[∂

∂θyt−1],

to an LIF network, and assuming that (1) σ′ and ∂
∂θyt−1 are statistically independent and

(2) we do not pass the gradient through the reset, it results in the constraint

γ =
1

(nrec − 1)ŵrec

(
1− α̂decay − ξ · ninŵinγin

)
(37)

where ξ is zero for the first layer and it’s one for the other layers in the stack.

Proof. We want the maximal value of the gradient to remain stable, without exploding,
when transmitted through time and through different layers

Max[
∂

∂θ
yt] = Max[

∂

∂θ
yt−1] (38)

where when we write ∂/∂θ, we use θ as a placeholder for any quantity that we want to
propagate through gradient descent. Taking the derivative of the LIF definition and stopping
the gradient from going through the reset we have

∂

∂θ
yt =αdecay

∂

∂θ
yt−1(1− xt−1) +Wrec

∂

∂θ
xt−1 + ξWin

∂

∂θ
zt (39)

Here we introduce the symbol ξ ∈ {0, 1}, where ξ = 1 is used when zt comes from a trainable
layer below, and ξ = 0 when zt represents the data. We consider as well that

∂

∂θ
zt =

∂

∂θ
H̃in(y

in
t − ϑin) = σ′

in

∂

∂θ
yint (40)

∂

∂θ
xt−1 =

∂

∂θ
H̃(yt−1 − ϑ) = σ′ ∂

∂θ
yt−1 (41)

where H̃in, y
in
t , ϑin are the Heaviside, the voltage and the threshold of the layer below,

σ′ = ∂H̃
∂v is the surrogate gradient, and σ′

in is the surrogate gradient from the layer below.
Substituting in equation 39, then

∂

∂θ
yt =αdecay

∂

∂θ
yt−1(1− xt−1) +Wrecσ

′ ∂

∂θ
yt−1 (42)

+ ξWinσ
′
in

∂

∂θ
yint (43)

We use Max and Min in a statistical ensemble sense, as the maximum/minimum value that
a variable could take if sampled over and over again

Max[X] = sup
x∼p(x)

x (44)

Min[X] = inf
x∼p(x)

x (45)

19

With this definition, if X,Y are independent random variables Max[X + Y] = Max[X] +
Max[Y] and if they are positive Max[XY] = Max[X]Max[Y]. We observe, as we did
before for the variance and the mean of Wx, that

Max[Wx] =nWMax[wx] (46)

Min[Wx] =nWMin[wx] (47)

We take the maximal value of ∂
∂θyt, we make the assumption that σ′ and ∂

∂θyt−1 are statis-
tically independent, we use the fact that the highest value that the surrogate gradient can
take is given by the dampening factor Max[σ′] = γ, we denote as γin the dampening factor
of the layer below in the stack, and we take Max[1− xt−1] = 1:

Max[
∂

∂θ
yt] =Max[αdecay

∂

∂θ
yt−1]

+ (nrec − 1)Max[wrecσ
′ ∂

∂θ
yt−1]

+ ξninMax[winσ
′
in

∂

∂θ
yint] (48)

=Max[αdecay]Max[
∂

∂θ
yt−1]

+ (nrec − 1)Max[wrec]Max[σ′]Max[
∂

∂θ
yt−1]

+ ξninMax[win]Max[σ′
in]Max[

∂

∂θ
yint] (49)

=Max[αdecay]Max[
∂

∂θ
yt−1]

+ (nrec − 1)Max[wrec]γMax[
∂

∂θ
yt−1]

+ ξninMax[win]γinMax[
∂

∂θ
yint] (50)

where we used the fact that σ′ is positive in the second equality. We apply condition
(III), which states that all maximal gradients are equivalent, and for cleanliness we use the
notation Max[x] = x̂

1 =α̂decay + (nrec − 1)ŵrecγ + ξninŵinγin (51)

γ =
1

(nrec − 1)ŵrec

(
1− α̂decay − ξ · ninŵinγin

)
(52)

where we only had to rearrange terms.

We set ξ = 0 in the main text for readability and because we observed better performance
with it. This final equation 52 gives the value that the dampening has to take to keep the
maximal gradient value stable, namely, condition (III) true at initialization.

E.4 SG sharpness controls gradient variance (IV)

We apply condition (IV) to the LIF network to constrain the choice of surrogate gradient
variance.

Lemma 4. Applying condition (IV), which states that we want V ar[∂
∂θyt] = V ar[∂

∂θyt−1],
to an LIF network, and assuming that (1) we do not pass the gradient through the reset,
and (2) zero mean gradients at initialization, it results in the constraint

20

σ′2 =
1− 1

2α
2
decay − ξ · ninw2

in σ′2
in

(nrec − 1)w2
rec

(53)

where ξ is zero for the first layer and is one for the other layers in the stack.

Proof. Condition (IV) states that we want the variance of the gradient to remain stable
across time and layers. Taking the derivative of the LIF we arrive at equation 43:

∂

∂θ
yt =αdecay

∂

∂θ
yt−1(1− xt−1)

+Wrecσ
′ ∂

∂θ
yt−1 + ξWinσ

′
in

∂

∂θ
yint (54)

Taking the variance and assuming that the monomials in the polynomial are statistically
independent, we can consider the variance of the sum to be the sum of the variances:

V ar[
∂

∂θ
yt] =V ar[αdecay

∂

∂θ
yt−1(1− xt−1)]

+ V ar[Wrecσ
′ ∂

∂θ
yt−1]

+ V ar[ξWinσ
′
in

∂

∂θ
yint] (55)

V ar[
∂

∂θ
yt] =V ar[αdecay

∂

∂θ
yt−1(1− xt−1)]

+ (nrec − 1)V ar[wrecσ
′ ∂

∂θ
yt−1]

+ ninV ar[ξwinσ
′
in

∂

∂θ
yint] (56)

where ξ = 0 if win connects to the data and ξ = 1 if it connects to the layer below in the
stack. We denote by σ′

in the surrogate gradient of the layer below.

Assuming gradients g with mean zero, and weights and gradients w, g to be independent
random variables at initialization:

V ar[wg] =(V ar[g] + E[g]2)(V ar[w] + E[w]2)− E[g]2E[w]2 (57)

=V ar[g](V ar[w] + E[w]2) (58)

=V ar[g]E[w2] (59)

which gives

V ar[
∂

∂θ
yt] =E[α2

decay(1− xt−1)
2]V ar[

∂

∂θ
yt−1]

+ (nrec − 1)E[(wrecσ
′)2]V ar[

∂

∂θ
yt−1]

+ ξ · ninE[(winσ
′
in)

2]V ar[
∂

∂θ
yint] (60)

We apply condition IV, we want gradients to have the same variance, irrespective of the
time step, or the neuron in the stack, which results in

21

1 =
1

2
E[α2

decay] + (nrec − 1)E[(wrecσ
′)2]

+ ξ · ninE[(winσ
′
in)

2] (61)

1 =
1

2
E[α2

decay] + (nrec − 1)E[w2
rec]E[σ′2]

+ ξ · ninE[w2
in]E[σ′2

in] (62)

where we used the fact that for independent variables X,Y we have E[XpY q] = E[Xp]E[Y q]
in the third and fourth line. Using the notation E[x] = x, the implied condition on the SG
is

σ′2 =
1− 1

2α
2
decay − ξ · ninw2

in σ′2
in

(nrec − 1)w2
rec

(63)

We therefore found the constraint that the second non-centered moment of the SG has to
satisfy, equation 63, if we want condition IV to hold. We set ξ = 0 in the main text for
readability and because we observed better performance with it. We show how to relate it
to the sharpness of the exponential SG in Appendix E.5.

E.5 Applying Condition IV to the exponential SG

We show how we apply equation 63, to choose the sharpness of an exponential SG. For that
we need to define the dependence of the variance of the SG with its sharpness. We use as
equivalent notation for the surrogate gradient

σ′(v) =
∂H̃(v)

∂v
= γf(β · v)

We denote no dependency with the voltage in σ′, when we consider it as a random variable,
and we introduce the dependency σ′(v) when we assume the voltage dependence is known.
The moments of the surrogate gradient are given by

E[σ′m] =

∫
σ′mp(σ′)dσ′ (64)

=

∫∫
σ′mp(σ′|v)p(v)dvdσ′ (65)

=

∫∫
σ′mδ

(
σ′ − σ′(v)

)
dσ′p(v)dv (66)

=

∫
σ′(v)mp(v)dv (67)

where we used the marginalization rule in the second equality and in the third equality we
used the fact that σ is a deterministic function of v, so it inherits its randomness from v.
We are going to assume as the non-informative prior a uniform distribution between the
minimal and maximal values of yt − ϑ.

22

E[σ′(v)m] =

∫
σ′(v)mp(v)dv (68)

=
1

ymax − ymin

∫ ymax−ϑ

ymin−ϑ

σ′(v)mdv (69)

=
γm

β(ymax − ymin)

∫ β(ymax−ϑ)

β(ymin−ϑ)

f(v′)mdv′ (70)

where we used the non informative uniform prior assumption in the second equality and
we used σ′ = γf(βv) followed by the change of variable v′ = βv in the third equality.
Considering the exponential SG we have that, calling vi one of the integration limits above,
if vi is positive

∫ vi

0

g(|v|)mdv =

∫ vi

0

g(v)mdv (71)

and if vi is negative

∫ vi

0

g(|v|)mdv =

∫ vi

0

g(−v)mdv (72)

=−
∫ −vi

0

g(v)mdv (73)

=−
∫ |vi|

0

g(v)mdv (74)

where we made the change of variable v → −v in the second equality. Therefore

∫ v+

v−

g(|v|)mdv =sign(v+)

∫ |v+|

0

g(v)mdv (75)

− sign(v−)

∫ |v−|

0

g(v)mdv (76)

Given that for vi > 0 we have

∫ vi

0

exponential(v)mdv =

∫ vi

0

e−2m|v|dv (77)

=

∫ vi

0

e−2mvdv (78)

=− 1

2m
e−2mvi +

1

2m
(79)

=− 1

2m
e−2m|vi| +

1

2m
(80)

then, for v+ > 0 and v− < 0

∫ v+

v−

exponential(v)mdv =

− 1

2m
e−2m|v+|− 1

2m
e−2m|v−| +

2

2m
(81)

23

where v+ = β(ymax−ϑ) and v− = β(ymin−ϑ) and we show how to compute ymax = Max[yt]
and ymin = Min[yt] in section E.7. Since the dependence with β is quite complex, we find
the β that satisfies the last equation and equation 63 through random search. Notice how
equation 68, shows a dependence of the SG variance proportional to the square of the
dampening and inversely proportional to the sharpness, which recalls our numerical results,
where a high sharpness and a low dampening were preferred. This is how condition (IV) is
used to fix the sharpness of the exponential SG.

E.6 Applying Condition IV to the q-PseudoSpike SG

Instead, when using (IV) to determine the tail-fatness of the SG, we set β = 1 and use

∫ v+

v−

q-PseudoSpike(|v|)2dv =

∫ v+

v−

q-PseudoSpike(|v|)2dv (82)

=

∫ |v+|

0

q-PseudoSpike(v)2dv +

∫ |v−|

0

q-PseudoSpike(v)2dv

(83)

=− q + 2|v+| − 1

2(2q − 1)

1(
1 + 2

q−1 |v+|
)2q

− q + 2|v−| − 1

2(2q − 1)

1(
1 + 2

q−1 |v−|
)2q +

q − 1

(2q − 1)
(84)

When inserted in equation 63, we use gradient descent to optimize q and find the value that
satisfies (IV).

E.7 Maximal and Minimal voltage values achievable by the network at
initialization

We calculate the maximum and minimum value that the voltage y can take, to be able to
complete the argument about the variance of the backward pass of section E.5. First, we
use Max and Min in a statistical ensemble sense, as the maximum/minimum value that a
variable could take if sampled over and over again

Max[X] = sup
x∼p(x)

x (85)

Min[X] = inf
x∼p(x)

x (86)

When applied to the definition of LIF

Max[yt] =Max[αdecayyt−1(1− xt−1)] +Max[Wrecxt−1]

+Max[b] +Max[Winzt] (87)

=Max[αdecay]Max[yt−1] + (nrec − 1)Max[wrec]

+Max[b] + ninMax[win] (88)

Max[yt] =
1

1−Max[αdecay]

(
(nrec − 1)Max[wrec]

+Max[b] + ninMax[win]
)

(89)

where we used the fact that if xt, zt were sampled over and over, the maximum value
that they could take is all neurons having fired at the same time, we used the fact that

24

αdecay, ϑ > 0, and we assumed that the maximum is going to stay constant through time
Max[yt−1] = Max[yt]. Notice that the maximal voltage is achieved when all neurons in the
layer fired at t − 1, equation 88, except for the neuron under study, that stayed silent at
t− 1, to have 89. Similarly for the bound to the minimal voltage:

Min[yt] =Min[αdecayyt−1(1− xt−1)]

+ (nrec − 1)Min[wrecxt−1] +Min[b] (90)

+ ninMin[winzt] (91)

=Max[αdecay]Min[yt−1]

+ (nrec − 1)Min[wrec] +Min[b] (92)

+ ninMin[win] (93)

Min[yt] =
1

1−Max[αdecay]

(
(nrec − 1)Min[wrec]

+Min[b] + ninMin[win]
)

(94)

Second, we consider another definition of Max and Min, where we consider the maximum
value achievable by the current sample from the weight distribution. The real maximum
value of the voltage will be achieved when the presynaptic neurons to fire are those that are
connected with positive weight, we then have that our equation turns to

Max[yt]i =αdecay,iMax[yt−1]i +
∑
j

ReLU [Wrec]ij

+ bi +
∑
j

ReLU [Win]ij (95)

Max[yt]i =
1

1− αdecay,i

(∑
j

ReLU [Wrec]ij

+ bi +
∑
j

ReLU [Win]ij

)
(96)

where we refer as
∑

j ReLU [Wrec]ij the sum over columns, where we have typically ommitted
the index i for the element of the vector for cleanliness in the rest of the article. The case
for the minimum is analogous

Min[yt]i =αdecay,iMin[yt−1]i +Min[Wrecxt−1]

+ bi +Min[Winzt] (97)

Min[yt]i =
1

1− αdecay,i

(
−
∑
j

ReLU [−Wrec]ij

+ bi −
∑
j

ReLU [−Win]ij

)
(98)

With this we showed how we calculated the maximal and minimal value of the voltage, to
be able to use condition (IV) to define the sharpness of the SG in section E.5.

F Applying conditions I-IV to an alternative definition of
reset

We want to show how the constraints on the weights initialization and on the SG choice
change, when the neuron model definition changes. We will use the notation it = Wrecxt +
Winzt + b. The reset used by

25

yt =(αdecayyt−1 + it)(1− xt−1) (99)

that we will call post-reset. Instead,

yt =αdecayyt−1(1− xt−1) + it (100)

that we will call pre-reset, since it resets before applying the new current. Another example
is given by

yt =αdecayyt−1 + it − ϑxt−1 (101)

and we will call it minus-reset.

The first definition performs as well one refractory period, while the second does not result
in a yt clamped to zero when xt = 1. The factor (1− xt) takes the voltage exactly to zero
every time the neuron has fired, zero being the equilibrium voltage. What is interesting
about this form of reset is that the voltage is reset exactly to y = 0 after firing, while with
the subtractive reset it is not the case. We consider training without passing the gradient
through the reset, since

Post-reset:

yt = (αdecayyt−1 + it)(1− xt−1)

wrec =
2

nrec − 1

(
1− αdecay

)
ϑ I

V ar[wrec] = 2(V ar[zt] + zt
2)

nin

nrec − 1
V ar[win]−

1

2
w2

rec II

γ =
1

(nrec − 1)ŵrec

(
1− αdecay − ξninŵinγin

)
III

σ′2 =
2− α2

decay − ξninw2
in σ′2

in

(nrec − 1)w2
rec

IV

Pre-reset:

yt = αdecayyt−1(1− xt−1) + it

wrec =
1

nrec − 1

(
2− αdecay

)
ϑ I

V ar[wrec] = 2(V ar[zt] + z2t)
nin

nrec − 1
V ar[win]−

1

2
w2

rec II

γ =
1

(nrec − 1)ŵrec

(
1− αdecay − ξninŵinγin

)
III

σ′2 =
1− 1

2
α2
decay − ξninw2

in σ′2
in

(nrec − 1)w2
rec

IV

Minus-reset:

26

yt = αdecayyt−1 + it − ϑxt−1

wrec =
1

nrec − 1

(
3− 2αdecay

)
ϑ I

V ar[wrec] = 2(V ar[zt] + z2t)
nin

nrec − 1
V ar[win]−

1

2
w2

rec II

γ =
1

(nrec − 1)w̌rec − ϑ

w̌rec

ŵrec

(
1− αdecay − ξninŵinγin

)
III

σ′2 =
1− α2

decay − ξninw2
in σ′2

in

(nrec − 1)w2
rec + ϑ2

IV

To have the conditions when the gradient does not pass through the reset, put ϑ = 0 in
(III) and (IV), but not in (I).

G ALIF and sLSTM models

To study the variability of SG trining with architecture choice, we tested different SG shapes
on the ALIF and sLSTM networks. We used the following ALIF implementation

yt,l =αy
decay,lyt−1,l

+Wrec,lxt−1,l +Win,lxt−1,l−1 + bl

− ϑt−1,l xt−1,l (102)

ϑt,l =αϑ
decay,lϑt−1,l + bϑl + βlxt−1,l (103)

where we initialized Wrec,Win as Glorot Uniform, bl = 0, αy
decay,l = 4·10−5, αϑ

decay,l = 0.992

for the SHD task and αϑ
decay,l = 0.98 for the sl-MNIST task, bϑl = 0.01, and βl = 1.8.

The LSTM implementation that we used is the following

it =σg(Wixt + Uiht−1 + bi) (104)

ft =σg(Wfxt + Ufht−1 + bf) (105)

ot =σg(Woxt + Uoht−1 + bo) (106)

c̃t =σc(Wcxt + Ucht−1 + bc) (107)

ct =ft ◦ ct−1 + it ◦ c̃t (108)

ht =ot ◦ σh(ct) (109)

The dynamical variables it, ft, ot represent the input, forget and output gates, that prevent
representations and gradients from exploding, while ct, ht represent the two hidden layers of
the LSTM, that work as the working memory and are maintained and updated through data
time t. To construct the spiking version of the LSTM (sLSTM) we turned the activations
into σg(x) = H(x) and σc = σh = 2H(x) − 1. The matrices Wj , Uj are initialized with
Glorot Uniform initialization, and the biases bj as zeros, with j ∈ {i, f, o, c}.

H More on Sparsity

We investigate if the role of sparsity remains consistent across SG shapes in Fig. 7, and
across tasks in Fig. 8. Notice that Fig. 3 is repeated in Fig. 7 and 8 to ease the comparison.

27

0.25 0.50
Initial

firing rate

4.0

4.5

5.0

5.5

6.0

Te
st

 P
er

pl
ex

ity

r1 = -0.42
r2 = -0.4

0.2 0.4
Final

firing rate

r1 = -0.34
r2 = -0.43

0.25 0.50
Initial

firing rate

r1 = -0.38
r2 = -0.38

0.05 0.10 0.15
Final

firing rate

r1 = -0.16
r2 = -0.14

Sparsity Encouraging
Loss Term

no Sparsity Encouraging
Loss Term

 fast sigmoid on SHD

layer 1 layer 2

0.2 0.4 0.6
Initial

firing rate

3.2

3.4

3.6

3.8

4.0

4.2

Te
st

 P
er

pl
ex

ity

r1 = 0.6
r2 = 0.59

0.2 0.4
Final

firing rate

r1 = 0.61
r2 = 0.57

0.2 0.4 0.6
Initial

firing rate

r1 = 0.59
r2 = 0.58

0.1 0.2
Final

firing rate

r1 = -0.27
r2 = 0.24

Sparsity Encouraging
Loss Term

no Sparsity Encouraging
Loss Term

triangular on SHD

layer 1 layer 2

0.25 0.50
Initial

firing rate

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

Te
st

 P
er

pl
ex

ity

r1 = 0.02
r2 = 0.01

0.2 0.4
Final

firing rate

r1 = -0.04
r2 = -0.02

0.25 0.50
Initial

firing rate

r1 = 0.25
r2 = 0.25

0.10 0.15 0.20
Final

firing rate

r1 = -0.07
r2 = 0.39

Sparsity Encouraging
Loss Term

no Sparsity Encouraging
Loss Term

exponential on SHD

layer 1 layer 2

Figure 7: Sparsity role is not consistent across SG shapes. When we fix the task to
be the SHD task, we see that the derivative of the fast sigmoid has preference for high pi,
the triangular SG has preference for low pi, while for the exponential, pi does not seem to
correlate with final performance.

28

0.25 0.50
Initial

firing rate

4.0

4.5

5.0

5.5

6.0

Te
st

 P
er

pl
ex

ity

r1 = -0.42
r2 = -0.4

0.2 0.4
Final

firing rate

r1 = -0.34
r2 = -0.43

0.25 0.50
Initial

firing rate

r1 = -0.38
r2 = -0.38

0.05 0.10 0.15
Final

firing rate

r1 = -0.16
r2 = -0.14

Sparsity Encouraging
Loss Term

no Sparsity Encouraging
Loss Term

 fast sigmoid on SHD

layer 1 layer 2

0.0 0.5 1.0
Initial

firing rate

2.5

2.6

2.7

2.8

2.9

3.0

3.1

Te
st

 P
er

pl
ex

ity

r1 = 0.34
r2 = 0.33

0.2 0.4 0.6
Final

firing rate

r1 = 0.51
r2 = 0.37

0.0 0.5 1.0
Initial

firing rate

r1 = -0.82
r2 = -0.82

0.1 0.2
Final

firing rate

r1 = -0.2
r2 = 0.24

Sparsity Encouraging
Loss Term

no Sparsity Encouraging
Loss Term

 fast sigmoid on sl-MNIST

layer 1 layer 2

0.0 0.5 1.0
Initial

firing rate

130

140

150

160

170

180

190

200

Te
st

 P
er

pl
ex

ity

r1 = 0.52
r2 = 0.52

0.4 0.6
Final

firing rate

r1 = 0.71
r2 = 0.68

0.0 0.5 1.0
Initial

firing rate

r1 = -0.05
r2 = -0.06

0.1 0.2
Final

firing rate

r1 = 0.4
r2 = 0.09

Sparsity Encouraging
Loss Term

no Sparsity Encouraging
Loss Term

 fast sigmoid on PTB

layer 1 layer 2

Figure 8: Sparsity role is consistent across tasks. Here we fix the SG shape to the
derivative of the fast sigmoid and we change the task. On sl-MNIST, we see a similar trend
than on SHD, where high initial firing rate is preferred for better performance when sparsity
is encouraged. Encouraging sparsity has a negative effect on learning language modeling on
the PTB task. However, when no sparsity is encouraged, best performance on PTB is still
at pi = 0.5.

29

	Appendices
	Appendix More Training Details
	Appendix Neuron Model Complexity
	Appendix Interplay between SG and Initialization
	Appendix List of Surrogate Gradients shapes
	Appendix Detailed derivation of the conditions
	Recurrent matrix mean sets the firing rate (I)
	Recurrent matrix variance can make recurrent and input voltages comparable (II)
	SG dampening controls gradient maximum (III)
	SG sharpness controls gradient variance (IV)
	Applying Condition IV to the exponential SG
	Applying Condition IV to the q-PseudoSpike SG
	Maximal and Minimal voltage values achievable by the network at initialization

	Appendix Applying conditions I-IV to an alternative definition of reset
	Appendix ALIF and sLSTM models
	Appendix More on Sparsity

