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7. Training details for surface normal estima-
tor

Our surface normal estimator is trained on the meta-dataset
introduced by [2]. DSINE [2] uses per-pixel ray direction as
input and thus requires camera intrinsics. We removed this
dependency and warped the training images such that the
principal point is at the center and the field-of-view (FOV)
is 60◦. Nonetheless, U–ARE–ME generalises well to im-
ages taken with different intrinsics (e.g. the video game se-
quence in the attached video has FOV of 86◦). DSINE [2]
also proposed to improve the piece-wise smoothness and
crispness of the prediction by recasting surface normal es-
timation as iterative rotation estimation. We also remove
this iterative process and hence improve the efficiency to
give real-time estimates. While this degrades the quality of
the surface normal prediction, the rotation estimates from
our framework stay robust. U–ARE–ME robustly fuses the
per-pixel predictions by weighting them with a confidence κ
and is thus robust to mild inaccuracies in the surface normal
prediction.

Our network estimates two quantities: the per-pixel sur-
face normal vector n and the corresponding confidence κ. n
is supervised with the angular loss, and κ with the negative
log-likelihood defined in Eq. 2 (in the main manuscript).
All other training protocols (e.g. batch size, number of
epochs, data augmentation, optimiser, and learning-rate
schedulers) are the same as [2]. The training only takes
9 hours on a single NVIDIA 4090 GPU. After training, κ
is capped at 100 to prevent the over-confident predictions
from dominating the optimisation.

8. Robustness to out-of-distribution camera in-
trinsics

To show that our algorithm is robust to a wide variety of out-
of-distribution images, a brief study is performed with vary-
ing camera intrinsics on the same sequence. We re-evaluate
on the ICL-NUIM living room 2 sequence but change the
focal length and principal point of the input images, as
shown in Fig. 5. By performing an increasingly aggressive
central crop and then resizing back to the original resolu-
tion, a narrowing of the FOV is achieved while keeping a
constant principal point. In the shift tests, both the focal
length and the principal point vary by cropping from the
bottom right corner and resizing.

Tab. 3 shows the accuracy comparison between U–ARE–
ME, H-VP and ORB-SLAM (intrinsics given to ORB-

  Crop Tests 0 - 25%  

  Shift Tests 0 - 25%  

Figure 5. Robustness to out-of-distribution images. Crop tests
simulate a narrowing focal length with a constant principal point
and shift tests simulate both focal length and principal point
change. Images are resized to their original resolution after crop-
ping.

Table 3. Results from modified intrinsics tests.

Crop Ours H-VP ORB-SLAM
Original 2.39 4.17 0.57
5% crop 2.29 4.57 2.64
10% crop 2.26 5.80 4.89
15% crop 2.26 6.58 5.64
20% crop 2.34 7.40 8.59
25% crop 2.62 8.50 13.34

Shift Ours H-VP ORB-SLAM
original 2.39 4.17 0.57
5% shift 2.12 6.17 4.35
10% shift 2.50 7.51 10.27
15% shift 3.53 9.25 17.01
20% shift 4.99 10.65 26.73
25% shift 6.41 12.17 ×
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Figure 6. IMU sensors are prone to drift especially in non-inertial frames of reference (e.g. inside a moving vehicle). The horizon line in
each image represents the up-vector inferred from our proposed method (middle) and an IMU sensor (right).

SLAM are kept constant throughout). Since our normal
network does not need specific camera intrinsics, we are
extremely robust to both image cropping and image shift-
ing – more so for the former. Due to the network being
trained on ∼60o FOV images, a minor improvement is ob-
served at ∼10-15% cropping as the ICL-NUIM images have
a slightly wider than ideal 67o FOV. As expected, ORB-
SLAM rapidly deteriorates with incorrect intrinsics. De-
spite H-VP not requiring known intrinsics, a narrower FOV
in general reduces the number of sparse line features and
therefore accuracy degrades proportionally (a major upside
to dense predictors).

9. Horizon estimation in Non-inertial Frames
of Reference

Motivated by the limitations of using Inertial Measurement
Units (IMUs) when operating within a non-inertial refer-
ence frame, we apply U–ARE–ME to a real-world video
sequence captured from a bus with longitudinally and later-
ally accelerating motions. We perform multi-frame rotation
estimation for the sequence of RGB video frames, and per-
form a comparison against IMU data. For each frame, we
compute the ARE between the estimated rotation and the
initial rotation, and plot the evolution over time in Fig. 6.

The camera is stationary with respect to the bus through-
out the sequence so there should be no relative rotation. The
Intel Realsense D435i camera was used to take synchro-
nised RGB and IMU measurements which were integrated
using the complementary filter provided by the Intel Re-
alsense SDK [22].

As the bus turns harshly, our visual-only approach main-
tains a steady rotation estimate, while the IMU suffers from
strong accelerations causing a large error in its measured
rotation. This is seen in Fig. 6 where the green horizon
lines for each method have been calculated using the up-
vector derived from the estimated rotation. We envisage that

U–ARE–ME can be used to complement traditional IMU-
based applications in non-inertial reference frames.

10. Ground segmentation with U–ARE–ME
The up-vector can be used to perform real-time ground
segmentation from RGB images, which is an impor-
tant pre-processing step in many applications including
robotics [36], autonomous driving [12], and 3D object
tracking for augmented reality [46], where it can be used
to seamlessly integrate virtual objects with the real-world
environment.

As U–ARE–ME produces per-pixel surface normal es-
timates, we can directly use the result of the rotation esti-

(a) London (b) Mumbai

(c) Cardiff (d) Office

Figure 7. Even in non-Manhattan scenes, our framework can opti-
mise the rotation such that the global up direction is aligned with
the surface normal of the ground plane. It can thus be used to ac-
curately segment the ground plane, shown here in green, which
can be useful for many applications in robotics.



Table 4. Timestamps for the contents of the demo video

Section Timestamp

U–ARE–ME Demo ICL-NUIM 0:13
TUM-RGBD 0:30
Tokyo walking sequence 0:47
Video game sequence 1:05

Robustness to Bad Frames 1:29
Applications Non-inertial Reference Frame 1:58

Ground Segmentation 2:27

mation to segment areas of an input image corresponding
to the ground, assuming that this is aligned with the world
up-vector. Our method can be applied to real-world indoor
and outdoor images to segment the ground even when the
scene is non-Manhattan, as seen in Fig. 7.

11. Demo video
We encourage the reader to view the accompanying video
file in the supplementary material for a visual overview of
our method. The video can also be found on our project
page2.

For the reader’s convenience, the timestamps of each
section in the video are summarised in Table 4. We provide
additional detailed explanations for each section below.

11.1. U–ARE–ME demo

We first demonstrate the operation of U–ARE–ME on the
ICL-NUIM and TUM-RGBD datasets discussed in our pa-
per. The coordinate frame in the center of the video depicts
the orientation of the global Manhattan frame. Throughout
the demonstration, the video cycles through various visual-
isations of the scene:
• RGB image input to U–ARE–ME
• Predicted surface normals (using X–Y–Z to R–G–B

colour mapping)
• Confidence of predicted surface normals (greyscale –

white represents high confidence)

11.1.1 ICL-NUIM: living-room-2

This synthetic scene shows a camera moving through a liv-
ing room which is generally Manhattan in structure, but
does contain some features which do not agree with a Man-
hattan assumption (e.g. curtains, lamps, and sofa cushions).
Of note is the textured wall painting at 0:13 which is pre-
dicted as having the same surface normal as the wall it is
on, while the painting’s frame is predicted to have high
uncertainty normals. The curtains seen at 0:21 (a large
non-Manhattan area) are also shown with high uncertainty

2Project Page: https://callum-rhodes.github.io/U-ARE-ME

normals as they have irregular geometry. As U–ARE–ME
is uncertainty-aware, it estimates rotation with a greater
weighting on those surfaces that agree with the Manhat-
tan assumption, e.g., the walls and floor (shown in white
on the confidence images), whilst down-weighting the non-
Manhattan features.

11.1.2 TUM-RGBD: fr-3 large cabinet

This dataset contains videos captured with a real-world
hand-held camera, exhibiting some pitch and roll with un-
steady camera motion. The normals of objects in the back-
ground with fine structures and lots of occlusion are harder
to accurately predict, and thus are estimated as having sur-
face normals with higher uncertainty. As a result, our
method can produce accurate estimates of rotation through-
out the sequence by down-weighting such uncertain nor-
mals.

11.1.3 Tokyo Walking Sequence

We apply our method to an in-the-wild video taken directly
from YouTube [49] showing a hand-held camera viewpoint
walking through the streets of Tokyo. This is a challenging
situation for rotation estimation as the camera intrinsics are
not known. The environment is dynamic, with many pedes-
trians walking in the scene, and our method produces reli-
able rotation estimation despite the small quantity of static
Manhattan-aligned objects and buildings.

11.1.4 Video Game sequence

In this example, our method is shown to estimate rotation on
a synthetic sequence from the video game Star Citizen [50].
Once again the camera intrinsics are not known, and this
is a relatively non-Manhattan environment. During the se-
quence, the camera switches between 1st person and 3rd
person (during which the player character takes up a signif-
icant portion of the screen) yet rotations remain consistent
with the game world. U–ARE–ME takes this into consider-
ation by estimating a high uncertainty on the player model.



11.2. Robustness to dropped frames

We compare U–ARE–ME operating with (bottom videos)
and without (top videos) multi-frame optimisation, when
black frames are randomly injected into the sequence, sim-
ulating dropped frames.

For example, at 01:50 the addition of a black frame
cause the non-multi-frame rotation estimate (top) to differ
significantly from its previous estimate. Using our pro-
posed uncertainty-aware multi-frame optimisation however,
U–ARE–ME is seen to produce temporally consistent rota-
tion estimates, in the presence of dropped frames.

11.3. Applications

Finally, we demonstrate some applications of U–ARE–ME
as discussed in the paper.

11.3.1 Operation in a Non-inertial Reference Frame

This section of the demo video shows the benefit of apply-
ing U–ARE–ME to a real-world video sequence captured
in a non-inertial reference frame for estimating a horizon as
discussed in section 9. The video shows an outward view
demonstrating the motion of the bus (left), and the horizon
lines estimated by U–ARE–ME (middle) and based on IMU
measurements (right).

11.3.2 Ground Segmentation

Further to section 10, we apply U–ARE–ME to a video
taken directly from YouTube [48]. Without knowledge of
the video’s camera intrinsics, and in the presence of blur-
ring noise, our method is able to estimate the up-vector and
highlight the ground-aligned pixels in green.


