Table A1: Generalization evaluation of NeuOpt (10 runs) on real-world TSPLIB instances.

AM	POMO	AMDKD	DKD DACT (sol.10k)		Ours (sol.10k)		DACT (sol.40k)		Ours (sol.25k)	
-mix	-mix	(POMO)	Avg.	Best	Avg.	Best	Avg.	Best	Avg.	Best
19.59%	0.92%	1.18%	3.29%	1.59%	0.85%	0.50%	2.13%	1.09%	0.58%	0.35%

Table A2: Generalization evaluation of NeuOpt-GIRE (10 runs) on real-world CVRPLIB instances.

AM -mix	POMO -mix	AMDKD (POMO)	DACT (Avg.	sol.10k) Best	Ours (s Avg.	sol.10k) Best	DACT ((sol.60k) Best	Ours (so Avg.	ol.60k) Best
15.87%	8.05%	5.77%	5.21%	3.68%	4.80%	3.27%	3.74%	2.85%	3.51%	2.62%
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										
(a) Entropy measure 2.000			Entropy measure	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= 0.5, c ₂ = 0.50 0.50 Probabili	0.75 1.0	0.5 measure	(c) $c_1 = 1$, -	.75 1.00

Figure A1: Effects of c_1 and c_2 on $\mathbb{H}[P]$ pattern: (a)-(c) fix $c_2 = 2.5$ and vary c_1 ; (d)-(f) fix $c_1 = 0.5$ and vary c_2 . Compared to the pattern (b) and (e) used in the original paper, varying c_1 and c_2 either **constricts** the penalty, shown in (c) and (f), or **expands** the penalty, shown in (a) and (d).

(e) $c_1 = 0.5$, $c_2 = 2.5$

Figure A2: No much influence of **constricted** and **expanded** patterns of $\mathbb{H}[P]$ on the training stability.

Figure A3: Influence of K and E-move.

(d) $c_1 = 0.5, c_2 = 1.5$

Figure A4: Influence of S-move (K = 4).

(f) $c_1 = 0.5$, $c_2 = 3.5$

w/o-S-move

100

Ours