Table Al: Generalization evaluation of NeuOpt (10 runs) on real-world TSPLIB instances.

DACT (so0l.40k)  Ours (sol.25k)
Avg. Best Avg. Best

AM POMO AMDKD | DACT (sol.10k)  Ours (sol.10k)
-mix -mix (POMO) | Avg. Best Avg. Best

19.59%  0.92% 1.18% | 329% 159% 0.85% 0.50% | 2.13% 1.09% 0.58% 0.35%

Table A2: Generalization evaluation of NeuOpt-GIRE (10 runs) on real-world CVRPLIB instances.

DACT (s01.60k)  Ours (sol.60k)
Avg. Best Avg. Best

AM POMO AMDKD | DACT (sol.10k)  Ours (sol.10k)
-mix -mix (POMO) | Avg. Best Avg. Best

15.87%  8.05% 577% | 521% 3.68% 4.80% 3.27% | 3.74% 2.85% 3.51% 2.62%
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Figure Al: Effects of ¢; and co on H[P] pattern: (a)-(c) fix co =2.5 and vary ¢y; (d)-(f) fix ¢; =0.5
and vary co. Compared to the pattern (b) and (e) used in the original paper, varying ¢; and cs either
constricts the penalty, shown in (c) and (f), or expands the penalty, shown in (a) and (d).
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Figure A2: No much influence of constricted and expanded patterns of H[P] on the training stability.

***** w/o-E-move .
788 Ours E--- -I 8.50 — wosmone
) I g <|=.‘> Ours
— So P p—
3 7.85 /,’ ~\{/ 5825
- . 3
8 7.83 ’ £8.00
7.80
K=2 K=3 K=4 K=5 K=6 7T 20 40 60 80 100
Varying K Training Epoch
Figure A3: Influence of K and E-move. Figure A4: Influence of S-move (K = 4).
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