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Abstract

The aim of this paper is to improve the understanding of the optimization landscape1

for policy optimization problems in reinforcement learning. Specifically, we show2

that the superlevel set of the objective function with respect to the policy parameter3

is always a connected set both in the tabular setting and under policies represented4

by a class of neural networks. In addition, we show that the optimization objective5

as a function of the policy parameter and reward satisfies a stronger “equiconnect-6

edness” property. To our best knowledge, these are novel and previously unknown7

discoveries.8

We present an application of the connectedness of these superlevel sets to the deriva-9

tion of minimax theorems for robust reinforcement learning. We show that any10

minimax optimization program which is convex on one side and is equiconnected11

on the other side observes the minimax equality (i.e. has a Nash equilibrium). We12

find that this exact structure is exhibited by an interesting class of robust reinforce-13

ment learning problems under an adversarial reward attack, and the validity of14

its minimax equality immediately follows. This is the first time such a result is15

established in the literature.16

1 Introduction17

Policy optimization problems in reinforcement learning (RL) are usually formulated as the maximiza-18

tion of a non-concave objective function over a convex constraint set. Such non-convex programs19

are generally difficult to solve globally, as gradient-based optimization algorithms can be trapped in20

sub-optimal first-order stationary points. Interestingly, recent advances in RL theory [Fazel et al.,21

2018, Agarwal et al., 2021, Mei et al., 2020] have discovered a “gradient domination” structure in the22

optimization landscape, which qualitatively means that every stationary point of the objective function23

is globally optimal. An important consequence of this condition is that any first-order algorithm that24

converges to a stationary point is guaranteed to find the global optimality.25

In this work, our aim is to enhance the understanding of the optimization landscape in RL beyond26

the gradient domination condition. Inspired by Mohammadi et al. [2021], Fatkhullin and Polyak27

[2021] that discuss properties of the sublevel set for the linear-quadratic regulator (LQR), we study28

the superlevel set of the policy optimization objective under a Markov decision process (MDP)29

framework and prove that it is always connected.30

As an immediate consequence, we show that any minimax optimization program which is convex on31

one side and is an RL objective on the other side observes the minimax equality. We apply this result32

to derive an interesting and previously unknown minimax theorem for robust RL. We also note that it33

is unclear at the moment, but certainly possible, that the result on connected superlevel sets may be34

exploited to design more efficient and reliable policy optimization algorithms in the future.35
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1.1 Main Contribution36

Our first contribution in this work is to show that the superlevel set of the policy optimization problem37

in RL is always connected under a tabular policy representation. We then extend this result to the38

deep reinforcement learning setting, where the policy is represented by a class of over-parameterized39

neural networks. We show that the superlevel set of the underlying objective function with respect40

to the policy parameters (i.e. weights of the neural networks) is connected at all levels. We further41

prove that the policy optimization objective as a function of the policy parameter and reward is42

“equiconnected”, which is a stronger result that we will define and introduce later in the paper. To43

the best of our knowledge, our paper is the first to rigorously investigate the connectedness of the44

superlevel sets for the MDP policy optimization program, both in the tabular case and with a neural45

network policy class.46

As a downstream application, we discuss how our main results can be used to derive a minimax47

theorem for a class of robust RL problems. We consider the scenario where an adversary strategically48

modifies the reward function to trick the learning agent. Aware of the attack, the learning agent49

defends against the poisoned reward by solving a minimax optimization program. The formulation for50

this problem is proposed and considered in Banihashem et al. [2021], Rakhsha et al. [2020]. However,51

as a fundamental question, the validity of the minimax theorem (or equivalently, the existence of a52

Nash equilibrium) is still unknown. We fill in this gap by establishing the minimax theorem as a53

simple consequence of the equiconnectedness of the policy optimization objective.54

1.2 Related Works55

Our paper is closely connected to the existing works that study the structure of policy optimization56

problems in RL, especially those on the gradient domination condition. Our result also relates to the57

literature on minimax optimization for various function classes and robust RL. We discuss the recent58

advances in these domains to give context to our contributions.59

Gradient Domination Condition. The policy optimization problem in RL is non-convex but obeys60

the special “gradient domination” structure that allows first-order algorithms to provably converge61

to the globally optimal policy. In the settings of LQR [Fazel et al., 2018, Yang et al., 2019] and62

entropy-regularized MDP [Mei et al., 2020, Cen et al., 2022], the gradient domination structure can63

be mathematically described by the Polyak-Łojasiewicz (PŁ) condition, which bears a resemblance64

to strong convexity but does not even imply convexity. It is known that functions observing this65

condition can be optimized globally and efficiently by (stochastic) optimization algorithms [Karimi66

et al., 2016, Gower et al., 2021, Zeng et al., 2021]. When the policy optimization problem under a67

standard, non-regularized MDP is considered, the gradient domination structure is weaker than the68

PŁ condition but still takes the form of upper bounding a global optimality gap by a measure of the69

magnitude of the gradient [Bhandari and Russo, 2019, Agarwal et al., 2020, 2021]. In all scenarios,70

the gradient domination structure prevents any stationary point from being sub-optimal.71

It may be tempting to think that the gradient domination condition and the connectedness of the72

superlevel sets are strongly connected notions or may even imply one another. For 1-dimensional73

function (f : Rn → R with n = 1), it is easy to verify that the gradient domination condition74

necessarily implies the connectedness of the superlevel sets. However, when n ≥ 2 this is no75

longer true. In general, the gradient domination condition neither implies nor is implied by the76

connectedness of superlevel sets, which we illustrate with examples in Section 1.3. These two77

structural properties are distinct concepts that characterize the optimization landscape from different78

angles. This observation precludes the possibility of deriving the connectedness of the superlevel79

sets in RL simply from the existing results on the gradient domination condition, and suggests that a80

tailored analysis is required.81

Minimax Optimization & Minimax Theorems. Consider a function f : X × Y → R on convex82

sets X ,Y . In general, the minimax inequality always holds83

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

The seminal work Neumann [1928] shows that this inequality holds as an equality for matrix games84

where X ⊆ Rm,Y ⊆ Rn are probability simplexes and we have f(x, y) = x⊤Ay given a payoff85

matrix A ∈ Rm×n. The result later gets generalized to the setting where X ,Y are compact sets,86

f(x, ·) is quasi-convex for all x ∈ X , and f(·, y) is quasi-concave for all y ∈ Y [Fan, 1953, Sion,87
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1958]. Much more recently, Yang et al. [2020] establishes the minimax equality when f satisfies the88

two-sided PŁ condition. For arbitrary functions f , the minimax equality need not be valid.89

The validity of the minimax equality is essentially equivalent to the existence of a global Nash90

equilibrium (x⋆, y⋆) such that91

f(x, y⋆) ≤ f(x⋆, y⋆) ≤ f(x⋆, y), ∀x ∈ X , y ∈ Y.
The Nash equilibrium (x⋆, y⋆) is a point where neither player can improve their objective function92

value by changing its strategy. In general nonconvex-nonconcave settings where the global Nash93

equilibrium may not exist, alternative approximate local/global optimality notions are proposed94

[Daskalakis and Panageas, 2018, Nouiehed et al., 2019, Adolphs et al., 2019, Jin et al., 2020].95

Robust Reinforcement Learning. Robust RL studies finding the optimal policy in the worst-case96

scenario under environment uncertainty and/or possible adversarial attacks. Various robust RL97

models have been considered in the existing literature, such as: 1) the learning agent operates under98

uncertainty in the transition probability kernel [Goyal and Grand-Clement, 2022, Li et al., 2022,99

Panaganti and Kalathil, 2022, Wang et al., 2023], 2) an adversary exists and plays a two-player100

zero-sum Markov game against the learning agent [Pinto et al., 2017, Tessler et al., 2019], 3) the101

adversary does not affect the state transition but may manipulate the state observation [Havens et al.,102

2018, Zhang et al., 2020], 4) there is uncertainty or attack only on the reward [Wang et al., 2020,103

Banihashem et al., 2021, Sarkar et al., 2022], 5) the learning agent defends attacks from a population104

of adversaries rather than a single one [Vinitsky et al., 2020]. A particular attack and defense model105

considered later in our paper is adapted from Banihashem et al. [2021].106

Other Works on Connected Level Sets in Machine Learning. Last but not least, we note that our107

paper is related to the works that study the connectedness of the sublevel sets for the LQR optimization108

problem [Fatkhullin and Polyak, 2021] and for deep supervised learning under a regression loss109

[Nguyen, 2019]. The neural network architecture considered in our paper is inspired by and similar110

to the one in Nguyen [2019]. However, our result and analysis on deep RL are novel and significantly111

more challenging to establish, since 1) the underlying loss function in Nguyen [2019] is convex, while112

ours is a non-convex policy optimization objective, 2) the analysis of Nguyen [2019] relies critically113

on the assumption that the activation functions are uniquely invertible, while we use a non-uniquely114

invertible softmax activation function to generate policies within the probability simplex.115

1.3 Connection between Gradient Domination and Connected Superlevel Sets116

We loosely use the term “gradient domination” to indicate that a differentiable function does not117

have any sub-optimal stationary points. In this section, we use two examples to show that the118

gradient domination condition in general does not implies or get implied by the connectedness of the119

superlevel sets. The first example is a function that observes the gradient domination condition but120

has a disconnected set of maximizers (which implies that the superlevel is not always connected).121

Consider f : [−4, 4]× [−2, 0] → R122

f(x, y) =

{
f1(x, y) = −(x− 1)3 + 3(x− 1)− y2 − 2y − 0.02(y + 10)2(10− x2), for x ≥ 0
f2(x, y) = −(−x− 1)3 + 3(−x− 1)− y2 − 2y − 0.02(y + 10)2(10− x2), else

It is obvious that the function is symmetric along the line x = 0 and that f1(0, y) = f2(0, y) for all123

y ∈ [−2, 0]. Computing the derivatives of f1 and f2 with respect to x, we have124

∇xf1(x, y) = −3(x− 1)2 + 3 + 0.04x(y + 10)2,

∇xf2(x, y) = 3(x+ 1)2 − 3 + 0.04x(y + 10)2.

We can again verify ∇xf1(0, y) = ∇xf2(0, y) for all y, which implies that the function f is125

everywhere continuous and differentiable. Visualization of f in Fig. 1 along with simple calculation126

(solving the system of equations ∇xf(x, y) = 0 and ∇yf(x, y) = 0) show that there are only127

two stationary points of f on [−4, 4] × [−2, 0]. The two stationary points are (3.05,−1.12) and128

(−3.05,−1.12), and they are both global maximizers on this domain, which means that the gradient129

domination condition is observed. However, the set of maximizers {(3.05,−1.12), (−3.05,−1.12)}130

is clearly disconnected.131

We next present a function that has connected superlevel sets at all level but does not observe the132

gradient domination condition (i.e. has sub-optimal stationary points).133
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Figure 1: Visualization of Functions f (Left) and g (Right)

Consider g : R2 → R defined as134

g(x, y) = −(x2 + y2)2 + 4(x2 + y2).

This is a volcano-shaped function, which we visualize in Fig. 1. It is obvious the superlevel set135

{(x, y) : g(x, y) ≥ λ} is always either a 2D circle (convex set) or a donut-shaped connected set136

depending on the choice of λ. However, the gradient domination condition does not hold as (0, 0) is137

a first-order stationary point but not a global maximizer (it is actually a local minimizer).138

Outline of the paper. The rest of the paper is organized as follows. In Section 2, we discuss the policy139

optimization problem in the tabular setting and establish the connectedness of the superlevel sets. Sec-140

tion 3 generalizes the result to a class of policies represented by over-parameterized neural networks.141

We introduce the structure of the neural network and the definition of super level sets in this context,142

and present our theoretical result. In Section 4, we use our main results on superlevel sets to derive two143

minimax theorems for robust RL. Finally, we conclude in Section 5 with remarks on future directions.144

2 Connected Superlevel Set Under Tabular Policy145

We consider the infinite horizon, average reward MDP characterized by M = (S,A,P, r). We use146

S and A to denote the state and action spaces, which we assume are finite. The transition probability147

kernel is denoted by P : S × A → ∆S , where ∆S denotes the probability simplex over S. The148

reward function r : S × A → [0, Ur] is bounded for some positive constant Ur and can also be149

regarded as a vector in R|S|×|A|. We use Pπ ∈ RS×S to represent the state transition probability150

matrix under policy π ∈ ∆S
A, where ∆S

A is the collection of probability simplexes over A across the151

state space152

Pπ
s′,s =

∑
a∈A

P(s′ | s, a)π(a | s), ∀s′, s ∈ S. (1)

We consider the following ergodicity assumption in the rest of the paper, which is commonly made in153

the RL literature [Wang, 2017, Wei et al., 2020, Wu et al., 2020].154

Assumption 1 Given any policy π, the Markov chain formed under the transition probability matrix155

Pπ is ergodic, i.e. irreducible and aperiodic.156

Let µπ ∈ ∆S denote the stationary distribution of the states induced by policy π. As a consequence157

of Assumption 1, the stationary distribution µπ is unique and uniformly bounded away from 0 under158

any π. In addition, µπ is the unique eigenvector of Pπ with the associated eigenvalue equal to 1, i.e.159

µπ = Pπµπ. Let µ̂π ∈ ∆S×A denote the state-action stationary distribution induced by π, which160

can be expressed as161

µ̂π(s, a) = µπ(s)π(a | s). (2)
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We measure the performance of a policy π under reward function r by the average cumulative reward162

Jr(π)163

Jr(π) ≜ lim
K→∞

∑K
k=0 r(sk, ak)

K
= Es∼µπ,a∼π[r(sk, ak)] =

∑
s,a

r(s, a)µ̂π(s, a).

The objective of the policy optimization problem is to find the policy π that maximizes the average164

cumulative reward165

max
π∈∆S

A

Jr(π). (3)

The superlevel set of Jr is the set of policies that achieve a value function greater than or equal to166

a specified level. Formally, given λ ∈ R, the λ-superlevel set (or superlevel set) under reward r is167

defined as168

Uλ,r ≜ {π ∈ ∆S
A | Jr(π) ≥ λ}.

The main focus of this section is to study the connectedness of this set Uλ,r, which requires us to169

formally define a connected set.170

Definition 1 A set U is connected if for any x, y ∈ U there exists a continuous map p : [0, 1] → U171

such that p(0) = x and p(1) = y.172

We say that a function is connected if its superlevel sets are connected at all levels. We also introduce173

the definition of equiconnected functions.174

Definition 2 Given two spaces X and Y , the collection of functions {fy : X → R}y∈Y is said to be175

equiconnected if for every x1, x2 ∈ X , there exists a continuous path map p : [0, 1] → X such that176

p(0) = x1, p(1) = x2, fy(p(α)) ≥ min{fy(x1), fy(x2)},
for all α ∈ [0, 1] and y ∈ Y .177

Conceptually, the collection of functions {fy : X → R}y∈Y being equiconnected requires 1) that178

fy(·) is a connected function for all y ∈ Y (or equivalently, the set {x ∈ X : fy(x) ≥ λ} is179

connected for all λ ∈ R and y ∈ Y) and 2) that the path map constructed to prove the connectedness180

of {x ∈ X : fy(x) ≥ λ} is independent of y.181

We now present our first main result of the paper, which states that the superlevel set Uλ,r is always182

connected.183

Theorem 1 Under Assumption 1, the superlevel set Uλ,r is connected for any λ ∈ R and r ∈ R|S||A|.184

In addition, the collection of functions {Jr(·) : ∆S
A → R}r∈R|S|×|A| is equiconnected.185

The claim in Theorem 1 on the equiconnectedness of {Jr}r∈R|S|×|A| is a slightly stronger result186

than the connectedness of Uλ,r, and plays an important role in the application to minimax theorems187

discussed later in Section 4.188

We note that the proof, presented in Section A.1 of the appendix, is mainly leverages the fact that the189

value function Jr(π) is linear in the state-action stationary distribution µ̂π and that there is a special190

connection (though nonlinear and nonconvex) between µ̂π and the policy π, which we take advantage191

of to construct the continuous path map for the analysis. Specifically, given two policies π1, π2 with192

Jr(π1), Jr(π2) ≥ λ, we show that the policy πα defined as193

πα(a | s) = αµπ1(s)π1(a | s) + (1− α)µπ2(s)π2(a | s)
αµπ1

(s) + (1− α)µπ2
(s)

, ∀α ∈ [0, 1]

is guaranteed to achieve Jr(πα) for all α ∈ [0, 1].194

Besides playing a key role in the proof of Theorem 1, our construction of this path map may inform195

the design of algorithms in the future. Given any two policies with a certain guaranteed performance,196

we can generate a continuum of policies at least as good. As a consequence, if we find two optimal197

policies (possibly by gradient descent from different initializations) we can generate a range of198

interpolating optimal policies. If the agent has a preference over these policy (for example, to199

minimize certain energy like in H1 control, or if some policies are easier to implement physically),200

then the selection can be made on the continuum of optimal policies, which eventually leads to a201

more preferred policy.202
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3 Connected Superlevel Set Under Neural Network Parameterized Policy203

In real-world reinforcement learning applications, it is common to use a deep neural network to204

parameterize the policy [Silver et al., 2016, Arulkumaran et al., 2017]. In this section, we consider the205

policy optimization problem under a special class of policies represented by an over-parameterized206

neural network and show that this problem still enjoys the important structure — the connectedness of207

the superlevel sets — despite the presence of the highly complex function approximation. Illustrated208

in Fig. 2, the neural network parameterizes the policy in a very natural manner which matches how209

neural networks are actually used in practice.210

Figure 2: Neural Network Policy Representation

Mathematically, the parameterization can be described as follows. Each state s ∈ S is associated211

with a feature vector ϕ(s) ∈ Rd, which in practice is usually carefully selected to summarize the key212

information of the state. For state identifiability, we assume that the feature vector of each state is213

unique, i.e.214

ϕ(s) ̸= ϕ(s′), ∀s, s′ ∈ S and s ̸= s′.

To map a feature vector ϕ(s) to a policy distribution over state s, we employ a L-layer neural network,215

which in the kth layer has weight matrix Wk ∈ Rnk−1×nk and bias vector bk ∈ Rnk with n0 = d216

and nL = |A|. For the simplicity of notation, we use Ωk to denote the space of weight and bias217

parameters (Wk, bk) of layer k, and we write Ω = Ω1 × · · · × ΩL. θ denotes the collection of the218

weights and biases219

θ = ((W1, b1), · · · , (WL, bL)) ∈ Ω

We use the same activation function for layers 1 through L− 1, denoted by σ : R → R, which can be220

applied in an element-wise fashion to vectors. To ensure that the output of the neural network is a221

valid probability distribution, the activation function for the last layer is a softmax function, denoted222

by ψ : R|A| → ∆A, i.e. for any vector v ∈ R|A|223

ψ(v)i =
exp(vi)∑|A|

i′=1 exp(vi′)
, ∀i = 1, ..., |A|.

With v ∈ Rd as the input to a neural network with parameters θ, we use fθk (v) ∈ Rnk to denote the224

output of the network at layer k. For k = 1, · · · , L, fθk (v) is computed as225

fθk (v) =


σ
(
W⊤

1 v + b1
)

k = 1
σ
(
W⊤

k fk−1(v) + bk
)

k = 2, 3, ..., L− 1
ψ
(
W⊤

L fL−1(v) + bL
)

k = L.
(4)

The policy πθ ∈ R|S|×|A| parametrized by θ is the output of the final layer:226

πθ(· | s) = fθL(ϕ(s)) ∈ ∆A, ∀s ∈ S.

Our analysis relies two assumptions about the structure of the neural network. The first concerns the227

invertibility of σ(·) as well as the continuity and uniqueness of its inverse, which can be guaranteed228

by the following:229

Assumption 2 σ is strictly monotonic and σ(R) = R. In addition, there do not exist non-zero scalars230

{pi, qi}mi=1 with qi ̸= qj , ∀i ̸= j such that for some m > 0, σ(x) =
∑m

i=1 piσ(x− qi), ∀x ∈ R.231
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We note that this assumption holds for common activation functions including leaky-ReLU and232

parametric ReLU [Xu et al., 2015].233

Our second assumption is that the neural network is sufficiently over-parameterized and that the234

number of parameters decreases with each layer.235

Assumption 3 The output of the first layer is wider than 2|S|, and the width of the network decreases236

over the layers, i.e.237

n1 ≥ 2|S|, and n1 > n2 > ... > nL = |A|.

Neural networks meeting this criteria have a number of weight parameters that is larger than the238

cardinality of the state space, making them impractical for large |S|. While ongoing work seeks to239

relax or remove this assumption, we point out that similar over-parameterization assumptions are240

critical and very common in most existing works on the theory of neural networks [Zou and Gu, 2019,241

Nguyen, 2019, Liu et al., 2022, Martinetz and Martinetz, 2022, Pandey and Kumar, 2023].242

The λ-superlevel set of the value function with respect to θ under reward function r is243

UΩ
λ,r ≜ {θ ∈ Ω | Jr(πθ) ≥ λ}.

Our next main theoretical result guarantees the connectedness of UΩ
λ,r.244

Theorem 2 Under Assumptions 1-3, the superlevel set UΩ
λ,r is connected for any λ ∈ R. In addition,245

with Jr,Ω(θ) ≜ Jr(πθ), the collection of functions {Jr,Ω(·) : Ω → R}r∈R|S|×|A| is equiconnected.246

The proof of this theorem is deferred to the appendix. Similar to Theorem 1, the claim in Theorem 2247

on the equiconnectedness of {Jr,Ω}r∈R|S|×|A| is again stronger than the connectedness of UΩ
λ,r and248

needs to be derived for the application to minimax theorems, which we discuss in the next section.249

4 Application to Robust Reinforcement Learning250

In this section, we consider the robust RL problem under adversarial reward attack, which can be251

formulated as a convex-nonconcave minimax optimization program. In Section 4.1, we show that the252

minimax equality holds for this optimization program in the tabular policy setting and under policies253

represented by a class of neural networks, as a consequence of our results in Sections 2 and 3. To254

our best knowledge, the existence of the Nash equilibrium for this robust RL problem has not been255

established before even in the tabular case. A specific example of this type of robust RL problems is256

given in Section 4.2.257

4.1 Minimax Theorem258

Robust RL in general studies identifying a policy with reliable performance under uncertainty or259

attacks. A wide range of formulations have been proposed for robust RL (which we reviewed in260

details in Section 1.2), and an important class of formulations takes the form of defending against an261

adversary that can modify the reward function in a convex manner. Specifically, the objective of the262

learning agent can be described as solving the following minimax optimization problem263

max
π∈∆S

A

min
r∈C

Jr(π), (5)

where C is some convex set. It is unclear from the existing literature whether minimax inequality264

holds for this problem, i.e.265

max
π∈∆S

A

min
r∈C

Jr(π) = min
r∈C

max
π∈∆S

A

Jr(π), (6)

and we provide a definitive answer to this question. We note that there exists a classic minimax266

theorem on a special class of convex-nonconcave functions [Simons, 1995], which we adapt and267

simplify as follows.268
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Theorem 3 Consider a separately continuous function f : X × Y → R, with Y being a convex,269

compact set. Suppose that f(x, ·) is convex for all x ∈ X . Also suppose that the collection of270

functions {f(·, y)}y∈Y is equiconnected. Then, we have271

sup
x∈X

min
y∈Y

f(x, y) = min
y∈Y

sup
x∈X

f(x, y). (7)

Theorem 3 states that the minimax equality holds under two main conditions (other than the continuity272

condition, which can easily be verified to hold for Jr(π)). First, the function f(x, y) needs to be273

convex with respect to the variable y within a convex, compact constraint set. Second, f(x, y) needs274

to have a connected superlevel set with respect to x, and the path function constructed to prove the275

connectedness of the superlevel set is independent of y. As we have shown in this section and earlier276

in the paper, if we model Jr(π) by f(x, y) with π and r corresponding to x and y, both conditions277

are observed by the optimization problem (5), which allows us to state the following corollary.278

Corollary 1 Suppose that the Markov chain M satisfies Assumption 1 on ergodicity. Then, the279

minimax equality (6) holds.280

When the neural network presented in Section 3 is used to represent the policy, the collection of281

functions {Jr,Ω}r is also equiconnected. This allows us to extend the minimax equality above to the282

neural network policy class. Specifically, consider problem (5) where the policy πθ is represented by283

the parameter θ ∈ Ω as described in Section 3. Using f(x, y) to model Jr(πθ) with x and y mirroring284

θ and r, we can easily establish the minimax theorem in this case as a consequence of Theorem 2 and 3.285

Corollary 2 Suppose that the Markov chain M satisfies Assumption 1 on ergodicity and that the286

neural policy class satisfies Assumptions 2-3. Then, we have287

sup
θ∈Ω

min
r∈C

Jr(πθ) = min
r∈C

sup
θ∈Ω

Jr(πθ). (8)

Corollary 1 and 2 establish the minimax equality (or equivalently, the existence of the Nash equilib-288

rium) for the robust reinforcement learning problem under adversarial reward attack for the tabular289

and neural network policy class, respectively. To our best knowledge, these results are both novel and290

previously unknown in the existing literature. The Nash equilibrium is an important global optimality291

notion in minimax optimization, and the knowledge on its existence can provide strong guidance on292

designing and analyzing algorithms for solving the problem.293

4.2 Example - Defense Against Reward Poisoning294

We now discuss a particular example of (5). We consider the infinite horizon, average reward MDP295

M = (S,A,P, r) introduced in Section 2, where r is the true, unpoisoned reward function. Let296

Πdet denote the set of deterministic policies from S to A. With the perfect knowledge of this MDP,297

an attacker has a target policy π† ∈ Πdet and tries to make the learning agent adopt the policy by298

manipulating the reward function. Mathematically, the goal of the attacker can be described by the299

function Attack(r, π†, ϵ†) which returns a poisoned reward under the true reward r, the target policy300

π†, and a pre-selected margin parameter ϵ† ≥ 0. Attack(r, π†, ϵ†) is the solution to the following301

optimization problem302

Attack(r, π†, ϵ†) = argmin
r′

∑
s∈S,a∈A

(r′(s, a)− r(s, a))
2

s. t. Jr′(π†) ≥ Jr′(π) + ϵ†, ∀π ∈ Πdet\π†.
(9)

In other words, the attacker needs to minimally modify the reward function to make π† the optimal303

policy under the poisoned reward. This optimization program minimizes a quadratic loss under a304

finite number of linear constraints and is obviously convex.305

The learning agent observes the poisoned reward r† = Attack(r, π†, ϵ†) rather than the original306

reward r. As noted in Banihashem et al. [2021], without any defense, the learning agent solves the307

policy optimization problem under r† to find π†, which may perform arbitrarily badly under the308

original reward. One way to defend against the attack is to maximize the performance of the agent309

in the worst possible case of the original reward, which leads to solving a minimax optimization310

8



program of the form311

max
π∈∆S

A

min
r′

Jr′(π) s. t. Attack(r′, π†, ϵ†) = r†. (10)

When the policy π is fixed, (10) reduces to312

min
r′

Jr′(π) s. t. Attack(r′, π†, ϵ†) = r†. (11)

With the justification deferred to Appendix D, we point out that (11) consists of a linear objective313

function and a convex (and compact) constraint set, and is therefore a convex program. On the other314

hand, when we fix the reward r′, (10) reduces to a standard policy optimization problem.315

We are interested in investigating whether the following minimax equality holds.316

max
π∈∆S

A

min
r′:Attack(r′,π†,ϵ†)=r†

Jr′(π) = min
r′:Attack(r′,π†,ϵ†)=r†

max
π∈∆S

A

Jr′(π). (12)

This is a special case of (5) with C = {r′ | Attack(r′, π†, ϵ†) = r†}, which can be verified to be a317

convex set. Therefore, the validity of (12) directly follows from Corollary 1. Similarly, in the setting318

of neural network parameterized policy we can establish319

max
θ∈Ω

min
r′:Attack(r′,π†,ϵ†)=r†

Jr′(πθ) = min
r′:Attack(r′,π†,ϵ†)=r†

max
θ∈Ω

Jr′(πθ)

as a result of Corollary 2.320

5 Conclusions & Future Work321

We study the superlevel set of the policy optimization problem under the MDP framework and show322

that it is always a connected set under a tabular policy and for policies parameterized by a class of323

neural networks. We apply this result to derive a previously unknown minimax theorem for a robust324

RL problem. An immediate future direction of the work is to investigate whether/how the result325

discussed in this paper can be used to design better RL algorithms. In Fatkhullin and Polyak [2021],326

the authors show that the original LQR problem has connected level sets, but the partially observable327

LQR does not. It is interesting to study whether this observation extends to the MDP setting, i.e. the328

policy optimization problem under a partially observable MDP can be shown to have disconnected329

superlevel sets.330
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A Proof of Theorems445

A.1 Proof of Theorem 1:446

We note that there exists a bijective map between π and µ̂π where µ̂π is induced by π according to447

(2) and conversely448

π(a | s) = µ̂π(s, a)

µπ(s)
=

µ̂π(s, a)∑
a∈A µ̂π(s, a)

, (13)

provided that µπ(s) ̸= 0, which is guaranteed by Assumption 1. Eq. (13) inspires the construction of449

the path map.450

To prove that the superlevel set is connected, we show that for any λ ∈ R and π1, π2 ∈ Uλ,r, there451

exists a continuous path map p : [0, 1] → Uλ,r such that p(0) = π1 and p(1) = π2. We now construct452

the path function p by defining453

p(α)(a | s) = αµπ1
(s)π1(a | s) + (1− α)µπ2

(s)π2(a | s)
αµπ1

(s) + (1− α)µπ2
(s)

,

which is well-defined for all α ∈ [0, 1] as µπ1(s), µπ2(s) are positive for all s ∈ S. Note that the454

construction of p does not depend on the reward function r. It is easy to see that p(α) ∈ ∆S
A is a455

continuous in α. To stress that p(α) is in the policy space, we denote πα = p(α).456

Recall the definition of the transition probability matrix in (1). We define B ∈ R|S| as457

B = Pπα · (αµπ1 + (1− α)µπ2) .

Each entry of B can be expressed as458

B(s′) =
∑
s,a

P(s′ | s, a)πα(a | s) (αµπ1(s) + (1− α)µπ2(s))

=
∑
s,a

P(s′ | s, a)αµπ1
(s)π1(a | s) + (1− α)µπ2

(s)π2(a | s)
αµπ1(s) + (1− α)µπ2(s)

(αµπ1(s) + (1− α)µπ2(s))

=
∑
s,a

P(s′ | s, a)αµπ1
(s)π1(a | s) +

∑
s,a

P(s′ | s, a)(1− α)µπ2
(s)π2(a | s)

= α
∑
s,a

Pπ1

s′,sµπ1
(s) + (1− α)

∑
s,a

Pπ2

s′,sµπ2
(s)

= αµπ1(s
′) + (1− α)µπ2(s

′),

which implies459

Pπα · (αµπ1
+ (1− α)µπ2

) = αµπ1
+ (1− α)µπ2

. (14)

A consequence of Assumption 1 is that for any policy π there is a unique eigenvector of Pπ associated460

with the eigenvalue 1, and this eigenvector (properly normalized) is the stationary distribution.461

Therefore, (14) means that αµπ1
+(1−α)µπ2

has to be the stationary distribution under policy πα, i.e.462

µπα = αµπ1 + (1− α)µπ2 .

As a result, for all s ∈ S, a ∈ A463

µ̂πα
(s, a) = µπα

(s)πα(a | s)

= (αµπ1(s) + (1− α)µπ2(s))
αµπ1

(s)π1(a | s) + (1− α)µπ2
(s)π2(a | s)

αµπ1(s) + (1− α)µπ2(s)

= αµπ1(s)π1(a | s) + (1− α)µπ2(s)π2(a | s)
= αµ̂π1(s, a) + (1− α)µ̂π2(s, a).

Note that Jr(π) =
∑

s∈S,a∈A r(s, a)µ̂π(s, a). Since ππ1 , ππ2 ∈ Uλ,r, we know464 ∑
s∈S,a∈A

r(s, a)µ̂π1
(s, a) ≥ λ,

∑
s∈S,a∈A

r(s, a)µ̂π2
(s, a) ≥ λ.
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Therefore, we have for any α ∈ [0, 1]465

Jr(πα) =
∑

s∈S,a∈A
r(s, a)µ̂πα

(s, a) =
∑

s∈S,a∈A
r(s, a) (αµ̂π1

(s, a) + (1− α)µ̂π2
(s, a)) ≥ λ,

which implies πα ∈ Uλ,r. So far we have verifed that the constructed path map p is indeed continuous466

and maps α ∈ [0, 1] to Uλ,r with p(0) = π1 and p(1) = π2. This concludes the proof on the467

connectedness of the superlevel set Uλ,r. The claim on the equiconnectedness simply follows from468

the fact that the construction of the path map p does not depend on the reward function.469

■470

A.2 Proof of Theorem 2471

We use X to denote the concatenation of the feature vectors across all states472

X ≜


ϕ(s1)

⊤

ϕ(s2)
⊤

...
ϕ(s|S|)

⊤

 ∈ R|S|×d

In the analysis we may apply the softmax function ψ to a matrix in a row-wise fashion. Specifically,473

for any n ≥ 1 and matrix M ∈ Rn×|A|, we have474

ψ(M)i,j =
exp(Mi,j)∑|A|

j′=1 exp(Mi,j′)
∀i = 1, ..., n.

The softmax operator ψ can be inverted up to an additive constant factor. We define ψinv for any475

matrix M ∈ Rn×|A| as476

ψinv(M)i,j = log(Mi,j) + ci ∀i, j,
with ci determined such that

∑|A|
j=1 ψinv(M)i,j = 0. Note that ψinv is a right inverse of ψ, i.e.477

ψ(ψinv(M)) =M for all matrix A.478

When the input to a neural network with parameter θ is the feature table X , we denote the output of479

layer k by F θ
k ∈ R|S|×nk . According to (4), F θ

k can be expressed as480

F θ
k =


σ
(
XW1 + 1|S|b

⊤
1

)
k = 1

σ
(
F θ
k−1Wk + 1|S|b

⊤
k

)
k = 2, 3, ..., L− 1

ψ
(
F θ
L−1WL + 1|S|b

⊤
L

)
k = L

where 1|S| is the all-one vector of dimension |S| × 1. Note that F θ
L ∈ R|S|×|A| is the policy table481

produced by the neural network, i.e. πθ = F θ
L.482

The proof of Theorem 2 relies on the following intermediate results, which we now present. The483

proof of Proposition 1 can be found in Appendix B.484

Proposition 1 If rank(X) = |S|, then under Assumption 1 and 2, the superlevel set UΩ
λ,r is connected485

for all λ ∈ R.486

Lemma 1 Let (X,W, b, V ) ∈ R|S|×n0 × Rn0×n1 × Rn1 × Rn1×n2 . Let Z = σ(XW + 1|S|b⊤)V .487

Suppose X has distinct rows. Then, under Assumption 2 and 3, there exists a continuous path map488

c : [0, 1] → Rn0×n1 × Rn1 × Rn1×n2 with c(λ) = (W (λ), b(λ), V (λ)) such that489

1) c(0) = (W,b,V),490

2) σ
(
XW (λ) + 1|S|b(λ)

T
)
V (λ) = Z,∀λ ∈ [0, 1],491

3) rank
(
σ
(
XW (1) + 1|S|b(1)

T
))

= N .492

Lemma 2 Let (X,W, V,W ′) ∈ R|S|×n0 ×Rn0×n1 ×Rn1×n2 ×Rn0×n1 . Suppose rank(σ(XW )) =493

|S| and rank(σ(XW ′)) = |S|. Then, under Assumption 2 and 3, there exists a continuous path map494

c : [0, 1] → Rn0×n1 × Rn1×n2 with c(λ) = (W (λ), V (λ)) such that495
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1) c(0) = (W,V),496

2) σ (XW (λ))V (λ) = σ (XW )V,∀λ ∈ [0, 1],497

3) W (1) =W ′.498

To prove Theorem 2, it suffices to show that for any θ1 = (W1,l, b1,l)
L
l=1 ∈ UΩ

λ,r and θ2 =499

(W2,l, b2,l)
L
l=1 ∈ UΩ

λ,r there exists a connected path that is completely within UΩ
λ,r.500

Applying Lemma 1 with (X,W1,1, b1,1,W1,2) and (X,W2,1, b2,1,W2,2), the problem simplifies to501

showing the existence of a continuous path within UΩ
λ,r that connects502

θ′1 = ((W ′
1,1, b

′
1,1), (W

′
1,2, b1,2), (W1,l, b1,l)

L
l=3)

and503

θ′2 = ((W ′
2,1, b

′
2,1), (W

′
2,2, b1,2), (W2,l, b2,l)

L
l=3)

such that504

rank(F
θ′
1

1 ) = rank(F
θ′
2

1 ) = |S|.

Then, we can apply Lemma 2 with ([X, 1|S|], [W
′⊤
1,1, b

′
1,1]

⊤,W ′
1,2, [W

′⊤
2,1, b

′
2,1]

⊤) to show that there505

is a continuous path between θ′1 and θ′′1 with θ′′1 = ((W ′
2,1, b

′
2,1), (W

′′
1,2, b1,2), (W1,l, b1,l)

L
l=3) such506

that507

rank(F
θ′′
1

1 ) = rank(F
θ′
1

1 ) = |S|.

As a consequence, now we simply have to show that θ′′1 and θ′2 is connected by a continuous path508

within UΩ
λ,r.509

Note that θ′′1 and θ′2 have identical first layer parameters and thus the same first layer output, which510

is full rank. This allows us to treat the layers from 2 to L as a new network and apply Proposition511

1 (which requires the input to be full rank) to the new network to guarantee that there exists a512

continuous path map c : [0, 1] → Ω2 × ... × Ωk such that c(0) = ((W ′′
1,2, b1,2), (W1,l, b1,l)

L
l=3),513

c(1) = ((W ′
2,2, b1,2), (W2,l, b2,l)

L
l=3), and514

min{Jr(πθ1), Jr(πθ2)} ≤ Jr(π((W ′
2,1,b

′
2,1),c(α))

) ≤ max{Jr(πθ1), Jr(πθ2)}

for all α ∈ [0, 1]. This implies that there is indeed a continuous path between θ′′1 and θ′2 within UΩ
λ,r.515

Similar to the proof of Theorem 1, the claim on the connectedness simply follows from the fact that516

the construction of the path map p does not depend on the reward function. ■517

B Proof of Proposition 1518

For each layer of the neural network k = 1, · · · , L, we define Ω⋆
k ⊆ Ωk to be the set of weights Wk519

and biases bk of layer k such that Wk is full rank, i.e.520

Ω⋆
k = {(Wk, bk) ∈ Ωk :Wk is full rank}. (15)

We denote Ω⋆ = Ω⋆
1 ×Ω⋆

2 × ...×Ω⋆
L. Next, we introduce the following lemmas in aid of the analysis.521

Condition 1 Given θ = (Wl, bl)
L
l=2, Wl has full rank for every l ∈ [2, L].522

Lemma 3 Under Assumption 2, 3, and Condition 1, given any k ∈ [2, L] and matrix F ∈ R|S|×nk ,523

there exists a continuous map h : Ω⋆
2 × ...× Ω⋆

k × R|S|×nk → Ω1 such that524

1) Given ((W2, b2), ..., (Wk, bk), F ) ∈ Ω⋆
2 × ...× Ω⋆

k × R|S|×nk , we have525

F
h((Wl,bl)

k
l=2,F ),(Wl,bl)

k
l=2

k = F.

2) For any θ⋆ = (W ⋆
l , b

⋆
l )

L
l=1 ∈ Ω1 × Ω⋆

2 × ... × Ω⋆
L, there exists a continuous path map p :526

[0, 1] → Ω1×Ω⋆
2 × ...×Ω⋆

L such that p(0) = θ⋆, p(1) =
(
h((W ⋆

l , b
⋆
l )

k
l=2, F

θ⋆

k ), (W ⋆
l , b

⋆
l )

L
l=2

)
, and527

F
p(α)
L = F θ⋆

L for all α ∈ [0, 1].528
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Lemma 4 Given two connected sets A ⊆ Rm1×n and B ⊆ Rn×m2 , the set {ab | a ∈ A, b ∈ B} is529

connected. Given two connected sets A,B ⊆ Rm×n, the set {a+ b | a ∈ A, b ∈ B} is connected.530

Lemma 5 Under Assumption 2, for any θ ∈ Ω, there exist θ⋆ ∈ Ω⋆ and a continuous path map531

p : [0, 1] → Ω such that p(0) = θ, p(1) = θ⋆, and F p(α)
L = F θ

L for all α ∈ [0, 1].532

Lemma 6 If n < m, then the set F = {F ∈ Rm×n | rank(F ) = n} is connected. In other words,533

given F1, F2 ∈ F , there exists a continuous path map q : [0, 1] → F such that q(0) = F1 and534

q(1) = F2.535

Fix a λ ∈ R. To show the superlevel set UΩ
λ,r is connected, it suffices to show that for any θ1, θ2 ∈ UΩ

λ,r,536

there exists a continuous path between them that is completely in UΩ
λ,r.537

Without any loss of generality, we can safely assume that both θ1 = (W1,l, b1,l)
L
l=1 and θ2 =538

(W2,l, b2,l)
L
l=1 satisfy Condition 1, since otherwise by Lemma 5 we can find a continuous path from539

θ1 and θ2 that leads to one satisfying Condition 1. We denote the policies parameterized by θ1, θ2 as540

π1, π2, i.e.541

π1 = F θ1
L , π2 = F θ2

L .

By Lemma 3, there is a continuous path from θ1/θ2 to θ′1/θ
′
2 where we define542

θ′1 =
(
h
(
(W1,l, b1,l)

L
l=2 , π1

)
, (W1,l, b1,l)

L
l=2

)
,

and θ′2 =
(
h
(
(W2,l, b2,l)

L
l=2 , π2

)
, (W2,l, b2,l)

L
l=2

)
.

Now, we just have to show that there exists a continuous path between θ′1 and θ′2 that is completely543

within UΩ
λ,r. By Lemma 6, we know that for l = 2, .., L, there exists a continuous path map544

ql : [0, 1] → Ω⋆
l such that ql(1) =W1,l and ql(0) =W2,l. Then, we construct the map q : [0, 1] → Ω545

q(α) =
(
h((ql(α), αb1,l + (1− α)b2,l)

L
l=2, π1), (ql(α), αb1,l + (1− α)b2,l)

L
l=2

)
∀α ∈ [0, 1].

It is obvious that q is a continuous map as h, q2, ..., qL are continuous. In addition, F q(α)
L = π1 for546

all α ∈ [0, 1], and q(1) = θ′1. We define547

θ′′1 = q(0) =
(
h
(
(W2,l, b2,l)

L
l=2 , π1

)
, (W2,l, b2,l)

L
l=2

)
.

Now our aim simplifies to finding a continuous path between θ′′1 and θ′2 that is completely in UΩ
λ,r. To548

show that this path exists, we construct a continuous map t : [0, 1] → Ω as follows549

t(α) =
(
h
(
(W2,l, b2,l)

L
l=2 , π̃α

)
, (W2,l, b2,l)

L
l=2

)
∀α ∈ [0, 1],

where π̃ is defined entry-wise550

π̃α(a | s) = αµπ1(s)π1(a | s) + (1− α)µπ2(s)π2(a | s)
αµπ1

(s) + (1− α)µπ2
(s)

.

It can be seen that t is indeed continuous since π̃α is continuous in α, and t(0) = θ′2 and t(1) = θ′′1 .551

What remains to be shown is that F t(α)
L ∈ UΩ

λ,r, i.e. Jr(F
t(α)
L ) ≥ λ. By the definition of h in Lemma552

3, F t(α)
L = π̃α. It has been shown in the proof of Theorem 1 that indeed Jr(π̃α) ≥ λ provided that553

Jr(π1) ≥ λ and Jr(π2) ≥ λ. This concludes the proof of Proposition 1.554

■555

C Proof of Supporting Lemmas556

C.1 Proof of Lemma 1557

This lemma is adapted from Lemma 5.2 of Nguyen [2019].558
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C.2 Proof of Lemma 2559

This lemma is adapted from Lemma 5.3 of Nguyen [2019].560

C.3 Proof of Lemma 3561

We provide a proof for the case k = L. For k ̸= L, the proof can be found in Nguyen [2019][Lemma562

3.3].563

For ((W2, b2), ..., (WL, bL), π) ∈ Ω⋆
2 × ...× Ω⋆

L ×∆S
A, we define the map h as follows564

h
(
(Wl, bl)

L
l=2, π

)
=

(
Ŵ1, b̂1

)
where Ŵ1 and b̂1 is defined as565 

[
W1

b⊤1

]
=

[
X,1|S|

]†
σ−1 (B1) ,

Bl =
(
σ−1 (Bl+1)− 1|S|b

⊤
l+1

)
W †

l+1,∀l ∈ [1, k − 2]

Bk−1 =
(
ψinv(π)− 1|S|b

⊤
L

)
W †

L

(16)

where we use A† to denote the Moore-Penrose inverse of a matrix A. If A has full column rank, then566

we have A†A = I . If A has full row rank, we have AA† = I . We can easily see that the defined h567

operator is continuous as it is a composition of continuous operators.568

Assumption 3, and Condition 1 imply that the matrices W2, ...,WL all have full column rank, which569

means W †
l Wl = I . We also know that [X,1|S|] has full row rank by our assumption that X has full570

row rank, which means [X,1|S|][X,1|S|]
† = I . Therefore, we can layerwise invert (16) and verify571

that572

F
h((Wl,bl)

L
l=2,π),(Wl,bl)

L
l=2

L = π.

For every layer l = 2, ..., L, we define the operator Gl : R|S|×nl−1 → R|S|×nl573

Gl(Y ) =

 σ
(
YW ⋆

l + 1|S| (b
⋆
l )

⊤
)

l ∈ [2, L− 1]

ψ
(
YW ⋆

L + 1|S| (b
⋆
L)

⊤
)

l = L

We also define the operator H : R(d+1)×n1 → R|S|×n1574

H(Y ) = σ
(
[X,1|S|]Y

)
.

To show the continuous path claimed in Lemma 3 exists, it suffices to show that the set {(W1, b1) :575

F
(W1,b1),(W

⋆
l ,b⋆l )

L
l=2

L = F θ⋆

L } is connected, which is equivalent to showing that the set f−1(F θ⋆

L ) is576

connected where f is defined as577

f([W⊤
1 , b1]

⊤) = GL ◦ ... ◦G2 ◦H([W⊤
1 , b1]

⊤).

Note that the definition of f implies578

f−1(π) = H−1 ◦G−1
2 ◦ ... ◦G−1

L (π). (17)

Note that G−1
l is579

G−1
l (F )=

{ (
ψinv(F )+{C | Ci,j=Ci,j′ ∀i, j ̸=j′}−1Nb

T
L

)
(W ⋆

L)
†
+ {B |BW ⋆

L = 0} , l = L(
σ−1(F )− 1Nb

⋆
l

)
(W ⋆

l )
†
+ {B | BW ⋆

l = 0} , l = 2, ..., L− 1

It is easy to verify that {C | Ci,j = Ci,j′ ∀i, j ̸= j′} and {B | BW ⋆
l = 0} for all l = 2, ..., L. Then,580

Lemma 4 implies that G−1
l (F ) is a connected set for all F .581

Similarly, H−1(F ) =
[
X,1|S|

]†
σ−1(F ) +

{
B |

[
X,1|S|

]
B = 0

}
is also a connected set for all F .582

Therefore, from (17) we know that f−1(F ) is a connected set for any F , which concludes the proof583

of Lemma 3.584

■585
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C.4 Proof of Lemma 4586

To show that the product of the two connected sets are connected, we consider any x, y ∈ {ab |587

a ∈ A, b ∈ B}. Obviously, there exist ax, ay ∈ A and bx, by ∈ B such that x = axbx, y = ayby.588

The connectedness of A and B implies that there exists continuous path maps pA : [0, 1] → A and589

pB : [0, 1] → B such that pA(0) = ax, pA(1) = ay, pB(0) = bx, pB(1) = by. Define p(α) = pApB590

for α ∈ [0, 1]. It is obvious that p(α) ∈ {ab | a ∈ A, b ∈ B} for all α. Since the product of591

continuous maps is still continuous, p : [0, 1] → {ab | a ∈ A, b ∈ B} is a continuous path map592

satisfying p(0) = x and p(1) = y. This implies that the set {ab | a ∈ A, b ∈ B} is a connected set.593

A similar argument can be used to show that the sum of two connected sets is connected.594

■595

C.5 Proof of Lemma 5596

Define F̃L((Wl, bl)
L
l=1) as the output of the final layer before the softmax activation597

F̃
(Wl,bl)

L
l=1

L = FL−1WL + 1|S|b
⊤
L .

Then, existing results in the literature (such as Lemma 3.4 of Nguyen [2019]) show that for any598

θ ∈ Ω, there exists a continuous path map p : [0, 1] → Ω such that p(0) = θ, p(1) = θ⋆ ∈ Ω⋆, and599

F̃L(p(α)) = F̃L(θ) for all α ∈ [0, 1]. This leads to our claim.600

■601

C.6 Proof of Lemma 6602

This lemma is adapted from Theorem 4 of Evard and Jafari [1994].603

D Convexity of Optimization Program (11)604

In this section, we show that (11) is a convex optimization program. First, we note that605

Jr′(π) =
∑
s,a

r′(s, a)µ̂π = µ̂⊤
π r

′,

which means that the objective function is linear in the reward.606

The constraint set is obvious closed. It is also bounded as the reward r(s, a) ∈ [0, Ur]. To prove the607

constraint set is convex, we need to show that for any r1, r2 such that Attack(r1, π†, ϵ†) = r† and608

Attack(r2, π†, ϵ†) = r†, we have609

Attack(αr1 + (1− α)r2, π†, ϵ†) = r†, ∀α ∈ [0, 1]. (18)

By the optimality condition of (9), r† being the optimal poisoned reward for true reward r1 and r2 is610

equivalent to611

⟨r − r†, r1 − r†⟩ ≤ 0 and ⟨r − r†, r2 − r†⟩ ≤ 0

for all r such that Jr(π†) ≥ Jr(π) + ϵ†, ∀π ∈ Πdet\π†. By taking the convex combination of these612

two inequalities, we have for any α ∈ [0, 1]613

⟨r − r†, αr1 + (1− α)r2 − r†⟩ ≤ 0 (19)

for all r such that Jr(π†) ≥ Jr(π) + ϵ†, ∀π ∈ Πdet\π†. Again by the optimality condition of (9),614

(19) is equivalent to (18).615

At this point, we have shown that (11) has a linear objective function and a convex (and also compact)616

constraint set. As a result, the optimization program is convex.617
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