
Supplementary Material for “Differentiable
Registration of Images and LiDAR Point Clouds with

VoxelPoint-to-Pixel Matching”

Junsheng Zhou1∗ Baorui Ma1,2∗ Wenyuan Zhang1 Yi Fang3

Yu-Shen Liu1† Zhizhong Han4

School of Software, Tsinghua University, Beijing, China1
Beijing Academy of Artificial Intelligence2 New York University Abu Dhabi, Abu Dhabi, UAE3

Department of Computer Science, Wayne State University, Detroit, USA4

zhoujs21@mails.tsinghua.edu.cn brma@baai.ac.cn zhangwen21@mails.tsinghua.edu.cn
3mmyfang@nyu.edu liuyushen@tsinghua.edu.cn h312h@wayne.edu

1 Network Details

In this section, we introduce the detailed structures of our designed triplet network. We present the
Voxel/Point/Pixel branches in Figure 1.

1.1 Voxel Branch

For learning spatially-local 3D features from the large-scale LiDAR point clouds efficiently, we
leverage sparse convolution [7, 2] on high-resolution sparse voxels to skip the empty voxels. The
network details are shown in Figure 1.(a), where each sparse convolution block consists of three
sparse convolutions with residual connections. We introduce the details on data representation,
(de)voxelization and feature aggregation below.

Sparse Voxelization. Given a point cloud P = {tip, f i
p}, i ∈ [1, N ] as input, where tip = {xi, yi, zi}

is the 3D location and f i
p is the point-wise feature. We first generate the sparse voxel representation

of the point cloud P as V = {tjv, f j
v}, j ∈ [1,M ], where tjv is the 3D coordinate of sparse voxel vi

and f i
v is the voxel-wise feature of vj . We then define the sparse voxelization operation to generate

voxel coordinates tjv as:

tjv = {xj
v, y

j
v, z

j
v} = {φ(xj

p/l), φ(x
j
p)/l, φ(x

j
p)/l}, (1)

where φ(·) is the floor operation to get integer coordinates and l is the voxel size which indicates the
length of a voxel grid.

And the voxel feature f j
v is generated as:

f j
v =

1

N̂ i

N∑
i=0

Ψ(xi
v = xi

p, y
i
v = yip, z

i
v = zip) · f i

p, (2)

where Ψ(·) is the binary classifier to determine whether tip is inside the voxel grid vi and N̂ i is the
number of points that located inside a non-empty voxel vi.

Sparse Convolution. To overcome the inefficiency of volumetric convolutions, some latest works
[2, 7] propose to operate sparse convolutions which skip the non-activate local regions to reduce the
memory consumption. The sparse convolution is achieved by first identifying the correspondences

∗Equal contribution.†The corresponding author is Yu-Shen Liu.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



S
C

o
n

v
-D

o
w

n

S
co

n
v

-D
o

w
n

S
C

o
n

v
-D

o
w

n

S
C

o
n

v
-D

o
w

n

S
C

o
n

v
-D

o
w

n

S
C

o
n

v
-U

p

S
C

o
n

v
-U

p

S
C

o
n

v
-U

p

S
C

o
n

v
-U

p

D
ev

o
x

el
iz

e

32 32 64 128 256 256 128 64 32

R
es

N
et

-D
o

w
n

R
es

N
et

-D
o

w
n

R
es

N
et

-D
o

w
n

R
es

N
et

-D
o

w
n

R
es

N
et

-U
p

R
es

N
et

-U
p

R
es

N
et

-U
p

64 128 256 512 256 128 64

S
A

-m
o

d
u

le

F
P

-m
o

d
u

le

P
T

-m
o

d
u

le

MLP

MLP

S
A

-m
o

d
u

le

S
A

-m
o

d
u

le

P
T

-m
o

d
u

le

F
P

-m
o

d
u

le

P
T

-m
o

d
u

le

F
P

-m
o

d
u

le

P
T

-m
o

d
u

le

128 256 256 128

(a) Voxel Branch

(b) Point Branch

(c) Image Branch

SConv

Sparse Convolution block

Devoxelize

Sparse Devoxelization

ResNet

ResNet Conv block

SA-module

Set Abstraction module

PT-module

Point Transformer module

FP-module

Feature Propagation module

Figure 1: Detailed structures of Triplet Network for VoxelPoint-Pixel Matching.

between input and output points with a kernel map and then perform convolutions based on the map.
For more details, please refer to MinkowskiNet [2].

Sparse Devoxelization. After aggregating sparse voxel features f j
v with a set of residual sparse

convolution blocks [2], we transform the voxel feature to the point-wise voxel representation, which
is fused together with point features, and serve as the final 3D features in our framework. The sparse
devoxelization is achieved by interpolating each point location with its 8 neighbor voxel grids using
trilinear interpolation similar to SPVNAS [7].

1.2 Point Branch

We provide the detailed network structure of point branch in Figure 1.(b). The point branch is
designed based on PointNet++ [5] with set abstraction modules and feature propagation modules
to extract patterns from point clouds, where four self-attention based PT-modules [9] are further
integrated to explore more detailed patterns.

1.3 Pixel Branch

We provide the detailed network structure of pixel branch in Figure 1.(c). The pixel branch is a
convolutional U-Net, where the ResNet is used as the basic blocks to extract image patterns. The four
ResNet-Down blocks consist of [3, 4, 6, 3] residual convolutions, respectively. And each ResNet-Up
block consists of a bilinear interpolation-based upsampling module and two residual convolutions.

2



2 Additional Experiments and Analysis

2.1 The Analysis of VP2P Matching

We provide the visualization of Point-to-Pixel (P2P) Matching and our proposed VoxelPoint-to-Pixel
(VP2P) Matching with t-SNE [8] to convert features to 2D space through cosine similarities in Figure
2 of the submission. The visual comparison shows that our proposed VP2P Matching leads to a
structured cross-modality latent space while P2P Matching leads to an extremely irregular latent
space.

To further demonstrate the effectiveness of our proposed VP2P Matching, we provide the quantitative
comparison on the latent distribution as shown in Table 1. Given a pair of image and point cloud, we
first extract the 2D and 3D element-wise features with the learned P2P Matching model or VP2P
Matching model, and compute the cosine similarity between the features of each pixel and each
point. We search for the 3D features with greatest cosine similarity with each 2D feature in the
cross-modality latent space and report the average of their similarities as “Max Similarity”. We also
report the standard deviation of cosine similarities as “Similarity Std.”

Table 1: The comparison of VP2P and P2P matching.

Max Similarity Similarity Std.

P2P Matching 0.47 0.27
VP2P Matching 0.54 0.14

The results in Table 1 show that VP2P
Matching achieves better “Max Sim-
ilarity” than P2P Matching, which
demonstrate that the distribution of
2D and 3D features lies closer in the
latent space learned by VP2P Match-
ing. We also achieve a smaller “Simi-
larity Std.”, which proofs that the 2D/3D features learned by VP2P Matching have a more regular
distribution in the latent space. The conclusions are also supported by the visualization in Figure
2 of the submission, where the latent space learned by P2P Matching is extremely irregular where
a large ratio of space is empty and some space only contains the features of a single modality. In
contrast, VP2P Matching leads to a structured cross-modality latent space where the features are
evenly distributed throughout the space.

2.2 KITTI vs. nuScenes

There are two main differences between the KITTI [3] and nuScenes [1] dataset. First, the point
cloud of a single LiDAR frame in the KITTI dataset is dense enough for learning patterns, while
that in nuScenes is relatively sparse and requires to be spliced with adjacent frames which brings
noises since the adjacent LiDAR frames are captured dynamically. Second, the nuScenes dataset is
a larger dataset containing about 2 times training samples than KITTI dataset. Our method shows
great generality by achieving more accurate registration results on both KITTI and nuScenes datasets.
However, CorrI2P shows a decline in accuracy in nuScenes, since it is unable to handle noises due to
its unstable and ambiguous point-to-pixel feature matching.

2.3 The Effect on Safe Radius r

We further test the effect of safe radius r which controls the range of positive samples for adaptive-
weighted optimization as described in Sec.3.2 of the main paper. We report the performance in terms
of RTE/RRE/Acc. under a subset of the KITTI dataset, where the sequence 0-1 is used for training
and the sequence 7 is used for testing. We set the safe radius r to 0.5, 1, 2 and 4 pixels, and report
the performances in Table 2. We observe that a too small or too large safe radius will degenerate the
performance. The reason is that a too small safe radius will lead to relative few positive pairs during
training, making the network overfit to negative samples. While a too large safe radius will lead to
inaccurate optimization targets since some remote samples will also be regarded as positive samples.

2.4 The Effect on Feature Dimension C

The channel dimension C of cross-modality features is also a crucial factor in the network training.
We report the performance in terms of RTE/RRE/Acc. under a subset of the KITTI dataset, where
the sequence 0-1 is used for training and the sequence 7 is used for testing. We show the results of
training our network in different number of channel dimensions C = [16, 32, 64, 128] in Table 3.

3



r (pixel) RTE(m)↓ RRE(o)↓ Acc.↑
0.5 0.88 ± 1.68 2.78 ± 6.63 89.24
1 0.65 ± 1.28 2.10 ± 4.13 91.14
2 0.69 ± 1.15 2.48 ± 5.95 90.60
4 0.96 ± 1.56 3.16 ± 5.88 83.33

Table 2: The effect of safe radius r.

C (channel) RTE(m)↓ RRE(o)↓ Acc.↑
16 0.79 ± 1.38 2.64 ± 6.35 89.69
32 0.80 ± 1.90 2.77 ± 9.03 91.87
64 0.65 ± 1.28 2.10 ± 4.13 91.14
128 1.19 ± 2.63 3.24 ± 10.18 85.65

Table 3: The effect of feature dimension C.

We found that a proper channel dimension around 64 will lead to the best performance. The results
show that a too small channel dimension can not represent detailed 2D/3D patterns for robust feature
matching, while a too large channel dimension will lead to a lot of information redundancy and make
the network difficult to converge.

2.5 Feature Matching Accuracy

As shown in Table 4, we further provide the feature matching accuracy comparison with CorrI2P
[6] which learns point-to-pixel matching for Image-to-Point Cloud registration. As described in
Sec.4.4, we report the double-side error metrics by computing the matching error distances on both
modalities. Specifically, for 2D-to-3D matching, we search for a 3D element (point for CorrI2P and
the combination of voxel and point for our method) with the greatest similarity in cross-modality
latent space for each 2D pixel in the intersection region. We then compute the error by first projecting
the matching point into image space and compute the Euler distance between the projected matching
point and the 2D pixel. And vice versa for 3D-to-2D matching. We report the average and standard
deviation of error distances in Table 4. To further evaluate the fine matching ability of different
methods, we report the matching accuracy (Acc.) which is the proportion of fine matchings with
Error < 5 pixels.

The quantitative comparisons show that our method significantly outperforms CorrI2P in both
2D-to-3D and 3D-to-2D matchings in terms of error distances and accuracy. The main reason
is that CorrI2P adopts the typical Point-to-Pixel matching paradigm which fails to learn robust
2D-3D correspondences due to huge domain gap between points and pixels, while we propose to
learn VoxelPoint-Pixel matching for learning a structured cross-modality latent space to overcome
the pattern gap and build accurate 2D-3D correspondences for cross-modality registration. The
visualization comparison is shown in Figure 3.

3 Additional Visualizations

3.1 Registration Comparison on nuScenes Dataset

Table 4: Feature matching accuracy on the KITTI dataset.

Matching type Method Error (pixel)↓ Acc.↑

2D-to-3D CorrI2P 5.19 ± 4.17 60.10
Ours 3.43 ± 3.42 78.85

3D-to-2D CorrI2P 5.28 ± 4.30 59.67
Ours 3.66 ± 3.63 76.68

We provide the visualization compar-
isons with DeepI2P [4] and CorrI2P
[6] under the nuScenes dataset in Fig-
ure 2. For DeepI2P, we adopt the
setting with highest accuracy to per-
form the frustum classification with
2D inverse camera projection, i.e.
DeepI2P (2D) for visual comparison.
We also list the RTE and RRE of
each method in each frame under the
figures. As shown in Figure 2, our
method achieves the best registration accuracy in different road situations. Note that the cross-
modality registration in nuScenes dataset is more difficult than KITTI dataset since the LiDAR point
cloud in nuScenes dataset is relatively sparse and requires to be spliced with adjacent frames which
brings noises.

4



3.2 Feature Matching Comparison

We further provide the feature matching visual comparison with CorrI2P in Figure 3. We visualize
the error range of 0-20 pixels where the error larger than 20 pixels is set to 20 pixels. It is obvious that
our method achieves better matching results in both 2D-to-3D and 3D-to-2D feature matching, where
most errors of our method can be controlled within 2 pixels while CorrI2P often leads to extremely
large errors.

3.3 Scene Fusion by Registration

We provide the scene fusion visualization results in Figure 4. The visualization is achieved by first
registering each frame of LiDAR point cloud with the reference image using our method, and then
fusing the registered LiDAR point clouds together with the trajectory poses provided in KITTI
dataset. More specifically, assume that the camera trajectory poses is known, we use our method
to register each frame of LiDAR point cloud to the reference image in this frame, and leverage the
camera trajectory pose at this frame to locate the registered point cloud in the scene. After registering
and locating all the LiDAR point cloud frames in the data sequence, the scene point cloud is then
generated as shown in Figure 4.

Our method can predict accurate Image-to-Point Cloud registrations, thus leads to a detailed and
complete scene fusion results, where the fused scene before registration is a mess.

References
[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush

Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11621–11631, 2020.

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3075–3084, 2019.

[3] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[4] Jiaxin Li and Gim Hee Lee. Deepi2p: Image-to-point cloud registration via deep classification.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15960–15969, 2021.

[5] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in Neural Information Processing
Systems, 30, 2017.

[6] Siyu Ren, Yiming Zeng, Junhui Hou, and Xiaodong Chen. Corri2p: Deep image-to-point cloud
registration via dense correspondence. IEEE Transactions on Circuits and Systems for Video
Technology, 2022.

[7] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song Han.
Searching efficient 3d architectures with sparse point-voxel convolution. In European Conference
on Computer Vision, pages 685–702. Springer, 2020.

[8] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(11), 2008.

[9] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16259–16268,
2021.

5



Input DeepI2P CorrI2P Ours GT

0.25 m / 0.60 °6.01 m / 4.26 °6.80 m / 15.86 °12.22 m / 53.22 ° RTE(m) / RRE (°)

0.40 m / 0.39 °2.70 m / 3.73 °3.35 m / 5.38 °9.26 m / 84.21 ° RTE(m) / RRE (°)

0.26 m / 0.75 °2.73 m / 5.15 °3.00 m / 5.71 °7.56 m / 99.32 ° RTE(m) / RRE (°)

0.08 m / 0.15 °2.37 m / 4.91 °4.33 m / 16.45 °9.78 m / 119.87 ° RTE(m) / RRE (°)

0.41 m / 0.70 °3.59 m / 4.91 °2.10 m / 3.30 °11.69 m / 130.22 ° RTE(m) / RRE (°)

0.18 m / 0.38 °2.06 m / 4.40 °2.98 m / 6.57 °5.65 m / 64.42 ° RTE(m) / RRE (°)

0.35 m / 0.71 °2.25 m / 4.38 °3.28 m / 7.16 °11.56 m / 36.88 ° RTE(m) / RRE (°)

0.44 m / 0.82 °3.99 m / 6.84 °2.63 m / 4.60 °7.16 m / 100.60 ° RTE(m) / RRE (°)

0.19 m / 0.38 °4.16 m / 3.01 °3.17 m / 4.08 °7.10 m / 155.38 ° RTE(m) / RRE (°)

Figure 2: Registration comparison on nuScenes dataset. For visualization, the point cloud is projected
into image space with the predicted extrinsic parameters of different approaches and the known
camera internal parameters. The color indicates the distance between a point and the camera (close-
to-far corresponds to blue-to-red).

6



Ours

CorrI2P

Ours

CorrI2P

CorrI2P

Ours

CorrI2P

Ours

CorrI2P

Ours

CorrI2P

Ours

2
D

-to
-3

D
3
D

-to
-2

D
2
D

-to
-3

D
3
D

-to
-2

D
2
D

-to
-3

D
3
D

-to
-2

D

0 2010

Figure 3: Feature matching comparison on KITTI dataset. For each pair, we visualize both the
2D-to-3D matching and 3D-to-2D matching errors of CorrI2P and our method. The colors indicate
the error distances from 0 to 20 pixels, where the error larger than 20 pixels is set to 20 pixels for
visualization. The gray color indicates the outlier regions in 3D.

7



In
p
u
t

P
re

d
G

T

Figure 4: Scene fusion results on KITTI dataset. The ‘Input’ indicates the fused scene before
registering LiDAR point cloud of each frame to the reference image in current frame. The ‘Pred’
indicates the fused scene with the Image-to-Point Cloud registration results to register LiDAR point
cloud with the image in current frame using our method. The ‘GT’ indicates the fused scene with
ground truth Image-to-Point Cloud transformations.

8


	Network Details
	Voxel Branch
	Point Branch
	Pixel Branch

	Additional Experiments and Analysis
	The Analysis of VP2P Matching
	KITTI vs. nuScenes
	The Effect on Safe Radius r
	The Effect on Feature Dimension C
	Feature Matching Accuracy

	Additional Visualizations
	Registration Comparison on nuScenes Dataset
	Feature Matching Comparison
	Scene Fusion by Registration


