MAG-Edit: Localized Image Editing in Complex Scenarios via Mask-Based Attention-Adjusted Guidance

Anonymous Authors

Figure 1: Localized image editing in complex scenarios. The editing regions are demarcated by white dashed lines, with the target edit tokens emphasized on each source image for clarity. Existing attention-based image editing methods, such as Prompt-to-Prompt (P2P) [8], face challenges in achieving precise alignment of local editing areas with text prompts in complex scenarios that involve multiple objects. This often results in the editing effects inadvertently extending beyond the intended area, impacting incorrect regions (1st row), or producing minimal effects on the target region (2nd and 3rd rows). In contrast, our method MAG-Edit, introduces a plug-and-play, inference-stage optimization strategy to enhance the capabilities of attention-based editing baselines, e.g., P2P [8], facilitating accurate and effective localized edits in intricate compositions.

ABSTRACT

Recent diffusion-based image editing approaches have exhibited impressive editing capabilities in images with one dominant object in simple compositions. However, localized editing in images containing multiple objects and intricate compositions has not been well-studied in the literature, despite its growing real-world demands. Existing mask-based inpainting methods fall short of retaining the

https://doi.org/10.1145/nnnnnn.nnnnnn underlying structure within the edit region, causing noticeable discordance with their complex surroundings. Meanwhile, attention-based methods such as Prompt-to-Prompt (P2P) often exhibit editing leakage and misalignment in more complex compositions. In this work, we propose MAG-Edit, a plug-and-play, inference-stage optimization method, that empowers attention-based editing approaches, such as P2P, to enhance localized image editing in intricate scenarios. In particular, MAG-Edit optimizes the noise latent feature by encouraging two mask-based cross-attention ratios of the edit token, which in turn gradually enhances the local alignment with the desired prompt. Extensive quantitative and qualitative experiments demonstrate the effectiveness of our method in achieving both text alignment and structure preservation for localized editing within complex scenarios.

CCS CONCEPTS

• Computing methodologies → Computer vision.

Unpublished working draft. Not for distribution.

117 KEYWORDS

Text-based image editing, Diffusion models, Gradient guidance

1 INTRODUCTION

Recent advancements in large-scale text-to-image (T2I) diffusion models [18, 20, 22] have demonstrated their remarkable ability to generate high-quality and diverse images that reflect specified textual descriptions. Trained on extensive datasets, these models effectively link textual descriptions with corresponding images, opening up new possibilities for text-based image editing. The past year has witnessed a substantial increase in the development of methods us-ing diffusion models for text-based image editing, which can be broadly categorized into three main categories: instruction-based training [3, 28], fine-tuning [11, 21, 29], and training-free meth-ods [4, 7, 8, 14, 15, 25]. In this work, our focus is on the exploration and enhancement of training-free editing approaches.

Existing training-free approaches predominantly concentrate on manipulating prominent objects within simple compositions, as demonstrated in Fig. 2, where text prompts effectively identify the intended editing area. However, real-world images often feature complex compositions with multiple objects, posing challenges for precise regional edits. For instance, in home interior design, users may want to alter the color and texture of specific furniture pieces, like modifying the color of two pillows to better align their aesthetic with the overall design theme. Relying solely on text prompts strug-gles to accurately pinpoint the desired area in such intricate settings. While existing mask-based inpainting techniques [1, 2, 7, 9, 26], e.g., Blended Latent Diffusion (Blended LD) [1] generate and integrate new objects into images under the guidance of local masks, this line of approaches leads to significant structural alterations within edited regions, disrupting the visual harmony with complex backgrounds, as shown in Fig. 2.

Balancing fidelity and editability in localized regions within com-plex scenarios remains a considerable challenge. Attention-based editing methods, such as Prompt-to-Prompt (P2P), can maintain the original image's structure and layout. However, their effectiveness is compromised in complex scenarios due to their reliance on the text prompts' ability to localize editing regions. Consequently, edits may extend beyond the intended areas, affecting incorrect regions, as illustrated in Fig. 2. Although integrating mask-based blending operations into P2P can mitigate unintended edits outside targeted areas, challenges persist in achieving precise alignment with the intended text prompts. Such misalignment results in edits failing to appear in the desired locations.

To address the aforementioned challenges, we propose a novel inference-stage optimization strategy, termed Mask-Based Attention-Adjusted Guidance (MAG-Edit). This plug-and-play approach is designed to augment attention-based methods such as P2P for more accurate localized image editing in complex scenarios, eliminating the necessity for additional training. Given that cross-attention (CA) maps in pre-trained T2I diffusion models effectively capture the correlation between input features and text embeddings, our key insight is that adjusting the noise latent feature to attain higher CA values significantly enhances its alignment with the corresponding text prompt. Therefore, we propose locally optimizing the noise la-tent feature during the inference stage using two distinct mask-based

Anonymous Authors

 Configuration
 Configuration

 Diagonal
 Diagonal

 Plastic
 Down

 Piended LD
 P2P

 Piended LD
 P2P+Ours

 Blended LD
 P2P+Ours

 Blended LD
 P2P+Ours

 Diagonal
 Diagonal

 <

Figure 2: Localized editing comparisons between *Simple* and *Complex* scenarios. Mask-based inpainting methods like Blended LD [1] often introduce structural inconsistencies, leading to noticeable discrepancies with the surrounding context. Due to the reliance on the text prompts' localization capabilities, P2P [8] excels in localized editing on the dominant object but struggles to precisely pinpoint the local editing region in intricate scenarios. Integrating mask-based blending techniques into P2P (*i.e.*, P2P+Mask) can alleviate leakage, but the misalignment leads to the absence of editing effects in the intended areas. In contrast, our MAG-Edit enhances P2P's localized editing performance with superior structural preservation in complex scenarios.

CA constraints tailored for the target editing prompt. In particular, our approach aims to maximize two aspects of ratios: first, the CA value of the edit token in relation to all token CA values within the masked area, and second, the CA value of the edit token inside the mask compared to its overall CA values. Subsequently, the gradients of these constraints guide the update of the noise latent feature, thus progressively aligning the editing effect with the desired text prompt and spatial requirements. The effectiveness of the proposed method is evident in Fig. 1 and Fig. 2.

Our contributions can be summarized as follows:

- We introduce MAG-Edit, a novel plug-and-play, inferencestage optimization scheme, marking a pioneering effort to enhance existing attention-based editing frameworks for specifically addressing localized image editing in complex scenes.
- We propose two mask-based CA constraints in terms of the token and spatial ratio, guiding the local noise latent feature to better align with the target edit tokens.
- We extensively validate MAG-Edit's efficiency in localized image editing across diverse intricate scenarios. Quantitative and qualitative experimental results demonstrate a significantly improved trade-off between editing efficiency and structure preservation when compared to existing state-of-theart approaches.

MAG-Edit: Localized Image Editing in Complex Scenarios via $\underline{M}ask$ -Based $\underline{A}ttention$ -Adjusted $\underline{G}uidance$

2 RELATED WORK

233

234

284

285

286

287

288

289

290

Text-Based Image Editing Using Diffusion Models can be mainly 235 classified into three categories: instruction-based training [3, 28], 236 fine-tuning [11, 21, 29], and training-free methods [4, 7, 8, 14, 15, 237 25]. Instruction-based training methods, such as InstructPix2Pix [3], 238 require substantial resources for extensive training. On the other 239 hand, fine-tuning methods, like Imagic [11], run the risk of overfit-240 ting by optimizing the full model with limited data. In this work, we 241 specifically focus on training-free methods. One line of training-free 242 approaches [1, 2, 9, 26] utilizes masks to generate foreground objects 243 and blends them into the original image through blending operations. 244 For instance, Blended Diffusion [2] and Blended LD [1], directly 245 generate foreground objects based on text prompts. DiffEdit [7, 26] 246 introduces an unsupervised method for learning the mask and em-247 ploys DDIM inversion [23] noise latent features alongside the target 248 prompt to generate the foreground image. Although these approaches 249 successfully maintain the integrity of unedited regions outside of 250 the mask, they may introduce large structural changes within the 251 edit regions, causing inconsistencies with the surrounding context in 252 complex scenes. Attention-based methods [4, 8, 25] such as P2P [8] 253 involve attention integration mechanisms to maintain the structure 254 and layout of the original image. Recent advancements in inversion 255 methods [12-14] propose to improve DDIM inversion [23] for en-256 coding real images, achieving improved reconstruction and more 257 flexible editing capabilities. However, the integration of editing meth-258 ods such as P2P [8] remains essential for these methods to facilitate 259 image editing. When applied to localized editing in intricate sce-260 narios, attention-based methods often result in leakage to incorrect 261 areas, leading to inefficiencies in prospective regions. 262

263 Optimization on the Noise Latent Feature. Recent advances [5, 264 6, 16, 19, 27] in image generation with diffusion models have inves-265 tigated the use of CA constraints to optimize the noise latent fea-266 ture during inference. The pioneering work, Attend-and-Excite [5], 267 addresses issues like catastrophic neglect and incorrect attribute 268 binding by maximizing the largest CA units corresponding to all 269 subject tokens in the text prompt. This approach refines the noise 270 latent feature at each diffusion step, thereby guiding the model to 271 generate all subjects described in the text accurately. Several training-272 free layout-generation methods [6, 16, 27] propose to optimize the 273 noise latent feature by maximizing CA constraints in conjunction 274 with bounding boxes, allowing objects to appear in specific regions. 275 While the image generation process has demonstrated effectiveness, 276 the application of noise latent feature optimization to image editing 277 has received relatively less attention. Pix2pix-zero [15] offers a so-278 lution by optimizing the noise latent feature, constraining the CA 279 maps of the editing branch to align with the reconstruction branch, 280 thus preserving the original image's structural layout. In contrast to 281 structural preservation, the proposed method aims to align the local noise latent feature more semantically with the target text prompt, 282 283 enabling localized editing in complex scenarios.

3 METHODOLOGIES OF MAG-EDIT

We employ the widely used attention-based method, P2P [8], as the backbone of our approach. Preliminaries of P2P [8] are reviewed in Sec. 3.1. Importantly, our MAG-Edit technique is not confined to use with P2P [8] alone; it can also be integrated with other editing 315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Algo	Algorithm 1: A Denoising Step Using MAG-Edit on P2P [8]						
In	Input: An original and edited prompt $\mathcal{P}, \mathcal{P}^*$; a timestep <i>t</i>						
	and corresponding no	ise latent features of					
	reconstruction and ed	iting branches z_t, z_t^* ; a					
	maximum iteration st	ep MAX_IT; a function $F(\cdot)$ for					
computing proposed constraint \mathcal{L} ; a pre-trained							
	Stable Diffusion mod	el SD.					
Output: the noisy latent feature z_{t-1}^* for the next timestep of							
	the editing branch.						
1 for	$\mathbf{r} \ i = 1 \ \mathbf{to} \ MAX_IT \ \mathbf{do}$						
2	$_, A_t \leftarrow SD(z_t, \mathcal{P}, t);$						
3	$\underline{A}_{t}^{*} \leftarrow SD(z_{t}^{*}, \mathcal{P}^{*}, t);$						
4	$\hat{A}_t \leftarrow Inject(A_t, A_t^*);$	// Operation in P2P.					
	$\mathcal{L} \leftarrow \mathbf{F}(\hat{A}_t);$						
	$z_t^* = z_t^* - \mathcal{M} \odot \delta \nabla_{z_t^*} \mathcal{L};$	// MAG-Edit.					
5							
6 en	d						
7_,/	$A_t \leftarrow SD(z_t, \mathcal{P}, t);$						
8_,1	$A_t^* \leftarrow SD(z_t^*, \mathcal{P}^*, t);$						
9 Â _t	\leftarrow Inject $(A_t, A_t^*);$	// Operation in P2P.					
z_{t-}^{*}	$-1 \leftarrow SD(z_t^*, \mathcal{P}^*, t)\{\hat{A}_t\};$						
1 Re	eturn z_{t-1}^*						

methods, such as Plug-and-Play (PnP) [25]. For further details and results, please refer to the *supplementary material* (SM).

Let I be a real image, we first encode it into the noise latent feature z_T using the inversion method such as Null-text inversion [14]. Given the original text prompt \mathcal{P} and edited prompt \mathcal{P}^* , we define the set of new target tokens as $S^* = \{s_1^*, s_i^*, ..., s_I^*\}$ present in \mathcal{P}^* against \mathcal{P} , the common tokens as $\mathcal{S} = \{s_1, s_j, ..., s_I\}$ and $\mathcal{S}^* \cap \mathcal{S} = \emptyset$. As illustrated in Fig. 3(a), the editing framework of P2P consists of two branches, *i.e.*, reconstruction and editing branches generated by prompt \mathcal{P} and \mathcal{P}^* , respectively. Furthermore, an edit region mask \mathcal{M} , derived from \mathcal{I} , is utilized to accurately localize the editing area in complex scenarios. In this work, we aim to optimize the noise latent feature z_t^* of the editing branch at the diffusion step t by aligning the desired editing effects specified by S^* with the prospective region defined by \mathcal{M} , which enables localized editing in complex scenarios. To achieve this, we introduce MAG-Edit, a plug-and-play optimization strategy to automatically manipulate z_t^* , which contains two key steps: defining two mask-based constraints in Sec. 3.2 and performing gradient guidance in Sec. 3.3. These steps are illustrated in Fig. 3(b) and Fig. 3(c), respectively.

3.1 Preliminaries of Prompt-to-Prompt

P2P [8] introduces several prompt-based editing operations leveraging CA maps injection: First, the *word swap* involves injecting all attention maps in the reconstruction branch, generated by the source prompt, into attention maps from the editing process using the target prompt. In contrast, the *prompt refinement* selectively replaces the CA maps associated with tokens common to both the source and target prompts. Furthermore, P2P introduces the *attention re-weighting* operation, enabling direct scale adjustments to the CA values. This

Figure 3: Illustration of MAG-Edit. (a) We apply MAG-Edit to the noise latent feature z_t^* in the editing branch of P2P [8], which contains two main steps: Constraint Calculation (Sec. 3.2) and Gradient Guidance (Sec. 3.3). (b) We aim to maximize the CA values of the target token (*e.g.*, "yellow") within the masked area \mathcal{M} by focusing on two aspects: the token ratio (TR) and spatial ratio (SR). This is achieved by minimizing their corresponding constraints, \mathcal{L}_{TR} and \mathcal{L}_{SR} , respectively. (c) We perform the gradient $\nabla_{z_t^*}\mathcal{L}$ as guidance to iteratively update the noise latent feature z_t^* until the maximum iteration number (MAX_IT) is reached. Consequently, optimizing z_t^* with MAG-Edit leads to a significant improvement in the CA values of "yellow" token within the edit regions \mathcal{M} , confirming enhanced alignment between the local edit region and the target prompt.

technique is specifically designed to control the granularity of the editing process.

3.2 Mask-Based Attention-Adjusted Constraint

Considering that CA maps define the similarity between the input features and text embeddings, larger CA values indicate better alignment. This observation inspires the formulation of two mask-based constraints, aiming to maximize the CA value ratio in both token and spatial aspects within the predefined editing region. To illustrate, first consider the CA map $(A_t^*)_i$ of a new editing token s_i^* within a specific mask region \mathcal{M} such as "yellow" in Fig. 3(a). Take *prompt refinement* operation of P2P as an example, the attention maps of common tokens, denoted as A_t , from the reconstruction branch are first injected into the editing process, obtaining the CA maps \hat{A}_t .

Token Ratio Constraint. Given that CA values are calculated across the dimensions of all tokens, we propose a token ratio constraint. This constraint aims to increase the proportion of the target token relative to all other tokens within the mask \mathcal{M} , thereby concentrating the editing effects more precisely on the designated area. As demonstrated in the left block of Fig. 3(b), the token ratio constraint is defined as follows:

$$\mathcal{L}_{TR} = \left(1 - \frac{1}{\overline{\mathcal{M}}} \sum \mathcal{M} \odot \frac{(A_t^*)_i}{(A_t^*)_i + \sum_{j=1}^J (A_t)_j}\right)^2, \tag{1}$$

where \mathcal{M} represents the total number of elements within the mask. **Spatial Ratio Constraint.** In scenarios demanding significant editing granularity, the token ratio constraint might not sufficiently amplify the CA value $(A_t^*)_i$ within \mathcal{M} . To address this limitation, we introduce an additional spatial formulation, which is designed to maximize the CA values within the masked region while simultaneously minimizing them outside the mask, illustrated in the right block of Fig. 3(b) as,

$$\mathcal{L}_{SR} = \lambda \left(1 - \frac{\sum \mathcal{M} \odot (A_t^*)_i}{\sum (A_t^*)_i} \right) - \underbrace{\sum \mathcal{M} \odot (A_t^*)_i}_{\sum (A_t^*)_i}, \tag{2}$$

where λ is a balance weight, and we set $\lambda = 3$ empirically.

Negative Prompt Constraint. Our proposed method can also be used to *attenuate* the textural information associated with the original image I by employing negative prompts. Specifically, we define a set of negative tokens S_{ng}^* to represent the texture of I in contrast to the new tokens S^* . Consequently, we can establish the negative prompt constraint \mathcal{L}_{ng} using the negative token's corresponding CA value and optimize the noise latent feature in *the opposite direction* as follows,

$$\mathcal{L}_{\text{total}} = \lambda_{\text{p}} \mathcal{L} - \lambda_{\text{ng}} \mathcal{L}_{\text{ng}}, \qquad (3)$$

where λ_p and λ_{ng} aim to balance between positive and negative prompt constraint. For more details, please refer to the **SM**.

 $\begin{array}{l} \mbox{MAG-Edit: Localized Image Editing in Complex Scenarios via} \\ \underline{M}ask-Based \ \underline{A}ttention-Adjusted \ \underline{G}uidance \end{array}$

Figure 4: Qualitative comparisons of localized image editing across various complex scenarios. Editing regions are highlighted with dashed lines, and simplified target prompts are shown on the source images. We compare our MAG-Edit (h) with other state-of-the-art methods including mask-based inpainting methods like (a) Blended LD [2] and (b) DiffEdit [7], attention-based methods like (c) PnP [25], (d) MasaCtrl [4] and (e) P2P [8]. We also apply the same mask for blending operation in (f) P2P+Mask and re-weight the CA values of the target token tenfold within the masked region, termed as (g) P2P+Re-weight. Our proposed method (h) not only achieves superior editing effects but also better preserves the structure in local regions against other baselines (a-g).

Dataset	MAG-Bench		PIE-Bench [10]		TEd-Bench [11]	
Method	CLIP Score (↑)	DINO-ViT Distance (↓)	CLIP Score (↑)	DINO-ViT Distance(↓)	CLIP Score (↑)	DINO-ViT Distance(↓)
Blended LD [1]	19.12	0.089	22.58	0.079	20.56	0.110
Diffedit [7]	19.20	0.083	21.20	0.070	20.82	0.100
MasaCtrl [25]	19.00	0.088	20.44	0.076	19.08	0.090
PnP [25]	19.90	0.083	20.47	0.067	20.60	0.096
P2P [8]	20.02	0.079	21.43	0.074	20.35	0.091
P2P+Mask	19.77	0.081	20.95	0.059	20.25	0.093
P2P+Re-weight	20.62	0.085	22.15	0.062	20.10	0.086
P2P+Ours	21.79	0.081	22.76	0.073	21.36	0.062

Table 1: Quantitative comparisons of localized image editing across diverse benchmarks. Bold and underline indicate the best and second best value, respectively.

3.3 Performing Gradient Guidance

Upon establishing the mask-based constraints \mathcal{L} (\mathcal{L}_{TR} or \mathcal{L}_{SR}), we compute their gradients to determine the optimal direction for modifying the current noise latent feature z_t^* . In particular, to restrict the editing effect to the predefined region, we update the noise latent feature z_t^* inside the mask \mathcal{M} using the following equation:

$$z_t^* = z_t^* - \mathcal{M} \odot \delta \nabla_{z_t^*} \mathcal{L}, \tag{4}$$

where the term δ represents the gradient update scale. As shown in Fig. 3(c) and detailed in Algorithm. 1, z_t^* is iteratively refined until reaching the maximum number of iterations (MAX_IT).

Moreover, our proposed method can be readily adapted for multiple prompts editing as:

$$z_t^* = z_t^* - \mathcal{M} \odot \delta \nabla_{z_t^*} \sum_{i=1}^{I} (\lambda_1 \mathcal{L}^1 + \dots + \lambda_i \mathcal{L}^i + \lambda_I \mathcal{L}^I), \qquad (5)$$

where the term λ_* controls the editing granularity of each prompt, with their sum equaling 1. Fig. 9(a) demonstrates how our proposed method effectively balances the editing granularity for various prompts.

EXPERIMENTS

4.1 Implementation details

Following P2P [8], we adopt the pre-trained Stable Diffusion v1.4 [20] model as the backbone and apply Null-text Inversion [14] to obtain the noise latent feature z_T . All CA values are calculated in the resolution of 16×16 of the U-Net, which is known to process the most semantically rich information [5]. In our experiments, we choose MAX_IT= 15 and apply MAG-Edit during the diffusion steps $t = [T, \tau]$, where τ is specifically set to 25. The corresponding editing masks for each image are derived using the Segment Anything method¹. To preserve the original information in the regions outside the mask, we employ the latent blending operation in P2P [8] with the derived masks instead of automatically generated ones. In practice, we select between \mathcal{L}_{TR} and \mathcal{L}_{SR} , depending on the required granularity of the edit, allowing for adaptability across various editing types. All experiments are conducted on a single NVIDIA A100 GPU. Further implementation details and additional results using various inversion and editing baselines are available in the SM.

4.2 Comparisons with Baselines

Benchmark Dataset. Existing datasets for text-based image editing methods primarily focused on relatively simple scenes dominated by

Figure 5: Human preferences in the localized editing regions. The values presented reflect the proportion of users who favor our proposed method over comparative approaches.

Figure 6: Impact of optimization iterations. Increasing the number of iterations enhances the granularity of editing. However, overly extensive iterations can lead to notable artifacts arising from structural modifications.

prominent objects. To facilitate a comprehensive evaluation of our method, we have curated a benchmark dataset named MAG-Bench, which comprises 200 images. These images showcase diverse scenes with multiple objects. Additional details of our collected benchmark are provided in **SM**. Moreover, we also assess the performance of our method on two well-used benchmark datasets *i.e.*, PIE-Bench [10] and TEd-Bench [11]. Our evaluation focuses on editing color, texture, and object replacement in localized regions.

Compared Methods. We conduct comparisons with existing representative training-free diffusion-based image editing methods and establish two straightforward baselines using P2P [8]:

- State-of-the-art training-free methods: Mask-based inpainting approaches: Blended LD [1] and DiffEdit [7]; Attentionbased editing: MasaCtrl [4], PnP [25] and P2P [8].
- Straightforward baselines on P2P: We first combine the same blending operations used in our approach with P2P [8], denoted as P2P+Mask. Additionally, we incorporate the *reweighting* operation from P2P [8] to amplify the CA values of the target edit token tenfold within the masked area. This

¹https://github.com/facebookresearch/segment-anything

697

698

699

700

701

702

703

735

736

737

738

739

740

741

743

744

745

746

747

748

749

750

751

752

753

754

enhancement aims to improve the granularity of regional editing, and is referred to as P2P+Re-weight.

It is crucial to emphasize that all mask-based methods, Blended LD [1] and DiffEdit [7], as well as two straightforward baselines, P2P+Mask and P2P+Re-weight, utilize the same masks as our proposed method for fair comparisons.

Qualitative Results. Fig. 4 clearly shows that Blended LD [1] leads 704 to considerable structural changes in complex scenarios, resulting 705 in significant discordance with the surrounding context. Meanwhile, 706 DiffEdit [7], either alters the structure, as seen in the "orange table" 707 example or fails to produce a noticeable editing effect in the intended 708 region, as is apparent in other images. MasaCtrl [4] demonstrates 709 limited performance in color, texture, and shape editing, resulting in 710 negligible editing effects. Furthermore, it may introduce structural 711 variations as presented by the "orange table" example. PnP [25] and 712 P2P [8] often suffer leakage in adjacent regions, causing minimal 713 effects in the prospective region. This issue is particularly noticeable 714 in tasks such as changing the color of a red pillow to green. Although 715 blending operations using masks in P2P+Mask can mitigate leakage 716 in some scenarios, the misalignment issue persists, leading to ineffi-717 ciencies within the intended editing regions. Even when we directly 718 increase the CA values of the target edit token within the masked 719 region, the resulting edits are either minimal or disrupt the structural 720 consistency. In contrast, our proposed method exhibits improved 721 editing performance while maintaining better structural integrity in 722 local regions. 723

724 Quantitative Results. We quantitatively evaluate our proposed 725 method against baseline models using both automatic metrics and 726 human evaluations.

727 Automatic Metrics. To better evaluate localized editing ability, we 728 use the bounding boxes to crop the editing regions [9] and evalu-729 ate the image-text alignment and structure preservation using the CLIP score [17] and the DINO-ViT self-similarity distance [24], 730 731 respectively. Table. 1 illustrates that our proposed method signifi-732 cantly enhances text alignment within local regions in both simple 733 and complex scenarios, achieving much higher local CLIP values 734 without compromising fidelity.

User study. We perform a user preference evaluation via pairwise comparisons on Amazon MTurk², focusing on text alignment, structure preservation, and overall preference in localized editing regions. Fig. 5 indicates a notable preference among participants for our proposed method over the baselines across three aspects. A significant majority, ranging from 77% to 93%, believe that our method achieves much better text alignment compared to other methods. Furthermore, 742 our method is preferred for better structure preservation by 75% of users over Blended LD [1]. Due to its more effective balance between editability and fidelity, our proposed method is overall favored by 68% to 81% of the participants.

4.3 Ablation Study

Impact of Optimization Iterations. The number of maximum iterations for optimizing the noise latent feature is crucial in modulating the magnitude of editing. As shown in Fig. 6, increasing the number of iterations can improve the granularity of the editing. However, in

ACM MM, 2024, Melbourne, Australia

Figure 7: Applying MAG-Edit through a varied number of diffusion steps. We use white dashed lines to demarcate the editing regions in the source images. Each row demonstrates the optimization of the noise latent feature ranging from 0% (left) to 100% (right) of the steps.

Figure 8: Editing granularity of proposed constraints. The token ratio constraint \mathcal{L}_{TR} efficiently preserves the inherent structure in the edited region, while the spatial ratio constraint \mathcal{L}_{SR} enhances editing granularity.

texture and shape editing, excessive iterations may result in significant artifacts as a result of alterations in the structure.

Impact of Optimization Diffusion Steps. To investigate the impact of the optimization diffusion steps using MAG-Edit, we conduct experiments with different values assigned to $\tau = \{50, 40, 30,$ 25, 20, 10, 0}, representing the end of the diffusion step range from 50 to τ . As illustrated in Fig. 7, We observed that optimization within the initial diffusion steps can rapidly alter the color, indicating that optimization within the $t \in [T, 40]$ steps is generally sufficient for achieving effective color editing. In contrast, texture and shape edits require a greater number of diffusion steps. Overall, updating the latent noise feature after 25 steps does not significantly improve the granularity of texture editing but prolongs the optimization time. For shape editing, excessive optimization beyond 25 steps can lead to pronounced artifacts due to structural changes.

Impact of Proposed Constraints. \mathcal{L}_{TR} and \mathcal{L}_{SR} offer distinct levels of editing granularity, as demonstrated in Fig. 8. \mathcal{L}_{TR} excels in maintaining the inherent structure within the edit region, which aids in achieving natural color and texture modifications. On the other hand, \mathcal{L}_{SR} provides stronger guidance by directly amplifying the CA values within the mask, leading to more noticeable structural

²https://www.mturk.com/

ACM MM, 2024, Melbourne, Australia

Anonymous Authors

changes in the edit region. As a result, \mathcal{L}_{SR} is better suited for edits involving large structural shape changes.

4.4 Localized Editing Applications

As illustrated in Fig. 9, MAG-Edit proves to be effective across a range of localized editing applications. In Fig. 9(a), it demonstrates the ability to balance editing granularity for various prompts, meeting the specific needs of users for different target tokens. Moreover, Fig. 9(b) highlights MAG-Edit's capacity for performing iterative, localized modifications on multiple objects within a single image. Additionally, MAG-Edit provides control over the spatial precision of edits, as shown in Fig. 9(c). Furthermore, our method is adaptable for part-level editing, as depicted in Fig. 9(d).

4.5 Limitations and Future Work

MAG-Edit has demonstrated effectiveness in facilitating localized edits in complex scenarios, yet it is not without its limitations, which are pivotal to our ongoing and future research. One key limitation is the method's processing time, which is about 1.5 minutes per image on an A100 GPU, primarily due to the optimization process. Furthermore, choosing the most suitable constraint type and deciding on the optimal number of optimization iterations are crucial factors. Additionally, our approach currently struggles with non-rigid editing in complex scenarios, a concern that will be a primary focus in our forthcoming research efforts.

5 CONCLUSIONS

In this work, we present a novel plug-and-play, inference-stage optimization scheme *Mask-Based Attention-Adjusted Guidance* (MAG-Edit). This method empowers attention-based editing frameworks, such as Prompt-to-Prompt (P2P), to enhance localized editing in complex scenarios that feature multiple objects and intricate compositions. In particular, we propose to maximize two mask-based CA ratios, namely the token and spatial ratio, to locally optimize the noise latent feature for enhanced alignment with the target edit token. Our experimental results, both quantitative and qualitative, consistently illustrate that MAG-Edit outperforms existing methods in localized image editing within complex scenarios. We believe that the proposed MAG-Edit scheme has pioneered a novel direction for applying localized editing in real-world scenarios. MAG-Edit: Localized Image Editing in Complex Scenarios via $\underline{M}ask$ -Based $\underline{A}ttention$ -Adjusted $\underline{G}uidance$

929 **REFERENCES**

929

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

983

986

- Omri Avrahami, Ohad Fried, and Dani Lischinski. 2023. Blended Latent Diffusion. ACM Trans. Graph. 42, 4 (2023), 149:1–149:11. https://doi.org/10.1145/3592450
- [2] Omri Avrahami, Dani Lischinski, and Ohad Fried. 2022. Blended Diffusion for Text-driven Editing of Natural Images. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,* 2022. IEEE, 18187–18197. https://doi.org/10.1109/CVPR52688.2022.01767
- [3] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. 2023. InstructPix2Pix: Learning to Follow Image Editing Instructions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023.* IEEE, 18392–18402. https://doi.org/10.1109/CVPR52729. 2023.01764
- [4] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. 2023. MasaCtrl: Tuning-Free Mutual Self-Attention Control for Consistent Image Synthesis and Editing. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023.* IEEE, 22503–22513. https: //doi.org/10.1109/ICCV\$1070.2023.02062
- [5] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. 2023. Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models. ACM Trans. Graph. 42, 4 (2023), 148:1–148:10. https: //doi.org/10.1145/3592116
- [6] Minghao Chen, Iro Laina, and Andrea Vedaldi. 2023. Training-Free Layout Control with Cross-Attention Guidance. *CoRR* abs/2304.03373 (2023). https: //doi.org/10.48550/ARXIV.2304.03373 arXiv:2304.03373
- [7] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. 2023. Diffedit: Diffusion-based semantic image editing with mask guidance. In *ICLR*. 1–22.
- [8] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2023. Prompt-to-prompt image editing with cross attention control. In *ICLR*. 1–36.
- [9] Wenjing Huang, Shikui Tu, and Lei Xu. 2023. PFB-Diff: Progressive Feature Blending Diffusion for Text-driven Image Editing. arXiv preprint arXiv:2306.16894 (2023).
- [10] Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. 2024. PnP Inversion: Boosting Diffusion-based Editing with 3 Lines of Code. International Conference on Learning Representations (ICLR) (2024).
- [11] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. 2023. Imagic: Text-based real image editing with diffusion models. In CVPR. 6007–6017.
- [12] Senmao Li, Joost van de Weijer, Taihang Hu, Fahad Shahbaz Khan, Qibin Hou, Yaxing Wang, and Jian Yang. 2023. StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing. arXiv preprint arXiv:2303.15649 (2023).
- [13] Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. 2023. Negativeprompt Inversion: Fast Image Inversion for Editing with Text-guided Diffusion Models. arXiv preprint arXiv:2305.16807 (2023).
- [14] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2023. Null-text inversion for editing real images using guided diffusion models. In CVPR. 6038–6047.
- [15] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu. 2023. Zero-shot image-to-image translation. In *SIGGRAPH*. 1–11.
 [16] Quynh Phung, Songwei Ge, and Jia-Bin Huang. 2023. Grounded text-to-image
- synthesis with attention refocusing. *arXiv preprint arXiv:2306.05427* (2023).
- [17] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision. In *ICML*. 8748–8763.
- [18] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 1, 2 (2022), 3.
- [19] Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik. 2024. Linguistic binding in diffusion models: Enhancing attribute correspondence through attention map alignment. Advances in Neural Information Processing Systems 36 (2024).
- [20] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-resolution image synthesis with latent diffusion models. In *CVPR*. 10684–10695.
- [21] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. 2023. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In CVPR. 22500–22510.
- [22] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. 2022. Photorealistic text-to-image diffusion models with deep language understanding. In *NeurIPS*, Vol. 35. 36479–36494.
 - [23] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising diffusion implicit models. In ICLR. 1–20.
- [24] Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali Dekel. 2022. Splicing vit features for semantic appearance transfer. In *CVPR*. 10748–10757.

ACM MM, 2024, Melbourne, Australia

- [25] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. 2023. Plug-and-play diffusion features for text-driven image-to-image translation. In CVPR. 1921– 1930.
- [26] Qian Wang, Biao Zhang, Michael Birsak, and Peter Wonka. 2023. InstructEdit: Improving Automatic Masks for Diffusion-based Image Editing With User Instructions. arXiv preprint arXiv:2305.18047 (2023).
- [27] Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and Mike Zheng Shou. 2023. BoxDiff: Text-to-Image Synthesis with Training-Free Box-Constrained Diffusion. In *ICCV*. 7452–7461.
- [28] Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. 2023. MagicBrush: A Manually Annotated Dataset for Instruction-Guided Image Editing. In *NeurIPS*.
- [29] Zhixing Zhang, Ligong Han, Arnab Ghosh, Dimitris N Metaxas, and Jian Ren. 2023. Sine: Single image editing with text-to-image diffusion models. In CVPR. 6027–6037.

987

988

989

990

1044

1031

1032

1033

1034

1035

1036

1037

1038