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1 SUMMARY
In this supplementary material, we present more implementation
details, additional experiments, and additional results as follows.

• We present more implementation details of MAG-Edit in
Sec. 2. Furthermore, Sec. 5 illustrates more implementation
details of the benchmark dataset, baselines, quantitative met-
rics, and user study.

• In Sec. 3, we present a comprehensive explanation and imple-
mentation details of the negative prompt constraint, demon-
strating its effectiveness in assisting the editing process.

• In Sec. 4, we showcase additional results by applying our
MAG-Edit to another attention-based editing method Plug-
and-Play (PnP) [16] and the advanced inversion method Pn-
PInversion [8], further highlighting the versatility and perfor-
mance of our MAG-Edit approach.

• In Sec. 6, we extend our comparisons to encompass training
and fine-tuning methods.

• We demonstrate additional qualitative results to complement
the paper in Sec. 7.

2 IMPLEMENTATION DETAILS
We employ the DDIM method [15] over 𝑇 = 50 steps for the denois-
ing sampling process, maintaining a constant classifier-free guidance
scale of 7.5. CA injection is performed during [𝑇, 𝜇]. For varying
editing requirements, we set 𝜇 = 10 for color and texture edits, and
𝜇 = 40 for shape variation edits. For the gradient guidance pro-
cess, we follow [3] by setting the gradient update scale 𝛿 using a
linear scheduling rate as

√︁
(1 − 𝛼𝑡 )/𝛼𝑡 , particularly to optimize the

token ratio constraint L𝑇𝑅 . This approach modulates the gradient’s
magnitude based on the denoising progress. On the contrary, for
the constraint of the spatial ratio L𝑆𝑅 , we keep 𝛿 = 1. To further
preserve the structure of the original image, we also consider incor-
porating self-attention as P2P [6] and replace them at diffusion steps
𝑡 ∈ [𝑇, 25]. Towards the end of the denoising process 𝑡 ∈ [15, 0],
we implement a latent blending operation from P2P [6] to maintain
information outside the edited region mask M.

3 NEGATIVE PROMPT CONSTRAINT
Details of Negative Prompt Constraint. In real image editing, the
latent noise feature 𝑧𝑇 derived by the inversion methods still retains
information related to the original image I. Achieving the desired
editing results can be challenging in some cases when there is a
significant difference between the texture in the original image and
modified prompt P∗, such as transferring texture from “patterned” to
“plain”, as shown in Fig. 1. Our proposed method can also be used to
attenuate the textural information associated with the original image
I by employing negative prompts. In particular, we define a set of
negative tokens S∗

ng to present the texture of I in contrast to the new

𝒘/𝒐𝓛𝒏𝒈 𝒘/𝓛𝒏𝒈Input 

Plain Quilt

Vintage Car

Figure 1: Ablation study on the negative prompt constraint.
Negative prompt constraints can amplify the effectiveness of
editing by diminishing the influence of information from the
original image.

tokens S∗. For example, if P∗ is “There is a bed with a plain quilt
in the bedroom.” and the quilt in I is patterned, then the negative
token would be “patterned”.

Consequently, we can establish the negative prompt constraint
Lng using the negative token’s corresponding CA value, which can
be formulated as either L𝑇𝑅 or L𝑆𝑅 . By combining the two types of
constraints calculated separately for the target token (e.g., “plain”)
and the negative token (e.g., “patterned”), the total constraint can be
defined as follows:

Ltotal = 𝜆pL − 𝜆ngLng, (1)

where 𝜆p and 𝜆ng aim to balance between positive and negative
prompt constraints, we empirically set 𝜆𝑝 = 2.5 and 𝜆𝑛𝑔 = 5.5.

Impact of Negative Prompt Constraint Guidance. Fig. 1 demon-
strates that negative prompt guidance is effective in diminishing the
original image’s information, which is beneficial when dealing with
original images that have information significantly contrast with the
target prompt. For instance, as shown in the first row of Fig. 1, when
altering the texture from patterned to plain, not applying negative
constraints could lead to the edited image preserving some patterns.
The negative prompt constraint, in such scenarios, efficiently reduces
this residual patterned information.

4 APPLYING MAG-EDIT TO OTHER
BASELINES

Plug-and-Play Applied with MAG-Edit. Plug-and-Play [16] (PnP)
is an attention-based method that incorporates the use of feature and
self-attention (SA) from the reconstruction branch into the editing
process, to preserve the structure and layout of the source images.
Although PnP [16] performs well in simple scenarios, it encounters
challenges such as leakage and minimal editing effects when dealing
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Denim Vest

Source Image PnP PnP+Ours

Figure 2: Qualitative results of PnP [16] and its combination
with MAG-Edit, namely PnP+Ours. By employing our MAG-
Edit approach, the alignment between the local edit region and
the target prompt is significantly enhanced, leading to notable
improvements in the edited region.

with images that have complex compositions and objects. This limi-
tation stems from its reliance solely on text prompts for localization,
which results in misalignment between the features and the prompts,
as depicted in Fig. 2. However, by applying our MAG-Edit, denoted
as PnP+Ours, the editing results exhibit significant improvement. As
shown in Fig. 2, the desired editing effects become readily apparent
in the target region.
PnPInversion Applied with MAG-Edit. Recent advancements in
inversion methods [10, 12, 13] focus on enhancing DDIM inver-
sion [15] to achieve a better balance between editability and fidelity.
However, these methods still rely on the use of Prompt-to-Prompt
(P2P) [6] to facilitate image editing, which inherits its limitations,
such as misalignment, resulting in minimal editing effects in the
target region, as depicted in Fig. 3. Our method, MAG-Edit, is or-
thogonal to inversion-based methods but can be integrated with them
to enhance performance. In particular, PnPInversion [8] aims to elim-
inate the trajectory offsets between the DDIM [15] inversion process
and the reconstruction process, yielding optimal reconstruction and
attention maps for the editing process. Nevertheless, it struggles
to perform localized editing in complex scenarios, as illustrated
in Fig. 3. When integrated with our MAG-Edit approach, now re-
ferred to as PnPInversion+Ours, there is a significant enhancement
in the editing results, as showcased in Fig. 3.

5 DETAILS OF COMPARISONS WITH
BASELINES

5.1 Benchmark Dataset
Existing well-recognized datasets for text-based image editing meth-
ods, such as i.e., TEd-Bench [9] and PIE-Bench [8], primarily focus
on simple scenes with prominent objects. For comparative analy-
sis, we manually construct prompts and generate masks using the
Segment Anything method 1 (SAM) for TEd-Bench [9]. For PIE-
Bench [8], which already includes mask annotations, our evaluation
focuses on its three specific categories: content, color, and material.

1https://github.com/facebookresearch/segment-anything

Plaid sofa

Steak

Source Image PnPInversion+OursStyleDiffusion ProxNPI PnPInversion

Figure 3: Qualitative comparisons of inversion methods and our
MAG-Edit applied with PnPInversion [8]. The recent inversion
methods combined with P2P [6] struggle to produce effective
editing results in localized regions within complex scenarios.
Our MAG-Edit approach is compatible with various inversion
methods such as PnPInversion [8]. It is evident that when our
method is employed, PnPInversion+Ours demonstrates notable
advancements.

To enable a more thorough evaluation of our method particu-
larly in complex scenarios, we have developed a benchmark dataset,
named MAG-Bench, consisting of 200 images sourced from MS-
COCO [11], ADE20K [19], Cityscape [4], and the Internet. This
dataset features complex scenes with multiple objects in various real-
world indoor and outdoor settings, encompassing a wide range of
object categories like humans, furniture, animals, vehicles, and food.
MAG-Bench is specifically designed to assess three types of local
editing: (1) color editing, (2) texture editing which includes changes
in material, background, and style, and (3) object replacement. For
the generation of source and target prompts, we initially utilized
GPT-4 [14], followed by manual refinement to ensure the accuracy
and relevance of these prompts. The corresponding editing masks
for each image are derived using SAM. Acknowledging the critical
role of the mask’s size in localized editing, we initially classify each
image into three categories based on mask size: relatively small,
medium, and relatively large. We then ensure a balanced distribution
of varying sizes of editing regions across the datasets. Thus, each
image in MAG-Bench is accompanied by three annotations: a source
prompt, a target edit prompt, and an edit region mask, as illustrated
in Fig. 4.

5.2 Implementation Details of Baselines
We use the official codes released by the authors for Blended LD2,
PnP3, MasaCtrl4 and P2P5. For DiffEdit [5], we adopt the implemen-
tation from InstructEdit6, which enhances automatic mask genera-
tion for scenarios involving multiple objects. This implementation,
while improving upon mask generation, does not modify the core
editing algorithm of DiffEdit [5]. To facilitate fair comparisons, all
methods use identical masks provided in our benchmark dataset.
Notably, for DiffEdit [5] and P2P [6], we utilize ground-truth masks
instead of those generated through unsupervised learning or derived
from average CA maps. In the case of P2P [6], we also integrate

2https://github.com/omriav/blended-latent-diffusion
3https://github.com/MichalGeyer/plug-and-play
4https://github.com/TencentARC/MasaCtrl
5https://github.com/google/prompt-to-prompt
6https://github.com/QianWangX/InstructEdit

https://github.com/facebookresearch/segment-anything
https://github.com/omriav/blended-latent-diffusion
https://github.com/MichalGeyer/plug-and-play
https://github.com/TencentARC/MasaCtrl
https://github.com/google/prompt-to-prompt
https://github.com/QianWangX/InstructEdit
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Scenarios Edit Type Source Image Source Prompt Target Prompt Mask Mask Type

Outdoor

Color

A couple and a kid 

with black hair are 

sitting on the bench

a couple and a kid with 

blond hair are sitting 

on the bench

Small

Object

A green truck and 

some cars park under a 

tall building.

A green bus and some 

cars park under a tall 

building.

Medium

Texture
Guinea fowl stand on 

dry grass under sky.

Guinea fowl stand on 

desert under sky.
Large

Indoor

Color

The wooden and round 

table is surrounded by 

four wooden chairs and 

a light brown chair is 

next to the windows.

The wooden and round 

table is surrounded by 

four wooden chairs and 

a light red chair is next 

to the windows.

Small

Object

There are a box and 

lemons and several 

lemons on white sheet.

There are a bowl and 

lemons and several 

lemons on white sheet.

Medium

Texture

There is a table with 

cups and four chairs on 

the plaid carpet.

There is a table with 

cups and four chairs on 

the bohemian carpet.

Large

Figure 4: Examples images and annotations in the MAG-Bench dataset.

Null-text inversion [13] as our approach for encoding real images.
With the exception of Blended LD [1], which solely focuses on the
target edit description for the foreground region and omits tokens
for other unedited areas, all other methods employ target prompts
identical to those used in our method.

5.3 Evaluation Details
We utilize the CLIP score with the CLIP ViT-L/14 model, as imple-
mented in7, and the DINO-ViT self-similarity distance, available at8,
as our evaluation metrics. To precisely evaluate localized editing,
we crop the editing regions in both the source and edited images
using bounding boxes as [7]. This approach enables us to specifically
assess text prompt alignment within these localized regions by calcu-
lating the CLIP score on the target edited tokens with the respective
cropped edited image. For instance, in a scenario where the editing
objective is to alter a car’s color to red, the CLIP score is computed
using the phrase “red car.” This calculation excludes common tokens
shared between the source and target prompts and focuses solely on
the cropped image depicting the edited car and the target phrase. To
evaluate structure preservation within the localized editing regions,
we utilize the DINO-ViT self-similarity by calculating the distance

7https://github.com/showlab/loveu-tgve-2023
8https://github.com/omerbt/Splice

between the cropped source image and the corresponding cropped
edited image.

5.4 Details of User Study
We conduct a user study on the Amazon MTurk platform9. The user
study comprises over 140 tasks, each evaluated by five human evalu-
ators, as depicted in Fig. 5. In each task, participants are presented
with a source image alongside two edited images: one generated by
our proposed method and the other by a randomly selected baseline
method, with their presentation order shuffled. To enhance the vis-
ibility of localized editing regions, we outline the prospective edit
regions with white dashed lines in each pair of comparison images
and their corresponding source images, as illustrated in Fig. 5. Addi-
tionally, a simplified version of the target edit prompt is displayed
beneath the comparison images. We then pose three questions for
the raters to answer:

• Text Alignment: In the dashed region, which image aligns
better with the “edit prompt”?

• Structure Preservation: In the dashed region, which image
preserves structures more similarly to the source image?

• Overall: In the dashed region, which image performs better
overall?

9https://www.mturk.com

https://github.com/showlab/loveu-tgve-2023
https://github.com/omerbt/Splice
https://www.mturk.com
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Instructions
This task includes evaluating two AI based edits of real images in which we provided source image and target edit prompt. Moreover,we hope that only dashed 
region of corresponding image will be edited according to the target prompt. Please view the source image and target prompt and provided your feedback on the 
following criteria :

·Text Alignment:  In the dashed region, which image aligns better with the “edit prompt”?
·Structure Preservation: In the dashed region, which image better preserves structures more similarly to the source image?
·Overall: In the dashed region, which image performs better overall?

Our ultimate goal is to have the edited image and target edit prompt aligned as much as possible.

1. In the dashed region, which image aligns better with the “pink chair”?

Option 1 Option 2

2. In the dashed region, which image better preserves structures more similarly to the source image?

Option 1 Option 2

3. In the dashed region, which image performs better overall?

Option 1 Option 2

Target prompt: pink chair

Source image Option 1 Option 2

Figure 5: Example of one task for 5 human raters on Amazon MTurk to complete.

To ensure the credibility and reliability of our user study, we only
involve Amazon MTurk workers with ‘Master’ status and a Human
Intelligence Task (HIT) Approval Rate exceeding 90% across all
Requesters’ HITs. In total, the 140 tasks garnered responses from
700 distinct human evaluators.

6 COMPARISONS WITH TRAINING AND
FINE-TUNING METHODS

We conduct a comparison with existing training methods by evaluat-
ing InstructPix2Pix [2] and MagicBrush [17], utilizing their officially
released codes and models. InstructPix2Pix [2] is trained on an ex-
tensive dataset, which includes instructions generated by GPT-3
and image examples modified by P2P [6]. This training facilitates
instruction-based image editing during the inference phase. Mag-
icBrush [17] harnesses a large-scale dataset of manually annotated
real image editing triplets and optimizes the InstructPix2Pix model
to improve editing capabilities. For our comparisons, we utilize edit-
ing instructions such as “make” and “change” to manipulate images.
Fig. 6 illustrates that InstructPix2Pix, due to its lack of mask integra-
tion, frequently leads to substantial leakage into incorrect regions

during localized editing in complex scenes. In contrast, MagicBrush
demonstrates better localized editing in some cases, thanks to mask-
integrated examples in its dataset. However, MagicBrush encounters
difficulties in precisely localizing individual objects within scenes
containing multiple similar objects. This challenge is evident in the
first and second rows of Fig. 6, where it struggles with tasks like
coloring one car yellow and one pillow green. Moreover, as shown
in the third row of Fig. 6, MagicBrush [17] tends to modify the un-
derlying structure in areas undergoing texture changes. In contrast,
our training-free method efficiently attains desired editing effects
in the target local regions while preserving the original structure. A
significant advantage of our approach is the elimination of the need
for extensive training on large datasets, saving significant time and
resources.

Subsequently, we compare our method with the existing fine-
tuning method, SINE [18], using the code provided by its authors.
SINE [18] proposes fine-tuning a pre-trained text-to-image (T2I)
model with a single real image, incorporating model-based classifier
guidance and patch-based guidance to prevent overfitting. However,
as illustrated in Fig. 6, SINE fails to generate any noticeable editing
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Figure 6: Qualitative comparisons with training and fine-tuning methods for localized editing in complex scenarios. Training approaches
such as InstructPix2Pix [2] and MagicBrush [17] demonstrate issues like leakage or unintended modifications in structure. The fine-
tuning method SINE [18] is ineffective in both reconstructing and generating desired editing effects.

effects in the intended regions. Furthermore, it faces difficulties in
accurately reconstructing the original image in complex scenarios.

7 ADDITIONAL RESULTS
Our method offers a broad spectrum of localized editing capabilities,
encompassing object attribute manipulation (e.g., color and texture),
object replacement, insertion, and removal, as exemplified in Fig. 7.

Additional examples of localized editing in complex scenarios are
illustrated in Fig. 9 and Fig. 10. Furthermore, we demonstrate the
controllability of our localized editing approach in terms of the
magnitude of edits in Fig. 8. This allows for precise adjustment of
editing granularity, catering to a variety of user requirements.



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Source Image Remove a lemonColorful sheet Blue butterflyA BowlRed Wine

Object Attribute Manipulation Object Replacement Object Addition Object Removal

Wooden house Lit window Remove a flagJack-O'-Lantern Curtained window

Creamy bread Pink and lace sheet Remove a strawberryLight bulb Polaroid photos

Source Image

Source Image

Editing Type

Figure 7: Various localized editing types. We provide a simplified version of the corresponding target prompt under each edited image.

Embroidered↑ sofa

Yellow↑ sofa 

Source Image

Crashed↑ carSource Image
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Figure 8: Granularity controllable localized editing. We present a simplified version of the corresponding target prompt under the
edited images. ↑ denotes increasing the editing magnitude.
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Figure 9: Various localized editing types. In each edited image, we present a simplified version of the corresponding target prompt.
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Figure 10: Additional results on localized editing in complex scenarios. We provide a simplified version of the target prompt beneath
each edited image.
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