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A DETAILED PROOFS FOR XGBLoRA LEMMAS

Lemma 4 (XGBLoRA Gradient Approximation) The XGBLoRA update approximates the full gra-
dient update with error:

c,
IV ampor LW + AOBOT) - AOBOT ;< 7; + \/—;7

where 1 is the LoRA rank, M is the number of minibatches, and C1, Cy are constants.

Proof1 1) Let G = VW(t)JrA(t)B(t)Tﬁ(W(t) + AWBMT) be the true gradient.
2) The XGBLoRA update ADBMT can be seen as an approximation of G.

3) Let G,. be the best rank-r approximation of G. By the Eckart-Young-Mirsky theorem:

1G]« _ C1
G-G < —=< =
|| T ||F = \/F > \/F
where || - ||« is the nuclear norm and C1 is a constant depending on the properties of L.

4) The XGBLoRA update AYVBWT s computed using M minibatches. Let G be the gradient
estimate from the j-th minibatch. Then:

M
1
AVBOT ~ L3 g,
j=1

5) By the law of large numbers and assuming bounded variance of gradient estimates:

1 C.
=3 G;-G|r< 2

where Cy is a constant related to the gradient variance.

6) Combining these bounds using the triangle inequality:

G, G
VT VM

G = AVBYT| 5 < G~ G, + G, — AVBOT <

This completes the proof.

Lemma 5 (Accumulated Update Bound) For the XGBLoRA update process:
1AV < 9 MG and  |BY||p < 5, MG
where G is an upper bound on ||V« ampor L(W® + AOBOT)| 5,

Proof 2 1) Recall the update rule for A® :
A AWM _ anW(t)+A(t)B(t)T£(W(t) + A(t)B(t)T)B(t)

2) Taking the Frobenius norm and applying the triangle inequality:
JAD e < AU e+ [ acomeor LW + AOBOT)| o [BO]

3) Using the gradient bound HVW(t)+A(t)B(t)T£(W(t) + AOBOT || < G:
AP p < A D] p + 7, GIBY | p

4) Applying this inequality recursively for all M minibatches, and noting that A" is initialized to 0O:
IA® ¢ < 0y MGIBY |5
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5) Similarly for B®), we can derive:
[BO < 1 MGA| 5
6) Combining these inequalities:

IAD ) p <9 MG and B < 0 MG
This completes the proof.

Lemma 6 (Gradient Lipschitz Continuity) For any two weight matrices W1 and W a:
IVw, L(W1) = Vw, L(W2)|[p < L'[|W1 — Wa|p

where L is the Lipschitz constant of the gradient.

Proof 3 1) This lemma is a standard assumption in optimization theory, often referred to as the
smoothness condition.

2) It can be derived from the assumption that the Hessian of L is bounded:
IV2L(W)ll2 < L YW
where || - ||2 denotes the spectral norm.
3) By the mean value theorem, there exists a Wy = tW1 + (1 — t)Wy for some t € [0, 1] such that:
Vw, L(W1) = Vw,L(W3) = VZL(W,)(W; — W)

4) Taking the Frobenius norm of both sides:
IVw, L(W1) = Vw, L(W2) || p = [VPL(W) (W1 = Wa)||p

5) Using the property that | AB||r < ||All2||B||r:
IV2L(W ) (W1 = Wa)|lp < [[VZL(W)||2[[Wr = Wa|

6) Applying the bound on the Hessian:
IV2L(Wo)||2[[ W1 — Wa|[p < LI|W1 — Wal|p

This completes the proof.

B DETAILED PROOF OF XGBLoRA CONVERGENCE THEOREM

Theorem 3 (XGBLoRA Convergence) Under the XGBLoRA update process, assuming (-
smoothness and [i-strong convexity of L, after T iterations:

E[L(WT)] — £* < G G e(r)

where C3 and Cy are constants depending on 3, 1, G, ), L, and €(r) = %for some constant Cs,.

Proof4 1) Let WD = WO + AOBOT pe the update at iteration t.
2) By the B-smoothness of L:

LW < (W) 4 (VLWD), AOBOT) §|\A<t>B<t>T|\%

< L(WO) + (VLW ), AOBOT) 1 T A® 2 BO

3) Using the XGBLoRA Gradient Approximation Lemma:
AOBOT — Vw(t)JrA(t)B(t)T»C(W(t) + A(t)B(t)T) +E®
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where |[E®||p < % + \(/’;\27
4) Substituting this into the inequality from step 2:
LW < (W) 4 (VLWD), Vo ampor LW + AOBOT) L 5O

B
+ 5 AV IFIBY G

5) Using the Gradient Lipschitz Continuity Lemma:
IVLW®) = Voo ampor LW + AOBOT) | < L|AOBOT |

6) Applying Cauchy-Schwarz inequality and the bound from step 5:
LWHD) < LWD) — [V pawpor LW + AUBOT)|,

B
+ L[ AOBOTE + VLW [ B |lp + 5| AD]FBOF

7) Using the Accumulated Update Bound Lemma and the gradient bound G:

LWED) < (W) — (1 — Ly, M*G® — éanMQGQ)HVWWJrAWB(f)TE(W(t) +AOBOT)|IE

2

8) By u-strong convexity of L:
IVworampor LW + AUVBOT)|E > 2,(L(WH + AOBOT) — £)
9) Substituting this into the inequality from step 7:

G
VT

LOWHD) — £% < (1= 2ua)(L(W®D) - L) + G )

where o = 1 — L2, M?G? — gn?nMQGQ.
10) Taking expectation and applying this inequality recursively for T iterations:

G C C
7(71 + 2

BIE(W ™) — £ < (1= 200 (E(W®) = £9) 4 57 (4

)

11) Using the inequality (1 — )T < exp(—aT) < - for z € (0,1):
Cs Cy Cs

E[L(WT) - £¥] < —= + + =
S V. R TV,
where C3 = 7(£(w2(227£*), Cy = guc(j and Cs = gﬂcal

This completes the proof.

C DETAILED PROOF OF XGBLoRA EXPRESSIVENESS THEOREM

Theorem 4 (XGBLoRA Expressiveness) Let f* be any function in the original function class, and
fr be the function represented by the XGBLoRA-updated network after T iterations. Then:

MVT T

where Cg is a constant depending on the network architecture, the Lipschitz constants of the activation
functions, and L.

Exepl(fr() - £(0)2) < Co(E +
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Proof 5 1) Let W™ be the weights that exactly represent f* in the original function class.

2) Define fop: as the best function that can be represented by XGBLoRA updates:

fopt = arg min Ewa[(f(x) - f* (X))2]
fE€Fxcrora

where Fxcprora IS the class of functions representable by XGBLoRA updates.
3) We can decompose the error as:

Ex~p[(f7(x) = f*(%))’] < 2Exnn|(fr(%) = fopr(%))?] + 2Exn[(fopr(x) = £*(x))?]
=2F +2E;

4) For E1, we can use the Convergence Theorem (Theorem 1):

Ey < K1(% + M;\/T)

where K is a constant related to C3 and Cy from Theorem 1.

5) For E, §ve need to analyze how well XGBLoRA updates can approximate W*. Let AW =
W — WO,

6) We can approximate AW with a sequence of low-rank updates:

T
AW = > ADBM)T

t=1
7) By the properties of low-rank matrix approximation:

T
[AW]].
AW = > " AOBO)T|p < I=="
; vrT

where || - ||« denotes the nuclear norm.

8) Assuming the network function is Lipschitz continuous with respect to its weights with Lipschitz
constant Ly:

T ) )

L[ AWIJ

By < I3AW - 3" AOBO)T|3 < ZEo

t=1
9) Combining the bounds for F1 and Fs:
Ex~p[(fr(x) — f*(x))?] < 2K (L 41 )+ 2L | AW |3
e SHE D T
1 1 1

)

< Cs(

r MVT VT
where Cs = max(2K, 2L?||AW||§)
This completes the proof.

D BROADER IMPACT

The proposed XGBLoRA framework has the potential to bring about significant positive societal
impacts by democratizing access to state-of-the-art language technologies. By enabling efficient and
effective fine-tuning of large language models, XGBLoRA can empower researchers and practitioners
with limited computational resources to leverage the power of pre-trained models for a wide range
of downstream tasks. This can foster innovation and accelerate progress in various domains, such
as healthcare, education, and social sciences, where natural language understanding and generation
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Table 7: Details of GLUE dataset.

Dataset | Task #Train #Dev #Test # Label Metrics
Single-Sentence Classification
CoLA | Acceptability 8.5k 1k 1k 2 Matthews corr
SST | Sentiment 67 k 872 1.8k 2 Accuracy
Pairwise Text Classification
MNLI | NLI 393k 20k 20k 3 Accuracy
RTE | NLI 25k 276 3k 2 Accuracy
QQP | Paraphrase 364 k 40k 391k 2 Accuracy / F1
MRPC | Paraphrase 3.7k 408 1.7k 2 Accuracy / F1
QNLI | QA/NLI 108k 57k 5.7k 2 Accuracy
Text Similarity
STS-B | Similarity 7k 1.5k 14k 1 Pearson/ Spearman Corr

can be applied to improve decision-making, personalize learning experiences, and analyze large-
scale social data. However, it is crucial to acknowledge and mitigate potential negative societal
impacts associated with the widespread adoption of language models. Fine-tuned models may
perpetuate biases present in the pre-training data, leading to unfair or discriminatory outcomes if
not carefully audited and corrected. Additionally, the efficiency of XGBLoRA may lower the barrier
to developing and deploying language models, potentially enabling malicious actors to create and
disseminate harmful content at scale. To address these concerns, it is important to develop and
adhere to ethical guidelines for the responsible development and deployment of language models,
ensuring transparency, accountability, and fairness. Researchers and practitioners should also actively
engage in public discourse to raise awareness about the benefits and risks of language technologies
and collaborate with policymakers to develop appropriate governance frameworks. By proactively
addressing these challenges, we can harness the potential of efficient fine-tuning techniques like
XGBLORA to create positive societal impact while mitigating the risks and negative consequences.

E LIMITATIONS

One limitation of our current approach is that our theoretical analysis is based on linear models, which
may influence the generalizability of our findings to more complex, non-linear systems. Additionally,
the assumptions made in our theoretical framework may not hold in certain real-world scenarios,
potentially limiting the applicability of our method in such cases. Future work will focus on extending
our theory to encompass more generalized forms, allowing for a broader range of applications and
improved robustness to model misspecification.
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