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A DETAILED PROOFS FOR XGBLoRA LEMMAS

Lemma 4 (XGBLoRA Gradient Approximation) The XGBLoRA update approximates the full gra-
dient update with error:

krW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )�A(t)B(t)T
kF 

C1
p
r
+

C2
p
M

where r is the LoRA rank, M is the number of minibatches, and C1, C2 are constants.

Proof 1 1) Let G = rW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T ) be the true gradient.

2) The XGBLoRA update A(t)B(t)T can be seen as an approximation of G.

3) Let Gr be the best rank-r approximation of G. By the Eckart-Young-Mirsky theorem:

kG�GrkF 
kGk⇤
p
r


C1
p
r

where k · k⇤ is the nuclear norm and C1 is a constant depending on the properties of L.

4) The XGBLoRA update A(t)B(t)T is computed using M minibatches. Let Gj be the gradient
estimate from the j-th minibatch. Then:

A(t)B(t)T
⇡

1

M

MX

j=1

Gj

5) By the law of large numbers and assuming bounded variance of gradient estimates:

k
1

M

MX

j=1

Gj �GkF 
C2
p
M

where C2 is a constant related to the gradient variance.

6) Combining these bounds using the triangle inequality:

kG�A(t)B(t)T
kF  kG�GrkF + kGr �A(t)B(t)T

kF 
C1
p
r
+

C2
p
M

This completes the proof.

Lemma 5 (Accumulated Update Bound) For the XGBLoRA update process:

kA(t)
kF  ⌘mMG and kB(t)

kF  ⌘mMG

where G is an upper bound on krW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )kF .

Proof 2 1) Recall the update rule for A(t):

A(t)
 A(t)

� ⌘mrW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )B(t)

2) Taking the Frobenius norm and applying the triangle inequality:

kA(t)
kF  kA

(t�1)
kF + ⌘mkrW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )kF kB

(t)
kF

3) Using the gradient bound krW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )kF  G:

kA(t)
kF  kA

(t�1)
kF + ⌘mGkB(t)

kF

4) Applying this inequality recursively for all M minibatches, and noting that A(t) is initialized to 0:

kA(t)
kF  ⌘mMGkB(t)

kF
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5) Similarly for B(t), we can derive:

kB(t)
kF  ⌘mMGkA(t)

kF

6) Combining these inequalities:

kA(t)
kF  ⌘mMG and kB(t)

kF  ⌘mMG

This completes the proof.

Lemma 6 (Gradient Lipschitz Continuity) For any two weight matrices W1 and W2:

krW1L(W1)�rW2L(W2)kF  L0
kW1 �W2kF

where L is the Lipschitz constant of the gradient.

Proof 3 1) This lemma is a standard assumption in optimization theory, often referred to as the
smoothness condition.

2) It can be derived from the assumption that the Hessian of L is bounded:

kr
2
L(W)k2  L 8W

where k · k2 denotes the spectral norm.

3) By the mean value theorem, there exists a Wt = tW1 + (1� t)W2 for some t 2 [0, 1] such that:

rW1L(W1)�rW2L(W2) = r
2
L(Wt)(W1 �W2)

4) Taking the Frobenius norm of both sides:

krW1L(W1)�rW2L(W2)kF = kr2
L(Wt)(W1 �W2)kF

5) Using the property that kABkF  kAk2kBkF :

kr
2
L(Wt)(W1 �W2)kF  kr

2
L(Wt)k2kW1 �W2kF

6) Applying the bound on the Hessian:

kr
2
L(Wt)k2kW1 �W2kF  LkW1 �W2kF

This completes the proof.

B DETAILED PROOF OF XGBLoRA CONVERGENCE THEOREM

Theorem 3 (XGBLoRA Convergence) Under the XGBLoRA update process, assuming �-
smoothness and µ-strong convexity of L, after T iterations:

E[L(W(T ))]� L
⇤


C3
p
T

+
C4

NT
+ ✏(r)

where C3 and C4 are constants depending on �, µ,G, ⌘m, L, and ✏(r) = C5
r for some constant C5.

Proof 4 1) Let W(t+1) = W(t) +A(t)B(t)T be the update at iteration t.

2) By the �-smoothness of L:

L(W(t+1))  L(W(t)) + hrL(W(t)),A(t)B(t)T
i+

�

2
kA(t)B(t)T

k
2
F

 L(W(t)) + hrL(W(t)),A(t)B(t)T
i+

�

2
kA(t)

k
2
F kB

(t)
k
2
F

3) Using the XGBLoRA Gradient Approximation Lemma:

A(t)B(t)T = rW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T ) +E(t)
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where kE(t)
kF 

C1p
r
+ C2p

M
.

4) Substituting this into the inequality from step 2:

L(W(t+1))  L(W(t)) + hrL(W(t)),rW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T ) +E(t)
i

+
�

2
kA(t)

k
2
F kB

(t)
k
2
F

5) Using the Gradient Lipschitz Continuity Lemma:

krL(W(t))�rW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )kF  L0
kA(t)B(t)T

kF

6) Applying Cauchy-Schwarz inequality and the bound from step 5:

L(W(t+1))  L(W(t))� krW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )k2F

+ L0
kA(t)B(t)T

k
2
F + krL(W(t))kF kE

(t)
kF +

�

2
kA(t)

k
2
F kB

(t)
k
2
F

7) Using the Accumulated Update Bound Lemma and the gradient bound G:

L(W(t+1))  L(W(t))� (1� L⌘2mM2G2
�

�

2
⌘2mM2G2)krW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )k2F

+G(
C1
p
r
+

C2
p
M

)

8) By µ-strong convexity of L:

krW(t)+A(t)B(t)TL(W(t) +A(t)B(t)T )k2F � 2µ(L(W(t) +A(t)B(t)T )� L
⇤)

9) Substituting this into the inequality from step 7:

L(W(t+1))� L
⇤
 (1� 2µ↵)(L(W(t))� L

⇤) +G(
C1
p
r
+

C2
p
M

)

where ↵ = 1� L⌘2mM2G2
�

�
2 ⌘

2
mM2G2.

10) Taking expectation and applying this inequality recursively for T iterations:

E[L(W(T ))� L
⇤]  (1� 2µ↵)T (L(W(0))� L

⇤) +
G

2µ↵
(
C1
p
r
+

C2
p
M

)

11) Using the inequality (1� x)T  exp(�xT )  1
xT for x 2 (0, 1):

E[L(W(T ))� L
⇤] 

C3
p
T

+
C4

M
p
T

+
C5

r

where C3 = (L(W(0))�L⇤)
2µ↵ , C4 = GC2

2µ↵ , and C5 = GC1
2µ↵ .

This completes the proof.

C DETAILED PROOF OF XGBLoRA EXPRESSIVENESS THEOREM

Theorem 4 (XGBLoRA Expressiveness) Let f⇤ be any function in the original function class, and
fT be the function represented by the XGBLoRA-updated network after T iterations. Then:

Ex⇠D[(fT (x)� f⇤(x))2]  C6(
1

r
+

1

M
p
T

+
1
p
T
)

where C6 is a constant depending on the network architecture, the Lipschitz constants of the activation
functions, and L.
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Proof 5 1) Let W⇤ be the weights that exactly represent f⇤ in the original function class.

2) Define fopt as the best function that can be represented by XGBLoRA updates:

fopt = argmin
f2FXGBLoRA

Ex⇠D[(f(x)� f⇤(x))2]

where FXGBLoRA is the class of functions representable by XGBLoRA updates.

3) We can decompose the error as:

Ex⇠D[(fT (x)� f⇤(x))2]  2Ex⇠D[(fT (x)� fopt(x))
2] + 2Ex⇠D[(fopt(x)� f⇤(x))2]

= 2E1 + 2E2

4) For E1, we can use the Convergence Theorem (Theorem 1):

E1  K1(
1
p
T

+
1

M
p
T
)

where K1 is a constant related to C3 and C4 from Theorem 1.

5) For E2, we need to analyze how well XGBLoRA updates can approximate W⇤. Let �W =
W⇤
�W(0).

6) We can approximate �W with a sequence of low-rank updates:

�W ⇡

TX

t=1

A(t)(B(t))T

7) By the properties of low-rank matrix approximation:

k�W �

TX

t=1

A(t)(B(t))T kF 
k�Wk⇤
p
rT

where k · k⇤ denotes the nuclear norm.

8) Assuming the network function is Lipschitz continuous with respect to its weights with Lipschitz
constant Lf :

E2  L2
fk�W �

TX

t=1

A(t)(B(t))T k2F 
L2
fk�Wk2⇤

rT

9) Combining the bounds for E1 and E2:

Ex⇠D[(fT (x)� f⇤(x))2]  2K1(
1
p
T

+
1

M
p
T
) +

2L2
fk�Wk2⇤
rT

 C6(
1

r
+

1

M
p
T

+
1
p
T
)

where C6 = max(2K1, 2L2
fk�Wk2⇤).

This completes the proof.

D BROADER IMPACT

The proposed XGBLoRA framework has the potential to bring about significant positive societal
impacts by democratizing access to state-of-the-art language technologies. By enabling efficient and
effective fine-tuning of large language models, XGBLoRA can empower researchers and practitioners
with limited computational resources to leverage the power of pre-trained models for a wide range
of downstream tasks. This can foster innovation and accelerate progress in various domains, such
as healthcare, education, and social sciences, where natural language understanding and generation
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Table 7: Details of GLUE dataset.
Dataset Task # Train # Dev # Test # Label Metrics

Single-Sentence Classification
CoLA Acceptability 8.5 k 1 k 1 k 2 Matthews corr

SST Sentiment 67 k 872 1.8 k 2 Accuracy

Pairwise Text Classification
MNLI NLI 393 k 20 k 20 k 3 Accuracy

RTE NLI 2.5 k 276 3 k 2 Accuracy

QQP Paraphrase 364 k 40 k 391 k 2 Accuracy / F1

MRPC Paraphrase 3.7 k 408 1.7 k 2 Accuracy / F1

QNLI QA/NLI 108 k 5.7 k 5.7 k 2 Accuracy

Text Similarity
STS-B Similarity 7 k 1.5 k 1.4 k 1 Pearson/ Spearman Corr

can be applied to improve decision-making, personalize learning experiences, and analyze large-
scale social data. However, it is crucial to acknowledge and mitigate potential negative societal
impacts associated with the widespread adoption of language models. Fine-tuned models may
perpetuate biases present in the pre-training data, leading to unfair or discriminatory outcomes if
not carefully audited and corrected. Additionally, the efficiency of XGBLoRA may lower the barrier
to developing and deploying language models, potentially enabling malicious actors to create and
disseminate harmful content at scale. To address these concerns, it is important to develop and
adhere to ethical guidelines for the responsible development and deployment of language models,
ensuring transparency, accountability, and fairness. Researchers and practitioners should also actively
engage in public discourse to raise awareness about the benefits and risks of language technologies
and collaborate with policymakers to develop appropriate governance frameworks. By proactively
addressing these challenges, we can harness the potential of efficient fine-tuning techniques like
XGBLoRA to create positive societal impact while mitigating the risks and negative consequences.

E LIMITATIONS

One limitation of our current approach is that our theoretical analysis is based on linear models, which
may influence the generalizability of our findings to more complex, non-linear systems. Additionally,
the assumptions made in our theoretical framework may not hold in certain real-world scenarios,
potentially limiting the applicability of our method in such cases. Future work will focus on extending
our theory to encompass more generalized forms, allowing for a broader range of applications and
improved robustness to model misspecification.
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