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ABSTRACT

Complex classification scenarios, including long-tailed learning, domain adap-
tation, and transfer learning, present substantial challenges for traditional algo-
rithms. Conditional class probability (CCP) predictions have recently become
critical components of many state-of-the-art algorithms designed to address these
challenging scenarios. Among kernel methods, kernel logistic regression (KLR)
is distinguished by its effectiveness in predicting CCPs through the minimization
of the cross-entropy (CE) loss. Despite the empirical success of CCP-based ap-
proaches, the theoretical understanding of their performance, particularly regard-
ing the CE loss, remains limited. In this paper, we bridge this gap by demonstrat-
ing that KLR-based algorithms achieve minimax optimal convergence rates for
the CE loss under mild assumptions in these complex tasks, thereby establishing
their theoretical efficiency in such demanding contexts.

1 INTRODUCTION

Classification is a key problem in machine learning that involves predicting categorical labels from
input features. It plays a crucial role in applications ranging from image and speech recognition to
medical diagnoses and financial forecasting. In real-world scenarios, classification is often compli-
cated by various challenges, like imbalanced label distributions, missing labels, and limited labeled
data. These issues make direct classifier training particularly challenging, leading to the develop-
ment of specialized approaches such as long-tailed learning (Kim et al., 2020; Lin, 2023; Chen &
Su, 2023), domain adaptation (Lipton et al., 2018; Bai et al., 2022; Wen et al., 2024), and transfer
learning (Radford et al., 2021; Zhu et al., 2024; Li et al., 2024).

A common strategy to address these challenges is to first estimate conditional class probabilities
(CCPs) on related labeled datasets, followed by reweighting or adjusting these estimates for the tar-
get problem’s CCP estimator and classifier. Since accurate CCP estimation on related datasets is
crucial for the algorithm’s practical performance, it is important to use methods that are proficient in
CCP estimation across various tasks. Logistic regression (LR) (Kleinbaum & Klein, 2010), specif-
ically designed for modeling CCPs in classification problems, estimates CCPs by fitting a logistic
function that achieves linear separation of input data through the minimization of cross-entropy (CE)
loss (or equivalently, logistic loss). However, LR is inherently limited to linearly separable data and
performs poorly with non-linearly separable data. To address this limitation, kernel logistic regres-
sion (KLR) (Wahba et al., 1995; Zhu & Hastie, 2005) extends LR by incorporating the kernel trick,
which maps data into a high-dimensional feature space using kernel functions. This approach en-
ables linear separation in that space, effectively handling non-linearly separable data. Unlike other
kernel-based classifiers, such as support vector machines or Gaussian processes, KLR not only han-
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dles complex data structures but also provides interpretable CCP estimates without additional steps
or approximations.
The existing literature offers limited theoretical exploration of CCP-based algorithms for classifica-
tion in complex scenarios, particularly concerning the CE loss. As CCP estimates approach zero, the
CE loss becomes unbounded, posing significant challenges to error analysis. This unboundedness
invalidates many standard oracle inequalities typically used for error analysis under bounded losses
(see Steinwart et al. (2006); Steinwart & Scovel (2007); Blaschzyk & Steinwart (2018; 2022)). Re-
cently, some studies have attempted to address these issues by establishing new oracle inequalities
for the CE loss. For instance, Farrell et al. (2021) assumed the true CCP function’s range to be
[1/(e + 1), e/(e + 1)] instead of [0, 1], ensuring that the CE loss remains bounded. However, this
assumption does not hold for many practical datasets. Similarly, Bos & Schmidt-Hieber (2022)
truncated the unbounded excess CE loss to ensure boundedness and analyzed the resulting expected
loss, but the derived oracle inequalities and convergence rates do not extend to the unbounded CE
loss. More recently, Zhang et al. (2024) proposed a bivariate function to address the unboundedness
of the CE loss in binary classification. However, their proof techniques for verifying the variance
bound in the oracle inequality are not directly applicable to multi-class classification.
In this paper, we investigate the convergence rates of algorithms based on CCP estimation using
KLR in complex classification scenarios, such as long-tailed learning, domain adaptation, and trans-
fer learning. We begin by showing that the excess CE risk in these complex scenarios can be reduced
to the excess CE risk encountered in standard classification. A significant challenge in this analysis
arises from the unbounded nature of the CE loss derived from the true CCP function. To tackle this
challenge, we decompose the CE loss into upper and lower components based on the true CCP val-
ues, proposing a novel error decomposition for the excess risk of KLR. This decomposition allows
the unbounded terms to cancel out, resulting in bounded sample error terms. We can further address
these sample errors by establishing a new oracle inequality for KLR. Next, we turn our attention to
the approximation error associated with KLR. We construct an approximation of the target function
that corresponds to the logarithm of the ratio of two CCP functions. However, as the true CCPs ap-
proach zero, this target function becomes unbounded. To resolve this issue, we introduce a bounded
version of the target function: specifically, the logarithm of the ratio of truncated CCPs that exceed a
predetermined threshold. Our findings reveal that selecting a higher threshold results in an approx-
imation that significantly diverges from the target function, while a lower threshold yields a closer
approximation but introduces a large upper bound on the CE loss. By carefully selecting an appro-
priate threshold, we can effectively balance these trade-offs, achieving an optimal approximation
error with respect to the CE loss.
The contributions of this paper are summarized as follows.
(i) We propose a novel decomposition framework that separates the CE loss into upper and lower
components, facilitating the decomposition of the excess CE risk of KLR into approximation and
sample error terms. This innovative approach effectively tackles the analytical challenges posed by
the unbounded nature of the CE loss, paving the way for the derivation of a new oracle inequality.
(ii) We establish an upper bound for the approximation error terms of KLR with respect to the CE
loss. To achieve this, we design a bounded approximation function that closely approximates the
unbounded true CCP function while remaining above a specified positive threshold. By carefully
selecting this threshold, the constructed approximation minimizes the resulting error.
(iii) We derive an overall upper bound for the excess CE risk of KLR by integrating the results
from (i) and (ii). By judiciously selecting the appropriate KLR parameters, we further establish the
convergence rates for KLR in the aforementioned complex classification scenarios.
(iv) We derive lower bounds for the excess CE risk, which align with the convergence rates of
KLR established in (iii). This consistency demonstrates the minimax optimality of these rates,
underscoring the effectiveness of existing approaches based on CCP estimation.
(v) We conduct numerical experiments to demonstrate the effectiveness of CCP-based algorithms
and to empirically validate the minimax optimal convergence rates established in (iii) and (iv).

2 COMPLEX CLASSIFICATION SCENARIOS

Notations. We use the notation an ≲ bn (or an ≳ bn) to indicate that there exists a constant c > 0
such that an ≤ cbn (or an ≥ cbn) for all n ∈ N. We write an ≍ bn if there exists a positive constant
c ∈ (0, 1] such that cbn ≤ an ≤ c−1bn for all n ∈ N. For a natural number M , we denote [M ] :=
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{1, 2, . . . ,M}. For a, b ∈ R, we define a ∧ b := min{a, b} and a ∨ b := max{a, b}, representing
the smaller and larger values of a and b, respectively. We denote the (M − 1)-dimensional simplex
as ∆M−1 := {θ ∈ RM :

∑M
m=1 θm = 1, θm ≥ 0, m ∈ [M ]}.

Standard Classification Scenario. In standard classification problems, we observe i.i.d. data D :=
(Xi, Yi)

n
i=1 ∈ (X × Y)n drawn from an unknown distribution P on X × Y , where X ⊂ Rd

denotes the input (feature) space and Y := [M ] represents the output (label) space. Let p(y|x) be
the conditional class probability (CCP) function, and let p(x) and p(y) denote the marginal density
functions of X and Y , respectively. Based on the observations D, our goal is to find a classifier
ĥ : X → Y . In practice, an important approach for training a classifier involves fitting a CCP
estimator p̂(y|x) and then inducing the plug-in classifier defined as argmaxy∈[M ] p̂(y|x).

For a loss function L : Y × R → R, the expectation of L(y, p̂(·|x)) with respect to P , denoted as
RL,P (p̂(y|x)) := EP [L(Y, p̂(·|X))], is referred to as the risk. The smallest corresponding risk is
termed the Bayes risk and is denoted as R∗

L,P := inf{RL,P (p̂(y|x)) : p̂(y|x) is measurable}. Let
D := n−1

∑n
i=1 δ(Xi,Yi) be the Dirac measure, and the expectation of a function h with respect to

D is given by EDh := n−1
∑n

i=1 h(Xi, Yi). The expectation of the loss function L(y, p̂(·|x))
with respect to D is referred to as the empirical risk and is expressed as RL,D(pf (y|x)) :=
ED[L(Y, pf (·|X))] = n−1

∑n
i=1 L(Yi, pf (·|Xi)). The cross-entropy (CE) loss is defined as

LCE(y, p̂(·|x)) := − log p̂(y|x), while the classification loss is defined by Lclass(y, p̂(·|x)) :=
1{y = argmaxm∈[M ] p̂(m|x)}. Since R∗

LCE,P = RLCE,P (p(y|x)), the Bayes risk R∗
LCE,P can be

achieved by the true CCP function p(y|x). Therefore, the excess CE risk RLCE,P (p̂(y|x))−R∗
LCE,P

measures the accuracy of the CCP estimator p̂(y|x) in estimating the true CCP function p(y|x). The
calibration inequality presented in (Steinwart & Christmann, 2008, Theorem 8.29) establishes a
relationship between the excess classification risk and the excess CE risk. More precisely, it states

RLclass,P (p̂(y|x))−R∗
Lclass,P

≤ 2
√
2(RLCE,P (p̂(y|x))−R∗

LCE,P )
1/2. (1)

This illustrates that if the CE risk of a CCP estimator converges to the CE risk of the true CCP
function, then the classification error of its induced classifier will converge to the smallest possible
classification error. Thus, CCP estimation offers more informative insights than mere label predic-
tion, enabling improved handling of uncertainty and enhancing decision-making processes.

Complex Classification Scenarios. Unlike the standard classification setting, complex classifica-
tion scenarios involve labeled samples Dp := (Xi, Yi)

np

i=1 drawn from a distribution P on X × Y ,
while inference is required for a different distribution Q on the same space. In this paper, we pri-
marily investigate three complex classification scenarios in which the class-conditional probability
q(x|y) is assumed to be identical to the class-conditional probability p(x|y), that is,

p(x|y) = q(x|y), ∀x ∈ X , y ∈ Y = [M ]. (2)

Using Bayes’ theorem and the assumption in Eq. (2), the CCP function q(y|x) for the test data can
be expressed as

q(y|x) = q(y)q(x|y)∑M
m=1 q(m)q(x|m)

=
q(y)p(x|y)∑M

m=1 q(m)p(x|m)
=

q(y)p(y|x)p(x)/p(y)∑M
m=1 q(m)p(m|x)p(x)/p(m)

=
(q(y)/p(y))p(y|x)∑M

m=1(q(m)/p(m))p(m|x)
=

w∗(y)p(y|x)∑M
m=1 w

∗(m)p(m|x)
,

where w∗(y) := q(y)/p(y) is referred to as the class probability ratio. Let ŵ(y) and p̂(y|x) denote
the estimators for w∗(y) and p(y|x), respectively. Then we can derive the CCP estimator for the test
distribution as

q̂(y|x) = ŵ(y)p̂(y|x)∑M
m=1 ŵ(m)p̂(m|x)

. (3)

Consequently, if the CCP estimation p̂(y|x) is available, it is sufficient to estimate w∗(y) to obtain
q̂(y|x). In the following sections, we will present approaches to estimate w∗(y) for classification
problems in three different complex scenarios that satisfy Eq. (2).
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2.1 LONG-TAILED LEARNING

In a long-tailed learning problem (Kang et al., 2020; Yang & Xu, 2020), in addition to satisfying
Eq. (2), the label probability q(y) is known to be uniform, specifically q(y) = 1/M for any y ∈ [M ].
In contrast, the label probabilities p(y), where y ∈ Y , may significantly deviate from a uniform
distribution. The probability p(y) can be easily estimated by p̂(y) := n−1

p

∑np

i=1 1{Yi = y}. Con-
sequently, the class probability ratio w∗(y) can be estimated as ŵ(y) := q̂(y)/p̂(y) = 1/(Mp̂(y)).
Furthermore, it is worth noting that in long-tailed learning, the classifier ĥq(x), derived from the es-
timator q̂(y|x) in Eq. (3), aligns with the logit adjustment classifier proposed in Menon et al. (2021).
A detailed proof of this equivalence is provided in Appendix B.

2.2 DOMAIN ADAPTATION: LABEL SHIFT

Label shift problems (Saerens et al., 2002) are characterized by Eq. (2) and an unknown label dis-
tribution q(y). In addition to labeled samples Dp from the source distribution P , unlabeled samples
Du

q := (Xi)
np+nq

i=np+1 are drawn from the marginal probability density q(x) of the target distribution
Q. To estimate w∗ := (w∗(m))m∈[M ] based on the observations D := (Dp, D

u
q ), Wen et al. (2024)

proposes a class probability matching-based estimator ŵ. This estimator aligns two components: the
class probability estimator in the source domain, p̂(y) := n−1

p

∑np

i=1 1{Yi = y}, and the empirical
mean of the weighted CCP estimation for the target domain samples, i.e.

p̂wq (y) := n−1
q

∑
Xi∈Du

q

p̂(y|Xi)∑M
m=1 w(m)p̂(m|Xi)

. (4)

Clearly, the CCP estimation p̂(y|x) influences the estimation of w∗ through p̂wq (y) in Eq. (4). There-
fore, having an accurate CCP estimator p̂(y|x) in the source domain is essential for effective label
shift adaptation.

2.3 TRANSFER LEARNING: LABEL BIAS

In transfer learning, we assume that the condition in Eq. (2) holds and that the label probability dis-
tribution q over Y is uniform. We assume that only the pre-trained model p̂(y|x) on Dp is available,
while labeled pre-trained dataDp itself is not accessible. Additionally, we can observe a small num-
ber of auxiliary samples Ds := (Xs

i , Y
s
i )

ns
i=1, drawn from an unknown data distribution S defined

on X × Y , which is assumed to satisfy s(x|y) = p(x|y). Due to the discrepancy between p(y) and
q(y), directly applying the pre-trained model p̂(y|x), fitted on Dp, for classification on Q results in
poor performance, a phenomenon referred to as label bias. Since p(y) =

∑
m Ex∼p(·|m)p(y|x)p(m)

holds for any y ∈ [M ], Zhu et al. (2024) propose the estimator p̂(y) as the stationary distribution of
a Markov chain characterized by the transition matrix Ĉ = (Ĉkj) ∈ RM×M , with entries given by

Ĉkj := n−1
s,j

∑
i∈[ns],Y s

i =j

p̂(k|Xs
i ), (5)

where ns,j denotes the number of samples from the j-th class in Ds. Eq. (5) indicates that the CCP
estimator p̂(y|x) also influences the estimation of the label distribution p̂(y). Given that q(m) = 1

M
for all m ∈ [M ], the optimal weight w∗(m) can be estimated as ŵ(y) := q̂(y)/p̂(y) = 1/(Mp̂(y)).

In summary, for these complex classification scenarios—namely long-tailed learning, domain adap-
tation, and transfer learning—the CCP estimation p̂(y|x) not only directly influences the estimator
q̂(y|x) through Eq. (3), but also impacts the estimation of the class probability ratio ŵ(y) in the latter
two scenarios. Consequently, the CCP estimation p̂(y|x) based on the labeled data Dp is a crucial
and fundamental component in algorithms designed to tackle these complex classification tasks.

3 MINIMAX CONVERGENCE RATES OF KERNEL LOGISTIC REGRESSION FOR
COMPLEX CLASSIFICATION SCENARIOS

As mentioned in Section 2, in many complex classification scenarios, our objective extends beyond
merely training a classifier for label prediction; we are also interested in estimating the CCPs to
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inform subsequent decision-making. Kernel logistic regression (KLR) (Zhu & Hastie, 2005) is par-
ticularly well-suited for this purpose, as it is specifically designed to model CCPs in classification
problems. Specifically, let f = (fm)m∈[M ] be a score function, where each element fm : X → R
belongs to the reproducing kernel Hilbert space (RKHS) H , with the norm ∥ · ∥H induced by the
Gaussian kernel function k(x, x′) := exp(−∥x− x′∥22/γ2) for x, x′ ∈ Rd and a bandwidth param-
eter γ (Steinwart & Christmann, 2008). The collection of score functions f is denoted as

F := {f := (fm)Mm=1 : fm ∈ H,m ∈ [M − 1], fM = 0}, (6)

where we set the score function for the M -th class to zero to ensure uniqueness. The corresponding
CCP estimator for f ∈ F is given by the softmax function of f , i.e.,

pf (m|x) := exp(fm(x))∑M
j=1 exp(fj(x))

, m ∈ [M ], (7)

which models the true CCP function p(m|x). Note that if the CCP estimate of pf (y|x) is close to
zero, the CE loss − log pf (y|x) can become extremely large. To prevent an arbitrarily large CE loss,
we truncate the CCP estimator pf (m|x). Specifically, given t ∈ (0, 1/(2M)), we define

ptf (m|x) :=


t, if pf (m|x) < t,

pf (m|x)− (pf (m|x)− t) ·
∑

j:pf (j|x)<t(t− pf (j|x))∑
ℓ:pf (ℓ|x)≥t(pf (ℓ|x)− t)

, if pf (m|x) ≥ t.
(8)

The CCP function pf (m|x) is truncated at t for values of m less than t, while those pf (m|x) greater
than t are proportionally adjusted to ensure that

∑
m∈[M ] p

t
f (m|x) = 1. It can be easily shown that

for all m ∈ [M ] and x ∈ X , the condition ptf (m|x) ≥ t holds, thereby bounding the CE loss. More
precisely, we have LCE(y, p

t
f (·|x)) = − log ptf (y|x) ≤ − log t.

Accordingly, given the bandwidth parameter γ > 0, the truncation parameter t ∈ [0, 1/(2M)], and
a regularization parameter λ > 0, the KLR function fD is obtained through

fD := argmin
f∈F

RLCE,D(ptf (y|x)) + λ∥f∥2H , (9)

where ∥f∥2H :=
∑M−1

j=1 ∥fj∥2H . The regularization term λ∥f∥2H penalizes the RKHS norm of
functions to prevent overfitting. The corresponding CCP estimator is expressed as

p̂(m|x) := ptfD (m|x), m ∈ [M ]. (10)

To analyze the proposed CCP estimator, the following restrictions on the distribution P on X × Y
need to be introduced.

Assumption 3.1. We impose the following assumptions on the probability distribution P .

(i) [Hölder Smoothness] Assume that for any x, x′ ∈ X , there exists an α ∈ [0, 1] and a
Hölder constant cα ∈ (0,∞) such that |p(m|x′)−p(m|x)| ≤ cα∥x′−x∥α2 for allm ∈ [M ].

(ii) [Small Value Bound] Assume that for all t ∈ (0, 1], there exist constants β ≥ 0 and cβ > 0
such that PX(p(m|X) ≤ t) ≤ cβt

β for all m ∈ [M ].

The Hölder Smoothness Assumption (i) regarding the conditional probability function p(m|x) is a
common assumption in classification tasks (Chaudhuri & Dasgupta, 2014; Döring et al., 2017; Xue
& Kpotufe, 2018; Khim et al., 2020). According to (i), when α is small, the conditional probabil-
ity function p(m|x) exhibits sharper fluctuations, making accurate estimation more challenging and
consequently leading to slower convergence rates. The Small Value Bound (SVB), i.e. Assump-
tion 3.1 (ii), adapted from Bos & Schmidt-Hieber (2022), quantifies the size of the set where the
conditional probabilities p(m|x) are small. As the conditional probability p(m|x) approaches zero,
the value of − log p(m|x) increases towards infinity at an accelerating rate. Thus, accurately esti-
mating small conditional probabilities significantly impacts the value of the CE loss. Therefore, the
classification problem demonstrates faster convergence rates with respect to the CE loss when the
probability of regions with small conditional probabilities is low (i.e., when β is large).
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3.1 LONG-TAILED LEARNING

The following theorem presents the convergence rate of the CCP estimator q̂(y|x) defined in Eq. (3).

Theorem 3.2 (Upper Bound). Under the setting in Section 2.1, let Assumption 3.1 hold. Moreover,
let q̂(y|x) be the CCP estimator as in Eq. (3) with p̂(y|x) being KLR’s CCP estimator as in Eq. (10).
Then by choosing λ ≍ n−1

p , γ ≍ n
−1/((1+β∧1)α+d)
p , and t ≍ n−ζ

p with ζ ≥ 1, there exists anN ∈ N
such that for any np ≥ N and for any ξ > 0, with probability Pnp at least 1− 2/np, there holds

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ n

− (1+β∧1)α
(1+β∧1)α+d

+ξ
p . (11)

Under the same assumptions—namely, that the distributions P and Q adhere to the long-tailed
setting and that P satisfies Assumption 3.1—the following theorem establishes a lower bound.

Theorem 3.3 (Lower Bound). Under the setting in Section 2.1, let Assumption 3.1 hold. Moreover,
let A be a learning algorithm that accepts data Dp and outputs a CCP estimator. Then, there exists
a constant c ∈ (0, 1) such that with probability Pnp at least c, there holds

inf
A

sup
P,Q

RLCE,Q(A(Dp))−R∗
LCE,Q ≳ n

− (1+β∧1)α
(1+β∧1)α+d

p . (12)

Up to the polynomial term nξ with an arbitrarily small ξ, the lower bound in Eq. (12) aligns with the
upper bound in Eq. (11). Consequently, the CCP estimator q̂(y|x) in Eq. (3) is minimax optimal.

3.2 LABEL SHIFT ADAPTATION

For the label shift problem described in Section 2.2, the following theorem presents the convergence
rate of q̂(y|x) for the target domain.

Theorem 3.4 (Upper Bound). Under the setting in Section 2.2, let Assumption 3.1 hold. Moreover,
let q̂(y|x) be the CCP estimator as in Eq. (3) with p̂(y|x) being KLR’s CCP estimator in Eq. (10).
Then, by choosing λ ≍ n−1

p , γ ≍ n
−1/((1+β∧1)α+d)
p , and t ≍ n−ζ

p with ζ ≥ 1, there exists an
N1 ∈ N such that for any np ∧ nq ≥ N1 and for any ξ > 0, there holds

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ n

− (1+β∧1)α
(1+β∧1)α+d

+ξ
p + log nq/nq (13)

with probability Pnp ⊗Q
nq

X at least 1− 1/np − 1/nq .

Eq. (13) indicates that the convergence rate of the CCP estimator q̂(y|x) is influenced primarily by
the larger term in n−θ

p and n−1
q , where θ := (1 + β ∧ 1)α/((1 + β ∧ 1)α + d). The terms nξp

and log nq are not critical for the rate of decay. In practice, we typically maintain a fixed sample
size np for the source domain while the sample size nq for the target domain gradually increases.
As nq rises from zero to approximately nθp, n−1

q decreases from infinity to n−θ
p , resulting in a faster

convergence rate in Eq. (13) that ultimately aligns with the order of n−θ
p . If nq continues to grow, the

order of the convergence rate in Eq. (13) remains unchanged. This illustrates that given the labeled
source domain data, a certain number of unlabeled target domain samples are sufficient to achieve
efficient performance.

Theorem 3.5 (Lower Bound). Under the setting in Section 2.2, let Assumption 3.1 hold. In addition,
let A be a learning algorithm that accepts data D := (Dp, D

u
q ) and outputs a CCP predictor. Then,

there exist a constant c ∈ (0, 1) such that with probability Pnp ⊗Q
nq

X at least c, there holds

inf
A

sup
P,Q

RLCE,Q(A(D))−R∗
LCE,Q ≳ n

− (1+β∧1)α
(1+β∧1)α+d

p + n−1
q . (14)

Theorems 3.4 and 3.5 demonstrate that the CCP estimator q̂(y|x) in Eq. (3) attains minimax optimal
rates, up to an arbitrarily small polynomial term, for label shift adaptation.
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3.3 MITIGATING LABEL BIAS IN TRANSFER LEARNING

For transfer learning with label bias, as described in Section 2.3, the following theorem presents the
convergence rate for q̂(y|x).
Theorem 3.6 (Upper Bound). Under the setting in Section 2.3, let Assumption 3.1 hold. Moreover,
let q̂(y|x) be the CCP estimator Eq. (3) in the target domain with p̂(y|x) being KLR’s CCP estimator
in Eq. (10). Then, by choosing λ ≍ n−1

p , γ ≍ n
−1/((1+β∧1)α+d)
p , and t ≍ n−ζ

p with ζ ≥ 1, there
exists an N2 ∈ N such that for any np ∧ ns ≥ N2 and for any ξ > 0, there holds

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ n

− (1+β∧1)α
(1+β∧1)α+d

+ξ
p + log ns/ns (15)

with probability Pnp ⊗ Pns
s at least 1− 1/np − 1/ns.

In practice, the sample size of the pre-trained dataset is typically much larger than that of the aux-
iliary dataset, i.e., np ≫ ns. If access to the pre-trained model p̂(y|x) is not available, the transfer
learning problem discussed in Section 2.3 becomes the long-tailed learning problem addressed in
Section 2.1. In this case, Theorem 3.2 provides the convergence rate n−(1+β∧1)α/(1+(β∧1)α+d)+ξ

s ,
which is significantly slower than that in Eq. (15). This highlights that mitigating label bias in the
pre-trained model is more advantageous than training a new model from scratch, thereby illustrating
the effectiveness of transfer learning.
Theorem 3.7 (Lower Bound). Under the setting in Section 2.3, let Assumption 3.1 hold. Moreover,
let A be a learning algorithm that accepts data D := (Dp, Ds) and outputs a CCP predictor. Then,
there exists a constant c ∈ (0, 1) such that with probability Pnp ⊗ Sns at least c, there holds

inf
A

sup
P,S,Q

RLCE,Q(A(D))−R∗
LCE,Q ≳ (np ∨ ns)−

(1+β∧1)α
(1+β∧1)α+d + n−1

s . (16)

Since we typically have np ≫ ns in practice, the upper bound in Eq. (15) aligns with the lower
bound in Eq. (16), up to the polynomial term nξp with an arbitrarily small ξ. Therefore, the predictor
q̂(y|x) in Eq. (3) is minimax optimal with respect to the CE loss for addressing label bias in transfer
learning.
In summary, for the three scenarios discussed, the convergence rates with respect to the CE loss
in Theorems 3.2, 3.4, and 3.6 are minimax optimal. By incorporating the calibration inequality in
Eq. (1), we can derive convergence rates for the classification loss as well. Elementary calculations
indicate that when the exponent of the SVB β ≥ 1 in Assumption 3.1 (ii), the convergence rates for
the classification loss are also minimax optimal. Further details can be found in Appendix E.

4 ERROR ANALYSIS

In this section, we present the error analysis of the excess CE risk RLCE,Q(q̂(y|x))−R∗
LCE,Q of the

CCP estimation q̂(y|x) for the complex classification scenarios in Section 3.

4.1 REDUCING ERROR IN COMPLEX CLASSIFICATION SCENARIOS TO ERROR IN STANDARD
CLASSIFICATION SCENARIO

The following inequalities indicate that the excess CE risk RLCE,Q(q̂(y|x)) −R∗
LCE,Q of the CCP

estimation q̂(y|x) for the complex classification scenarios in Section 3 can be reduced to the excess
CE risk RLCE,P (p̂(y|x))−R∗

LCE,P of the CCP estimation p̂(y|x) for the standard classification.

(a) Under the long-tailed learning setting in Section 2.1, we have

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ RLCE,P (p̂(y|x))−R∗

LCE,P + log np/np. (17)

(b) Under the label shift adaptation setting in Section 2.2, we have

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ RLCE,P (p̂(y|x))−R∗

LCE,P + log nq/nq + log np/np. (18)

(c) Under the transfer learning setting in Section 2.3, we have

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ RLCE,P (p̂(y|x))−R∗

LCE,P + log ns/ns. (19)

All proofs of the above inequalities Eq. (17), Eq. (18), and Eq. (19) can be found in Appendix D.2.
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4.2 EXCESS CE RISK OF KLR IN STANDARD CLASSIFICATION SCENARIOS

In this section, we analyze the excess CE risk RLCE,P (p̂(y|x))−R∗
LCE,P associated with the KLR

estimator p̂(y|x) for standard classification. For simplicity, we omit the subscript CE in LCE w.l.o.g.
To address the analytical challenges posed by the unbounded nature of the CE loss, we decompose
the CE loss into an upper part Lu and a lower part Ll, based on whether the true CCP exceeds
or falls below the truncation parameter t as defined in Eq. (8). Specifically, for any CCP function
pf : X → ∆M−1, we define these two components of its CE loss as follows:

(Lu ◦ pf )(x, y) := Lu(y, pf (·|x)) := 1{p(y|x) ≥ t}(− log pf (y|x)), (20)

(Ll ◦ pf )(x, y) := Ll(y, pf (·|x)) := 1{p(y|x) < t}(− log pf (y|x)). (21)

According to Eq. (20), the CE loss of the true CCP function p(y|x) on the upper part Lu◦p is always
bounded. Therefore, it suffices to focus on the loss in the lower part Ll ◦p, which is unbounded. For
notational simplicity, we denote the excess CE loss of the truncated CCP estimator ptf (·|x) defined
in Eq. (8) as hpt

f
:= L ◦ ptf − L ◦ p. Similarly, we define the excess CE loss for the upper part and

the lower part as hupt
f
:= Lu ◦ ptf − Lu ◦ p and hlpt

f
:= Ll ◦ ptf − Ll ◦ p, respectively.

Using the CE loss decomposition in Eq. (20) and Eq. (21), we can perform an error decomposition
of the excess CE risk associated with KLR’s CCP estimator p̂(y|x) as defined in Eq. (10). To this
end, let f0 be an approximating function within the space F specified in Eq. (6). Thus, we have

λ∥fD∥2H +RL,P (p̂(y|x))−R∗
L,P = λ∥fD∥2H +RL,P (p

t
fD (y|x))−R∗

L,P (By Eq. (10))

= λ∥fD∥2H + EPhpt
fD

= λ∥fD∥2H + EDhpt
fD

− EDhpt
fD

+ EPhpt
fD

(By definition of hpt
f
)

≤ λ∥f0∥2H + EDhpt
f0

− EDhpt
fD

+ EPhpt
fD

(By definition of fD in Eq. (9))

= λ∥f0∥2H + EPhpt
f0

+ EDhpt
f0

− EPhpt
f0

+ EPhpt
fD

− EDhpt
fD

= λ∥f0∥2H + EPhpt
f0

+ (EDh
l
pt
f0

− EPh
l
pt
f0

+ EPh
l
pt
fD

− EDh
l
pt
fD

)

+ (EDh
u
pt
f0

− EPh
u
pt
f0

+ EPh
u
pt
fD

− EDh
u
pt
fD

) (Loss decomposition hpt
f
= hupt

f
+ hlpt

f
) (22)

= λ∥f0∥2H + EPhpt
f0

+ (EDL
l ◦ ptf0 − EPL

l ◦ ptf0) + (EPL
l ◦ ptfD − EDL

l ◦ ptfD )

+ (EDh
u
pt
f0

− EPh
u
pt
f0

) + (EPh
u
pt
fD

− EDh
u
pt
fD

), (Simplification by definition of hlpt
f
) (23)

where the first two summands represent the approximation error, while the last four summands
correspond to the sample error terms. Note that although Ll ◦ p is unbounded in Eq. (22), which
causes the excess losses on the lower part—hlpt

f0

and hlpt
fD

—to be unbounded as well, the unbounded

component Ll ◦ p appears in both hlpt
f0

and hlpt
fD

and subsequently cancels out. As a result, only the

bounded parts Ll ◦ ptfD and Ll ◦ ptf0 , which lie within [log t,− log t], remain in the final Eq. (23).
This ensures that all four sample error terms are bounded, highlighting the ingenuity of our analysis.

4.2.1 BOUNDING THE SAMPLE ERRORS

The following theorem presents our new oracle inequality of KLR for CCP estimation.
Theorem 4.1 (Oracle inequality). Let fD be as in Eq. (9) and the truncated KLR’s CCP estimator
p̂(y|x) as in Eq. (10). Furthermore, let F be as in Eq. (6) and the truncation threshold t < 1/(2M).
Then for any f0 ∈ F , ξ ∈ (0, 1/2), and ζ > 0, with probability at least 1− 4e−ζ , there holds

λ∥fD∥2H +RLCE,P (p̂(y|x))−R∗
LCE,P

≲ (λ∥f0∥2H +RLCE,P (p
t
f0(y|x))−R∗

LCE,P ) + (− log t) · (t+ λ−ξγ−dn−1 + ζ/n). (24)

Theorem 4.1 establishes that the excess CE risk of KLR’s CCP estimator p̂(y|x) is bounded by the
sum of the approximation error and the sample error, which correspond to the two terms on the right-
hand side of Eq. (24). Specifically, the second term on the right-hand side of Eq. (24) provides an
upper bound for the four sample error components in the error decomposition presented in Eq. (23).
Further discussions about the oracle inequality can be found in Appendix C.
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4.2.2 BOUNDING THE APPROXIMATION ERROR

In this section, we establish the upper bound of the approximation error, i.e. the first two summands
in Eq. (23). To this end, let p(m|x) be the CCP funtion and define the score function

f∗ := (f∗(m))Mm=1 with f∗m(x) := log(p(m|x)/p(M |x)), m ∈ [M ]. (25)

Since R∗
LCE,P = RLCE,P (p(y|x)) and p(y|x) = pf∗(y|x) in Eq. (7), f∗ is the score function that

achieves the minimal CE risk. Therefore, in order to bound the approximation error, we need to
construct a function f0 ∈ F in Eq. (6) to approximate the Bayes score function f∗. However, since
p(m|x) can be close to zero, f∗ in Eq. (25) can be unbounded. To address this issue, we consider a
truncated version of f∗, namely, for a given threshold τ ∈ [0, 1/(2M)), define

f∗τ := (f∗τm )m∈[M ] with f∗τm (x) := log
(
pτ (m|x)

/
pτ (M |x)

)
, m ∈ [M ], (26)

where the truncated CCP function pτ (m|x) is defined as in Eq. (8) with pf replaced by p.

Now, we construct a function f0 ∈ F in Eq. (6) to approximate the bounded function f∗τ . To
this end, let K(x) :=

(
2/(γ2π)

)d/2
exp

(
−2∥x∥22/γ2

)
be the convolution operator induced by the

Gaussian kernel function k and define the score function

f̃τ := (f̃τm)m∈[M ] with f̃τm(x) := (K ∗ f∗τm )(x), m ∈ [M ], (27)

where K ∗ f∗τm is the convolution of K and f∗τm in Eq. (26).

The following proposition presents the approximation error bound when the approximating function
f0 is chosen as f̃τ in Eq. (27) with properly chosen τ .
Proposition 4.2. Let Assumption 3.1 hold. Furthermore, let γ be the bandwidth of the Gaussian
kernel and let t ∈ [0, 1/(2M)] be the truncation parameter. Then there exists an f0 := f̃τ ∈ F in
Eq. (27) with τ := γα such that for any t ≤ τ , there holds

λ∥f0∥2H +RLCE,P (p
t
f0(y|x))−R∗

LCE,P ≲ λγ−d log2(γ−α) + log(γ−α) · γα(1+β∧1). (28)

Proposition 4.2 provides the approximation error bound for f0 := f̃τ as defined in Eq. (27), relative
to f∗ in Eq. (25). This is achieved by bounding the approximation error of f0 with respect to f∗τ
in Eq. (26), along with the approximation error of f∗τ to f∗. The approximation error bound in
Eq. (28) can be upper bounded by log2(γ−α)(λγ−d + γα(1+β∧1)) → 0 as the bandwidth γ → 0
and λγ−d log2(γ−α) → 0. This illustrates that f0 can effectively approximate the unbounded score
function f∗ with respect to the CE loss, aided by the intermediate function f∗τ . Importantly, the ap-
propriately chosen value of τ := γα not only facilitates the closeness of f̃τ to the unbounded target
function f∗ through f∗τ but also ensures that f̃τ remains above a specified positive threshold, thus
guaranteeing that the CE loss of f̃τ is bounded. This effectively resolves the issue of unboundedness
in the approximation error analysis.

5 EXPERIMENTS

In this section, we evaluate the CCP-based methods on three classification datasets: the Dionis
and Satimage datasets from the OpenML Science Platform (Vanschoren et al., 2014), and the
Gas Sensor dataset from the UCI ML Repository (Kelly et al., 2007). A detailed description of
the data generation process and the hyperparameter grids for KLR is provided in Appendix F.

Validation of Effectiveness. The CCP-based estimator q̂(y|x) in Eq. (3), tailored for complex
classification tasks on distribution Q, is referred to as the CCP method. Similarly, the estimator
p̂(y|x) in Eq. (10), designed for standard classification on data from P , is referred to as the baseline
method. To validate the effectiveness of the CCP-based method in complex classification tasks, we
compare its performance against that of the baseline method.

Table 1 summarizes the label prediction accuracy of the CCP-based estimator q̂(y|x) in Eq. (3) and
the baseline estimator p̂(y|x) in Eq. (10) on the test data Du

t drawn from distribution Q, evaluated
across three complex classification scenarios. The consistently higher accuracy of the CCP-based
method compared to the baseline demonstrates the effectiveness of CCP-based algorithms, particu-
larly those leveraging KLR, in tackling complex learning challenges using real-world datasets.
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Table 1: Accuracy on real-world datasets across different complex classification scenarios.

Dataset Method Long-tailed Learning Domain Adaptation Transfer Learning

Dionis
Baseline 80.71 ± 0.87 77.69 ± 1.58 80.72 ± 0.88

CCP 83.67 ± 1.10 82.73 ± 1.40 84.22 ± 0.99

Gas Sensor
Baseline 85.57 ± 5.97 96.14 ± 0.89 85.97 ± 5.57

CCP 90.49 ± 4.47 96.52 ± 1.30 90.27 ± 4.78

Satimage
Baseline 80.51 ± 3.70 89.80 ± 3.90 80.51 ± 3.70

CCP 84.56 ± 1.32 96.46 ± 2.42 84.47 ± 1.98

For each dataset and each method, we highlight the best performance in bold.

Validation of Theoretical Results. As an illustration, we conduct experiments on the Dionis
dataset, chosen for its large number of classes, which makes it particularly suitable for this analysis.
To validate the theoretical results presented in Section 3, we investigate the effect of varying sample
sizes (np, nq , and ns) on the performance of CCP-based methods.
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Figure 1: The impact of sample sizes on accuracy in complex classification scenarios.

(a) In the context of long-tailed learning, Figure 1(a) illustrates that the accuracy on test data fromQ
improves as np increases. This observation aligns with Theorem 3.2, which asserts that the excess
CE risk on Q diminishes with larger np. Furthermore, according to Eq. (1), this reduction in excess
CE risk indicates that the classification error converges toward its theoretical minimum. Therefore,
Figure 1(a) provides empirical support for the theoretical findings in Theorem 3.2.
(b) In the case of domain adaptation, Figure 1(b) demonstrates that, for a fixed np, accuracy improves
as nq increases from 500 to 3000. However, as nq grows beyond 3000 to 5000, the performance sta-
bilizes. This pattern suggests that, given the labeled source domain data Dp, a sufficient number of
unlabeled target domain samples nq is essential to achieve optimal performance. Additionally, Fig-
ure 1(b) highlights that when nq is sufficiently large, increasing np leads to higher accuracy. These
findings are consistent with the results presented in Theorem 3.4 and the associated discussion.
(c) In the context of transfer learning, Figure 1(c) shows that the impact of np and ns on accuracy
mirrors the trends observed for np and nq in label shift adaptation (Figure 1(b)). This similarity
indicates that the observations in Figure 1(c) serve as empirical validation of the theoretical results
presented in Theorem 3.6, specifically regarding the roles of np and ns.

6 CONCLUSION AND FUTURE WORK

In this paper, we investigate the theoretical properties of kernel logistic regression (KLR) in ad-
dressing complex classification scenarios, including long-tailed learning, domain adaptation, and
transfer learning. By emphasizing KLR’s strengths in conditional class probability (CCP) estima-
tion, we demonstrate that algorithms based on KLR can achieve minimax optimal convergence rates
for cross-entropy (CE) loss under mild conditions. These results provide robust theoretical support
for the empirical success of KLR-based methods, showcasing their capacity to operate with opti-
mal efficiency in challenging scenarios. Our findings enhance the understanding of the theoretical
foundations of CCP-based algorithms and validate their effectiveness in solving real-world, com-
plex classification tasks. Looking ahead, recognizing that deep neural networks (DNNs) are highly
effective CCP estimators, we plan to extend our error decomposition framework to include DNNs.
This extension will deepen our theoretical understanding of DNNs in complex classification sce-
narios. Furthermore, we aim to explore even more intricate learning environments, such as those
characterized by dynamic conditions or evolving data distributions.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

Annika Betken gratefully acknowledges financial support from the Dutch Research Council (NWO)
through VENI grant 212.164. The authors acknowledge Tao Huang’s involvement in some discus-
sions.

REFERENCES

Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. The
Annals of Statistics, 35(2):608–633, 2007.

Yong Bai, Yu-Jie Zhang, Peng Zhao, Masashi Sugiyama, and Zhi-Hua Zhou. Adapting to online
label shift with provable guarantees. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 29960–
29974, 2022.

Ingrid Blaschzyk and Ingo Steinwart. Improved classification rates under refined margin conditions.
Electronic Journal of Statistics, 12(1):793–823, 2018.

Ingrid Blaschzyk and Ingo Steinwart. Improved classification rates for localized SVMs. The Journal
of Machine Learning Research, 23(165):1–59, 2022.

Thijs Bos and Johannes Schmidt-Hieber. Convergence rates of deep ReLU networks for multiclass
classification. Electronic Journal of Statistics, 16(1):2724–2773, 2022.

Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for nearest neighbor classification.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in
Neural Information Processing Systems, volume 27, pp. 3437–3445, 2014.

Jiahao Chen and Bing Su. Transfer knowledge from head to tail: Uncertainty calibration under
long-tailed distribution. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19978–19987, 2023.
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In this appendix, we begin by introducing some notations in Section A. In Section B, we discuss
the methods for long-tailed learning, while Section C covers the oracle inequality related to the CE
loss. The proofs of all theoretical results are provided in Section D. In Section E, we establish the
convergence rates with respect to the classification loss for the KLR-based algorithms across various
scenarios. Finally, additional experimental details are presented in Section F.

A SOME NOTATIONS

For 1 ≤ p < ∞, the Lp-norm of x = (x1, . . . , xd) is defined as ∥x∥p := (|x1|p + . . . + |xd|p)1/p,
while the L∞-norm is defined as ∥x∥∞ := maxi=1,...,d |xi|. For any x ∈ Rd and r > 0, we
explicitly denote Br(x) := B(x, r) := {x′ ∈ Rd : ∥x′ − x∥2 ≤ r} as the closed ball centered at x
with radius r. In addition, denote µ(A) as the Lebesgue measure of the set A ⊂ Rd.

B DISCUSSION ON THE METHODS FOR LONG-TAILED LEARNING

In this section, we demonstrate that the classifier ĥq(x) induced by our CCP-based estimator q̂(y|x)
from Eq. (3) aligns with the logit adjustment classifier introduced in Menon et al. (2021). Specif-
ically, Eq. (7) and Eq. (8) in Menon et al. (2021) show that the optimal classifier h∗q under the
distribution Q can be expressed as

h∗q(x) = argmax
m∈[M ]

p(x|m)

M
= argmax

m∈[M ]

p(x|m) = argmax
m∈[M ]

p(m|x)p(x)
p(m)

= argmax
m∈[M ]

p(m|x)
p(m)

= argmax
m∈[M ]

[log p(m|x)− log p(m)] .

Since the posterior probability p(m|x) can be estimated as

p̂(m|x) := exp(fm(x))∑
j∈[M ] exp(fj(x))

,

it follows that log p̂(m|x) ∝ fm(x). Using this insight, Menon et al. (2021) proposed the logit
adjustment classifier defined as

ĥLA(x) = argmax
m∈[M ]

[log p̂(m|x)− log p̂(m)] = argmax
m∈[M ]

[fm(x)− log p̂(m)] . (29)

This formulation adjusts the logits fm(x) by subtracting the logarithm of the estimated class prior
p̂(m), effectively mitigating the influence of class imbalances on the classification decision.

Leveraging Eq. (3) with ŵ(y) = 1/(Mp̂(y)), our CCP-based classifier can be expressed as

ĥq(x) = argmax
m∈[M ]

q̂(m|x) = argmax
m∈[M ]

p̂(m|x)/p̂(m)∑
j∈[M ] p̂(j|x)/p̂(j)

= argmax
m∈[M ]

p̂(m|x)
p̂(m)

= argmax
m∈[M ]

[log p̂(m|x)− log p̂(m)] . (30)

Therefore, the classifier ĥq(x) in Eq. (30), derived from the CCP-based estimator q̂(y|x) in Eq. (3),
is consistent with the logit adjustment classifier ĥLA in Eq. (29) introduced in Menon et al. (2021).

C DISCUSSION ON THE ORACLE INEQUALITY

Zhang et al. (2024) also established a new oracle inequality applicable to the CE loss; however,
their oracle inequality is limited to binary classification. In this section, we demonstrate that directly
extending their proof technique to the multi-class scenario causes their variance bound in Eq. (2.5)
of Zhang et al. (2024) to increase to a polynomial order, as opposed to a logarithmic order in the
binary case, leading to suboptimal convergence rates. We will illustrate this with examples in the
following.
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To be specific, in order to cope with the unbounded CE loss, Zhang et al. (2024) construct a bounded
function ϕ(x, y) such that the expectation of ϕ is equal to the Bayes CE risk, i.e. Eϕ(X,Y ) =
R∗

LCE,P = E(− log p(Y |X)). When analyzing the excess risk RLCE,P (p̂(y|x)) − R∗
LCE,P , they

investigate the expectation of a bounded term, that is, E
(
LCE(p̂(Y |X))− ϕ(X,Y )

)
, instead of the

expectation of the original unbounded excess loss, i.e., E
(
LCE(p̂(Y |X))− LCE(p(Y |X))

)
. Given

a small δ1 > 0, for the binary classification with Y = {1, 2}, the specific form of bounded function
ϕ(x, y) is chosen as

ϕ(x, y) :=


− log(p(y|x)), if p(1|x) ∈ [δ1, 1− δ1],

0, if p(1|x) ∈ {0, 1},∑
m∈[2]

−p(m|x) log p(m|x), if p(1|x) ∈ (0, δ1) ∪ (1− δ1, 1).
(31)

Note that in Eq. (31), when p(1|x) ∈ (0, δ1)∪ (1− δ1, 1), that is, the CCP is close to 0 or 1, ϕ(x, y)
is defined as the inner risk of the true CCP function, i.e. ϕ(x, y) = EY |X=xLCE(p(Y |X)), which
is bounded by the fixed quantity − log δ1. Then they prove that ϕ can satisfy the variance bound by
a careful case-by-case analysis, especially for the special case that p(1|x) ∈ (0, δ1) ∪ (1 − δ1, 1).
They show that when setting p̂(y|x) ∈ [δ0, 1 − δ0] and choosing δ1 := δ0/(10 log(1/δ0)) with
δ0 ∈ (0, 1/3), the variance bound

E(LCE(p̂(y|X))− ϕ(X,Y ))2 ≤ V E(LCE(p̂(y|X))− ϕ(X,Y )) (32)

holds with V := 125000(− log δ0)
2 for any distribution P . By choosing a polynomial order for

δ0, i.e. δ0 ≍ n−θ with θ ≥ α/(d + α)), then the variance bound holds with V ≍ (log n)2 as a
logarithmic order. In addition, there holds LCE(p̂(y|x)) ∨ ϕ(x, y) ≲ − log(δ0 ∧ δ1) ≍ log n for
any (x, y), i.e., the upper bound of LCE(p̂(y|x)) and ϕ(x, y) are both of logarithmic orders. These
results lead to optimal convergence rates up to a logarithmic term for binary classification.

Following the idea of constructing a bounded function ϕ(x, y) as in Zhang et al. (2024), for multi-
class cases, we obtain the function ϕ(x, y) of the form

ϕ(x, y) :=


− log(p(y|x)), if ∀

m∈[M ]
p(m|x) ∈ [δ1, 1− δ1],

0, if ∃
m∈[M ]

p(m|x) = 1,∑
m∈[M ]

−p(m|x) log p(m|x), if ∃
m∈[M ]

p(m|x) ∈ [0, δ1) ∪ (1− δ1, 1).

(33)

In the following example withK = 3, we show that to ensure that the variance bound Eq. (32) holds
for any distribution P , the order of V must be at least a polynomial order in the sample size, which
significantly negatively impacts the convergence rates.
Example C.1. Let Y = {1, 2, 3}. For any x ∈ X , let η(x) ≥ 0 and p(·|x) = (η(x), 1/3, 2/3 −
η(x)). Suppose that for a given n, we have PX(x ∈ X : η(x) ≤ e−n) = 1. Moreover, let
δ0 ∈ (0, 0.3) and suppose p̂(·|x) = (δ0, 1/3, 2/3− δ0) holds for any x.

By Eq. (33), we have LCE(p̂(y|x)) ≤ − log δ0 and ϕ(x, y) ≤ − log δ1. In order to ensure that both
upper bound of LCE(p̂(y|x)) and ϕ(x, y) are of logarithmic orders in the sample size, the minimum
order of δ0 and δ1 should only be negative polynomial orders. Therefore, for any x with η(x) ≤ e−n,
we have η(x) < δ1 for sufficiently large n. In Example C.1, we have p(1|x) = η(x). By Eq. (33),
we have ϕ(x, y) = −

∑
m∈[3] p(m|x) log p(m|x) and thus the left hand side in Eq. (32) turns out to

be

E
(
LCE(p̂(Y |X))− ϕ(X,Y )

)2 ≥ EX

(
p(2|X)

(
LCE(p̂(2|X))− ϕ(X, 2)

)2)
≥ EX

(
(1/3) ·

(
η(X) log η(X) + (2/3) · log 3 + (2/3− η(X)) · log(2/3− η(X))

)2) ≥ 0.14

if n ≥ 4. On the other hand, by using the definition of ϕ and Lemma 2.7 in Tsybakov (2008), the
excess risk in the right hand side of Eq. (32) is

E
(
LCE(p̂(Y |X))− ϕ(X,Y )

)
= E

(
LCE(p̂(Y |X))− LCE(p(Y |X))

)
≤EX

3∑
m=1

(p(m|X)− p̂(m|X))2

p̂(m|X)
≤ EX

(
(η(X)− δ0)

2

δ0
+

(η(X)− δ0)
2

2/3− δ0

)
≲ δ0.
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Therefore, to ensure that the variance bound Eq. (32) holds, we must have

V ≥
E
(
LCE(p̂(Y |X))− ϕ(X,Y )

)2
E
(
LCE(p̂(Y |X))− ϕ(X,Y )

) ≳
0.14

δ0
≳ δ−1

0 .

In order to achieve a small approximation error, Theorem 2.2 in Zhang et al. (2024) selects δ0 ≍ n−θ

with the constant θ > α/(d + α), which implies that V ≳ nα/(d+α). This results in significantly
slower convergence rates.

Similar to Example C.1, we can provide examples for any K > 3 for which V must be of some
polynomial order in the sample size to satisfy the variance bound. Therefore, the direct extension of
constructing a function ϕ to the multi-class case leads to essentially slower convergence rates.

Furthermore, the oracle inequality presented in Bos & Schmidt-Hieber (2022) does not provide any
theoretical guarantees concerning the unbounded CE loss. Their results regarding the truncated
excess CE risk may not hold for the true excess CE risk. Specifically, in their Theorem 3.5, the
sample error bound for the truncated excess CE risk is shown to increase linearly with the truncation
threshold. Consequently, if the threshold is taken to infinity to convert the truncated excess CE risk
to the actual CE excess risk, the resulting sample error bound diverges to infinity.

It is important to note that our proof technique in Section 4.2.1 can be applied to other models
that yield CCP predictions by minimizing the CE loss, such as neural networks. Furthermore, our
approach can be generalized to other unbounded loss functions that increase more rapidly than the
CE loss, including the exponential loss (Hastie et al., 2009), the large-margin unified machine (Liu
et al., 2011), and the distance-weighted discrimination loss (Marron et al., 2007).

D PROOFS

In this section, we present the proofs related to Sections 4 and 3 in Sections D.1 and D.2, respec-
tively. To be specific, Section D.1.1 and D.1.2 derive the upper bound of the sample error and the
approximation error for KLR. The proofs of the convergence rates of KLR and the lower bound
of multi-class classification with respect to the CE loss are presented in Section D.1.3. Moreover,
we prove the convergence rates of approaches using KLR for complex scenarios of classification
problems in Section D.2.

D.1 PROOFS RELATED TO SECTION 4

D.1.1 PROOFS RELATED TO SECTION 4.2.1

Before we proceed, we need to introduce the following concept of entropy numbers (van der Vaart
& Wellner, 1996) to measure the capacity of a function set.
Definition D.1 (Entropy Numbers). Let (X , d) be a metric space, A ⊂ X and i ≥ 1 be an integer.
The i-th entropy number of (A, d) is defined as

ei(A, d) = inf

{
ε > 0 : ∃x1, . . . , x2i−1 ∈ X such that A ⊂

2i−1⋃
j=1

Bd(xj , ε)

}
.

The following lemma gives the upper bound of the entropy number for Gaussian kernels.
Lemma D.2. Let X ⊂ Rd, p(x) be a distribution on X and let supp(PX) ⊂ X be the support of
PX . Moreover, for γ > 0, let H(A) be the RKHS of the Gaussian RBF kernel kγ over the set A.
Then, for all N ∈ N∗, there exists a constant cN,d > 0 such that

ei(id : H(X ) → L2(PX)) ≤ 2NcN,dγ
−N i−N/d, i > 1.

Proof of Lemma D.2. Let us consider the commutative diagram

H(X )
id //

Isupp(PX )

��

L2(PX)

H(supp(PX))
id

// ℓ∞(supp(PX))

id

OO

16
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where the extension operator Isupp(X ) : Hγ(X ) → Hγ(supp(PX)) given by Corollary 4.43 in
Steinwart & Christmann (2008) are isometric isomorphisms such that ∥Isupp(PX) : Hγ(X ) →
Hγ(supp(PX))∥ = 1.

Let ℓ∞(B) be the space of all bounded functions on B. Then for any f ∈ ℓ∞(B), we have
∥f∥L2(PX) = ( 1n

∑n
i=1 |f(xi)|2)1/2 ≤ ∥f∥∞ and thus ∥id : ℓ∞(supp(X )) → L2(D)∥ ≤ 1.

This together with (A.38), (A.39), and Theorem 6.27 in Steinwart & Christmann (2008) implies that
for all i ≥ 1 and N ≥ 1, there holds

ei(id : Hγ(X ) → L2(p(x)))

≤ ∥Isupp(PX) : Hγ(X ) → Hγ(supp(X ))∥ · ei(id : H(supp(PX)) → ℓ∞(supp(PX)))

· ∥id : ℓ∞(supp(X )) → L2(PX)∥

≤ 2NcN,dγ
−N i−

N
d ,

where cN,d is the constant as in (Steinwart & Christmann, 2008, Theorem 6.27).

Before we proceed, we need to introduce some notations. To this end, let (LCE ◦ ptf )(x, y) :=

LCE(y, p
t
f (x)) and hpt

f
:= LCE ◦ ptf − LCE ◦ p. Similarly, for the upper part Lu

CE Eq. (20) and
the lower part Ll

CE Eq. (21) of the CE loss, we define (Lu
CE ◦ ptf )(x, y) := Lu

CE(y, p
t
f (x)) and

(Ll
CE ◦ ptf )(x, y) := Ll

CE(y, p
t
f (x)).

Let the function space F be as in Eq. (6) and r∗ := inff∈F (λ
∑M−1

m=1 ∥fm∥2H + EPhpt
f
). For any

r ≥ r∗, we define the function space

Fr :=

{
f ∈ F : λ

M−1∑
m=1

∥fm∥2H + EPhpt
f
≤ r

}
and denote the upper part of the loss difference of the functions in Fr as

Gu
r :=

{
Lu
CE ◦ ptf − Lu

CE ◦ p : f ∈ Fr}. (34)

Let r∗l := inff∈F (λ
∑M−1

m=1 ∥fm∥2H +EP (L
l
CE ◦ ptf ). For any r ≥ r∗l , we define the function space

concerning the lower part by

F l
r :=

{
f ∈ F : λ

M−1∑
m=1

∥fm∥2H + EP (L
l
CE ◦ ptf ) ≤ r

}
and denote the lower part of the loss of the functions in F l

r as

Gl
r :=

{
Ll
CE ◦ ptf : f ∈ F l

r}. (35)

Lemma D.3. Let Gu
r and Gl

r be defined as in Eq. (34) and Eq. (35), respectively. Then we have

ei(Gu
r , L2(D)) ≤ 2cξ,dM

1+1/(2ξ)(r/λ)1/2γ−d/(2ξ)i−1/(2ξ),

ei(Gl
r, L2(D)) ≤ 2cξ,dM

1+1/(2ξ)(r/λ)1/2γ−d/(2ξ)i−1/(2ξ),

where cξ,d is a constant depending only on ξ and d.

Proof of Lemma D.3. Since for any f ∈ Fr, we have λ∥fm∥2H ≤ r, m ∈ [M − 1]. Therefore,

Fr ⊂ {f ∈ F : fm ∈ (r/λ)1/2BH ,m ∈ [M − 1]},

where BH := {h ∈ H : ∥h∥H ≤ 1} is the unit ball in the space H . By applying Lemma D.2 with
ξ := d/(2N), we obtain ei

(
id : H(X ) → L2(D)

)
≤ ai−1/(2ξ), where a := cξ,dγ

−d/(2ξ) with the
constant cξ,d depending only on ξ and d. Thus we have

ei((r/λ)
1/2BH , L2(D)) ≤ (r/λ)1/2ai−1/(2ξ).

17
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By Definition D.1 and Lemma D.2, there exists an ϵ := (r/λ)1/2ai−1/(2ξ)-net N of (r/λ)1/2BH

with respect to L2(D) with |N | = 2i−1. Define the function set

B := {g := (gm)Mm=1 : gM = 0, gm ∈ N ,m ∈ [M − 1]}.

Then we have |B| = 2(i−1)(M−1). Moreover, for any function f ∈ Fr, there exists a g ∈ B such
that ∥fm − gm∥L2(D) ≤ ϵ for m ∈ [M − 1]. Let us define

pf (y|x) :=
exp(fy(x))∑M

m=1 exp(fm(x))

and truncate pf (y|x) to obtain ptf (y|x) as in Eq. (8). By Lemma D.9, we get

∥Lu
CE ◦ ptf − Lu

CE ◦ p− (Lu
CE ◦ ptg − Lu

CE ◦ p)∥L2(D) = ∥Lu
CE ◦ ptf − Lu

CE ◦ ptg∥L2(D)

≤
∥∥− log ptf + log ptg

∥∥
L2(D)

≤ (4M + 1)
∥∥− log pf + log pg

∥∥
L2(D)

≤ ∥fY (X)− gY (X)∥L2(D) +

∥∥∥∥ log ∑M
m=1 exp(fm(X))∑M
m=1 exp(gm(X))

∥∥∥∥
L2(D)

. (36)

For any a > 0 and z ∈ R, the derivative function of the function h(z) := log(a + exp(z)) is
h′(z) = exp(z)/(a + exp(z)) ∈ (0, 1). Therefore, by the Lagrange mean value theorem, we have
|h(z)−h(z′)| = |h′(θz+(1−θ)z′)·(z−z′)| ≤ |z−z′|. Applying this to a :=

∑ℓ−1
m=1 exp(gm(X))+∑M

m=ℓ+1 exp(fm(X)), z = fℓ(X) and z′ = gℓ(X) for ℓ ∈ [K], we get∣∣∣∣log∑M
m=1 exp(fm(X))∑M
m=1 exp(gm(X))

∣∣∣∣ = ∣∣∣∣ M∑
ℓ=1

log

∑ℓ−1
m=1 exp(gm(X)) +

∑M
m=ℓ exp(fm(X))∑ℓ

m=1 exp(gm(X)) +
∑M

m=ℓ+1 exp(fm(X))

∣∣∣∣
≤

M∑
ℓ=1

∣∣∣∣log ∑ℓ−1
m=1 exp(gm(X)) +

∑M
m=ℓ exp(fm(X))∑ℓ

m=1 exp(gm(X)) +
∑M

m=ℓ+1 exp(fm(X))

∣∣∣∣ ≤ M∑
ℓ=1

|fℓ(X)− gℓ(X)|.

This together with Eq. (36) yields

∥Lu
CE ◦ ptf − Lu

CE ◦ p− (Lu
CE ◦ ptg − Lu

CE ◦ p)∥L2(D)

≤ ∥fY (X)− gY (X)∥L2(D) +

M∑
ℓ=1

∥fℓ(X)− gℓ(X)∥L2(D) ≤Mϵ.

Therefore, we get ∥Lu
CE ◦ ptf − Lu

CE ◦ p− (Lu
CE ◦ ptg − Lu

CE ◦ p)∥L2(D) ≤Mϵ. Thus, the function
set {Lu

CE ◦ ptf − Lu
CE ◦ p : f ∈ B} is a (Mϵ)-net of Gu

r . A similar analysis yields that the function
set {Ll

CE ◦ ptf : f ∈ B} is a (Mϵ)-net of Gl
r. These together with (A.36) in Steinwart & Christmann

(2008) yield

e(M−1)i(Gu
r , L2(D)) ≤ 2Mε = 2M(r/λ)1/2ai−1/(2ξ),

e(M−1)i(Gl
r, L2(D)) ≤ 2Mε = 2M(r/λ)1/2ai−1/(2ξ),

which are equivalent to

ei(Gu
r , L2(D)) ≤ 2Mε = 2M1+ 1

2ξ (r/λ)
1
2 ai−

1
2ξ = cξ,d2M

1+ 1
2ξ (r/λ)

1
2 γ−

d
2ξ i−

1
2ξ ,

ei(Gl
r, L2(D)) ≤ 2Mε = 2M1+ 1

2ξ (r/λ)
1
2 ai−

1
2ξ = cξ,d2M

1+ 1
2ξ (r/λ)

1
2 γ−

d
2ξ i−

1
2ξ .

This finishes the proof.

Lemma D.4. Let P be a probability distribution on X × Y . Let t ∈ (0, 1/(2M)) and ptf be the
truncation of pf as in Eq. (8). Then for any V ≥ −2 log t+ 2, there holds

EP

(
LCE(Y, p

t
f (·|X))− LCE(Y, p(·|X))

)2 ≤ V · EP

(
LCE(Y, p

t
f (·|X))− LCE(Y, p(·|X))

)
.

18



Published as a conference paper at ICLR 2025

Proof of Lemma D.4. By definition of the CE loss, we have

EP

(
LCE(Y, p

t
f (·|X))− LCE(Y, p(·|X))

)2
= Ex∼p

M∑
m=1

p(m|x)
(
log

p(m|x)
ptf (m|x)

)2

,

EP

(
LCE(Y, p

t
f (·|X))− LCE(Y, p(·|X))

)
= Ex∼p

M∑
m=1

p(m|x)
(
log

p(m|x)
ptf (m|x)

)
.

For θ ∈ R, we define the function h by

h(ptf (·|x)) :=
M∑

m=1

p(m|x)
(
log

p(m|x)
ptf (m|x)

)2

− V

M∑
m=1

p(m|x)
(
log

p(m|x)
ptf (m|x)

)
+ θ

( M∑
m=1

ptf (m|x)− 1

)
.

Then we have

∂h(ptf (·|x))
∂ptf (m|x)

= 2 · p(m|x)
ptf (m|x)

· log
ptf (m|x)
p(m|x)

+ V · p(m|x)
ptf (m|x)

+ θ

=
p(m|x)
ptf (m|x)

·
(
−2 log

p(m|x)
ptf (m|x)

+ V

)
+ θ.

Let g(x) := x(−2 log x + V ) + θ for x ∈ [0, 1/t] and V ≥ −2 log t + 2. Since the derivative
of g is g′(x) = −2(log x + 1) + V ≥ 0, the function g(x) is non-decreasing with respect to x.
Therefore, the zero point of ∂h(ptf (·|x))/∂ptf (m|x) is the same for all m ∈ [M ]. In other words,
p(m|x)/ptf (m|x) should be the same and thus we have ptf (m|x) = p(m|x) due to the constraint∑M

m=1 p
t
f (m|x) = 1. Therefore, ptf (m|x) := p(m|x) attains the maximum of

M∑
m=1

p(m|x)
(
log

p(m|x)
ptf (m|x)

)2

− V

( M∑
m=1

p(m|x)
(
log

p(m|x)
ptf (m|x)

))
which turns out to be zero. Consequently, for any ptf (m|x) satisfying

∑M
m=1 p

t
f (m|x) = 1, there

holds
M∑

m=1

p(m|x)
(
log

p(m|x)
ptf (m|x)

)2

≤ V

( M∑
m=1

p(m|x)
(
log

p(m|x)
ptf (m|x)

))
,

which finishes the proof.

The following lemma provides the variance bound for the lower part of the CE loss function and the
upper bound for the lower part of the CE risk of the truncated estimator.

Lemma D.5. Let Ll
CE be the lower part of the CE loss function as in Eq. (21) with t ∈ (0, 1/(2M)).

Then for any f : X → RM and any t ∈ (0, 1/(2M)), we have

EP (L
l
CE ◦ ptf )2 ≤ (− log t) · EP (L

l
CE ◦ ptf ), EP (L

l
CE ◦ ptf ) ≤ −Mt log t.

Proof of Lemma D.5. By the definition of Ll
CE ◦ ptf , we have

EP (L
l
CE ◦ ptf )2 = Ex∼p

M∑
m=1

p(m|x)1{p(m|x) < t}(− log ptf (m|x))2,

EP (L
l
CE ◦ ptf ) = Ex∼p

M∑
m=1

p(m|x)1{p(m|x) < t}(− log ptf (m|x)).
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Since ptf (m|x) ∈ [t, 1) for any m ∈ [M ], we have − log ptf (m|x) ∈ (0,− log t]. Thus we obtain

EP (L
l
CE ◦ ptf )2 ≤ Ex∼p

M∑
m=1

p(m|x)1{p(m|x) < t}(− log t) · (− log ptf (m|x))

≤ (− log t) · Ex∼p

M∑
m=1

p(m|x)1{p(m|x) < t}(− log ptf (m|x)) = (− log t)EP (L
l
CE ◦ ptf ),

which proves the first assertion. Moreover, we have

EP (L
l
CE ◦ ptf ) = Ex∼p

M∑
m=1

1{p(m|x) < t}p(m|x)(− log ptf (m|x))

≤ Ex∼p

M∑
m=1

1{p(m|x) < t}t(− log t) ≤ −Mt log t,

which proves the second assertion.

Before we proceed, we need to introduce another concept to measure the capacity of a function
set, which is a type of expectation of supermum with respect to the Rademacher sequence, see e.g.,
Definition 7.9 in Steinwart & Christmann (2008).
Definition D.6 (Empirical Rademacher Average). Let {εi}mi=1 be a Rademacher sequence with re-
spect to some distribution ν, that is, a sequence of i.i.d. random variables, such that ν(εi = 1) =
ν(εi = −1) = 1/2. The n-th empirical Rademacher average of F is defined as

RadD(F , n) := Eν sup
h∈F

∣∣∣∣ 1n
n∑

i=1

εih(xi)

∣∣∣∣.
Proof of Theorem 4.1. By the definition of Lu

CE in Eq. (20) and Ll
CE in Eq. (21), we have LCE =

Lu
CE + Ll

CE. Let us denote hpt
f

:= LCE ◦ ptf − LCE ◦ p, hupt
f

:= Lu
CE ◦ ptf − Lu

CE ◦ p and

glpt
f
:= Ll

CE ◦ ptf . By Eq. (10), we have p̂(y|x)) = ptfD (y|x). Then by Eq. (9), for any f0 ∈ F , we

have λ∥fD∥2H +RLCE,D(ptfD (y|x)) ≤ λ∥f0∥2H +RLCE,D(ptf0(y|x)) and consequently

λ∥fD∥2H +RLCE,P (p̂(y|x))−R∗
LCE,P = λ∥fD∥2H + EPhp̂ = λ∥fD∥2H + EPhpt

fD

= λ∥fD∥2H + EDhpt
fD

− EDhpt
fD

+ EPhpt
fD

≤ λ∥f0∥2H + EDhpt
f0

− EDhpt
fD

+ EPhpt
fD

= λ∥f0∥2H + EPhpt
f0

+ EDhpt
f0

− EPhpt
f0

+ EPhpt
fD

− EDhpt
fD

= λ∥f0∥2H + EPhpt
f0

+ (EDh
l
pt
f0

− EPh
l
pt
f0

+ EPh
l
pt
fD

− EDh
l
pt
fD

)

+ (EDh
u
pt
f0

− EPh
u
pt
f0

+ EPh
u
pt
fD

− EDh
u
pt
fD

)

= λ∥f0∥2H + EPhpt
f0

+ (EDL
l
CE ◦ ptf0 − EPL

l
CE ◦ ptf0 + EPL

l
CE ◦ ptfD − EDL

l
CE ◦ ptfD )

+ (EDh
u
pt
f0

− EPh
u
pt
f0

+ EPh
u
pt
fD

− EDh
u
pt
fD

)

= λ∥f0∥2H + EPhpt
f0

+ ED(glpt
f0

− EP g
l
pt
f0

) + ED(EP g
l
pt
fD

− glpt
fD

)

+ ED(hupt
f0

− EPh
u
pt
f0

) + ED(EPh
u
pt
fD

− hupt
fD

), (37)

where EDhpt
f
:= n−1

∑n
i=1 hpt

f
(Xi, Yi). In the following, we provide the estimates for the last

four terms in Eq. (37).

For any f ∈ F , we observe that ∥glpt
f
− EP g

l
pt
f
∥∞ = ∥Ll

CE ◦ ptf − EPL
l
CE ◦ ptf∥∞ ≤ − log t. By

Lemma D.5, we have

EP (g
l
pt
f
− EP g

l
pt
f
)2 ≤ EP (g

l
pt
f
)2 ≤ (− log t) · EP g

l
pt
f
. (38)
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Applying Bernstein’s inequality in (Steinwart & Christmann, 2008, Theorem 6.12) to {glpt
f
(Xi, Yi)−

EP g
l
pt
f
: i ∈ [n]}, we obtain that

ED(glpt
f0

− EP g
l
pt
f0

) ≤
√

2ζ(− log t)EP glpt
f0

/n+ 4(− log t)ζ/(3n)

≤ ζ(− log t/2)/n+ EP g
l
pt
f0

+ (−4ζ log t)/(3n) ≤ EP g
l
pt
f0

− 2ζ log t/n (39)

holds with probability Pn at least 1 − e−ζ , where the last inequality is due to 2ab ≤ a2 + b2. To
estimate the term EDg

l
pt
f0

− EP g
l
pt
f0

, let us define the function

Gf,r :=
EP g

l
pt
f
− glpt

f

λ∥f∥2H + EP glpt
f
+ r

, f ∈ F , r > r∗l ,

where r∗l := inf{f ∈ F : λ∥f∥2H + EP g
l
pt
f
}. Then we have ∥Gf,r∥∞ ≤ (− log t)/r. By Eq. (38),

we have

EPG
2
f,r ≤

EP (g
l
pt
f
− EP g

l
pt
f
)2

(EP glpt
f
+ r)2

≤
EP (g

l
pt
f
)2

2rEP glpt
f

≤ − log t

2r
.

Let Gl
r := {glpt

f
: f ∈ F l

r} and F l
r := {f ∈ F : λ∥f∥2H + EP g

l
pt
f
≤ r}. Symmetrization in

Proposition 7.10 of Steinwart & Christmann (2008) yields

ED∼Pn sup
f∈Fl

r

|ED(EP g
l
pt
f
− glpt

f
)| ≤ 2ED∼PnRadD(Gl

r, n) ≤ 2ψn(r).

For any Ll
CE ◦ptf ∈ Gl

r, we have ∥Ll
CE ◦ptf∥∞ ≤ − log t and EP (L

l
CE ◦ptf )2 ≤ − log t ·EP (L

l
CE ◦

ptf ) ≤ −r log t. By applying Theorem 7.16 in Steinwart & Christmann (2008) and Lemma D.3, we
obtain

ED∼PnRadD(Gl
r, n)

≤ C
(
r

1
2λ−

ξ
2 γ−d/2(− log t)

1−ξ
2 n−

1
2 ∨ (r/λ)

ξ
1+ξ γ−

d
1+ξ (− log t)

1−ξ
1+ξ n−

1
1+ξ

)
=: ψn(r), (40)

where C := C1(ξ)c
ξ
ξ,dM

ξ/2+122−ξ ∨ C2(ξ)c
2ξ/(1+ξ)
ξ,d 2M (2ξ+1)/(1+ξ)2(1−ξ)/(1+ξ). Thus we have

ED∼Pn sup
f∈Fl

r

|ED(EP g
l
pt
f
− glpt

f
)| ≤ 2ψn(r).

It is easy to verify that ψn(4r) ≤ 2ψn(r). Then by applying the peeling technique in Theorem 7.7
of Steinwart & Christmann (2008) on F l

r, we obtain

ED∼Pn sup
f∈F

|EDGf,r| ≤ 8ψn(r)/r.

Applying Talagrand’s inequality in Theorem 7.5 of Steinwart & Christmann (2008) to γ := 1/4, we
obtain that for any r > r∗l , with probability at least 1− e−ζ , there holds

sup
f∈F

EDGf,r < 10ψn(r)/r +
√

− log tζ/(nr) + (−14ζ log t)/(3nr).

By the definition of gfD,r, we have

EP g
l
pt
fD

− EDg
l
pt
fD

<
(
λ∥fD∥2H + EP g

l
pt
fD

)(
10ψn(r)/r +

√
−ζ log t/(nr) + (−14ζ log t)/(3nr)

)
+ 10ψn(r) +

√
−ζr log t/n+ (−14ζ log t)/(3n) (41)

with probability at least 1− e−ζ . Subsequently, we estimate the term EDh
u
pt
f0

−EPh
u
pt
f0

in Eq. (37).

For any f ∈ F , we observe that ∥hupt
f
−EPh

u
pt
f
∥∞ ≤ −2 log t. Using the variance bound in Lemma

D.4 and t ≤ 1/(2M) ≤ 1/e, we get

EP (h
u
pt
f
− EPh

u
pt
f
)2 ≤ EP (h

u
pt
f
)2 ≤ EP (hpt

f
)2 ≤ (−2 log t+ 2) · EP (hpt

f
) ≤ −4 log tEP (hpt

f
).
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Then by applying Bernstein’s inequality in (Steinwart & Christmann, 2008, Theorem 6.12) to
{hupt

f0

(Xi, Yi)− EPh
u
pt
f0

: i ∈ [n]} and 2ab ≤ a2 + b2, we obtain

ED(hupt
f0

− EPh
u
pt
f0

) ≤
√
2ζ(−4 log t)EPhpt

f0
/n+ 4(−2 log t)ζ/(3n)

≤ −2ζ log t/n+ EPhpt
f0

+ (−8ζ log t)/(3n) = EPhpt
f0

− 14ζ log t/(3n). (42)

To estimate the term EPh
u
pt
fD

− EDh
u
pt
fD

in Eq. (37), we define the function

Hf,r :=
EPh

u
pt
f
− hupt

f

λ∥f∥2H + EPhpt
f
+ r

, f ∈ F , r > r∗.

Then we have ∥Hf,r∥∞ ≤ −2 log t/r and the variance bound in Lemma D.4 yields

EPH
2
f,r ≤

EP (h
u
pt
f
)2

(EPhpt
f
+ r)2

≤
EP (hpt

f
)2

2rEPhpt
f

≤ 1

r
(− log t+ 1) ≤ −2 log t

r
.

Let Gu
r := {hupt

f
: f ∈ Fr} and Fr := {f ∈ F : λ

∑
m∈[M−1] ∥fm∥2H +EPhpt

f
≤ r}. Symmetriza-

tion in Proposition 7.10 of Steinwart & Christmann (2008) yields

ED∼Pn sup
f∈Fr

|ED(EPh
u
pt
f
− hupt

f
)| ≤ 2ED∼PnRadD(Gu

r , n) ≤ 2ψn(r),

where the second inequality can be proved in a similar way as in proving Eq. (40). Peeling in
Theorem 7.7 of Steinwart & Christmann (2008) together with Fr hence gives

ED∼Pn sup
f∈F

|EDHf,r| ≤ 8ψn(r)/r.

Applying Talagrand’s inequality in the form of Theorem 7.5 of Steinwart & Christmann (2008)
applied to γ := 1/4, we therefore obtain for any r > r∗,

sup
f∈F

EDHf,r < 10ψn(r)/r +
√

2(−2 log t)ζ/(nr)− 14ζ log t/(3nr)

holds with probability at least 1− e−ζ . Using the definition of HfD,r, we obtain

EPh
u
pt
fD

− EDh
u
pt
fD

<
(
λ∥fD∥2H + EPhpt

fD

)(
10ψn(r)/r +

√
2(−2 log t)ζ/(nr)− 14ζ log t/(3nr)

)
+ 10ψn(r) +

√
2(−2 log t)rζ/n− 14ζ log t/(3n) (43)

with probability at least 1− e−ζ . Combining Eq. (37), Eq. (39), Eq. (41), Eq. (42) and Eq. (43), we
obtain

λ∥fD∥2H + EPhpt
fD

≤ λ∥f0∥2H + 2EPhpt
f0

+ EP g
l
pt
f0

− 8ζ log t/n

+
(
2λ∥fD∥2H + EP g

l
pt
fD

+ EPhpt
fD

)(
10ψn(r)/r +

√
−4ζ log t/(nr)− 14ζ log t/(3nr)

)
+ 20ψn(r) + 3

√
−rζ log t/n− 28ζ log t/(3n)

with probability at least 1− 4e−ζ .

Now, it suffices to bound the various terms. If we take r ≥ 900C2λ−ξγ−d(− log t)1−ξn−1, then
by elementary calculation, we get ψn(r) ≤ r/30. Moreover, let r ≥ −2304ζ log t/n and thus
we get

√
−rζ log t/n ≤ r/48, −28ζ log t/(3nr) ≤ 1/60, and 8ζ log t/n ≤ r/288. By Lemma

D.5, we have EP g
l
pt
f0

≤ −Mt log t. Therefore, for any r ≥ 900C2λ−ξγ−d(− log t)1−ξn−1 ∨
−2304ζ log t/n ∨ r∗ ∨ r∗l , we get

λ∥fD∥2H + EPhpt
fD

≤ 2(λ∥f0∥2H + EPhpt
f0
)−Mt log t+ r/288

+
(
2λ∥fD∥2H + EPhpt

fD
−Mt log t

)(
1/3 + 1/24 + 1/120

)
+ 2r/3 + r/16 + r/60
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≤ 2(λ∥f0∥2H + EPhpt
f0
) + (23/30)

(
λ∥fD∥2H + EPhpt

fD

)
− (83/60)Mt log t+ (9/10)r

with probability at least 1 − 4e−ζ . By the definition of r∗l and r∗, and Lemma D.5, we have r∗l ≤
λ∥f0∥2H +EP g

l
pt
f0

≤ r∗ −Mt log t and r∗ ≤ λ∥f0∥2H +EPhpt
f0

. By some elementary calculations

and taking r := 900C2λ−ξγ−d(− log t)1−ξn−1 − 2304ζ log t/n+ r∗ + r∗l , we get

λ∥fD∥2H + EPhpt
fD

≤ 10(λ∥f0∥2H + EPhpt
f0
)− 7Mt log t+ 5r

≤ 10(λ∥f0∥2H + EPhpt
f0
)− 7Mt log t+ 4500C2λ−ξγ−d(− log t)1−ξn−1

− 11520ζ log t/n+ 5r∗ + 5r∗l

≤ 20(λ∥f0∥2H + EPhpt
f0
) + C0(− log t) · (t+ λ−ξγ−dn−1 + ζ/n)

with probability at least 1 − 4e−ζ , where C0 := (5 + 12M) ∨ 4500C2 ∨ 11520. This proves the
assertion.

D.1.2 PROOFS RELATED TO SECTION 4.2.2

The goal of this section is to derive an upper bound for the approximation error of KLR, i.e. an
upper bound for

inf
f∈F

λ∥f∥2H +RLCE,P (p
t
f (y|x))−R∗

LCE,P .

To construct a function that approximates the bounded function f∗τm in Eq. (26), for a fixed band-
width γ > 0 entering the Gaussian kernel, we define the function K : Rd → R by

K(x) :=
(
2/(γ2π)

)d/2
exp

(
−2∥x∥22/γ2

)
. (44)

Then we define the convolution of f∗τm and K as

f̃τm(x) := (K ∗ f∗τm )(x) :=

∫
Rd

K(x− z)f∗τm (z) dz, m ∈ [M ], (45)

and the score function f̃τ := (f̃τm)m∈[M ].

Let us denote

gτm(x) := log pτ (m|x). (46)

Then f∗τm (x) in Eq. (26) can be expressed as

f∗τm (x) = gτm(x)− gτM (x). (47)

To analyze the approximation error of f̃τ , we first need the following lemma.
Lemma D.7. Let Assumption 3.1 hold. Moreover, let gτm be defined as in Eq. (46). Then for any
x, x′ ∈ X , we have ∣∣gτm(x)− gτm(x′)

∣∣ ≤ log
(
1 + cL∥x− x′∥α2

)
pτ (m|x) ∧ pτ (m|x′)

.

To prove Lemma D.7, we need the following Lemmas D.8 and D.9.
Lemma D.8. For any c > 1 and z > 0, we have log(1 + cz) ≤ c log(1 + z).

Proof of Lemma D.8. For any c > 1 and z > 0, define h(z) := log(1 + cz) − c log(1 + z). Then
we have

h′(z) =
c

1 + cz
− c

1 + z
=

c(1− c)z

(1 + cz)(1 + z)
< 0

and thus h is decreasing on [0,∞]. Therefore, for any z > 0, there holds h(z) < h(0) = 0. Then
the definition of h yields the conclusion.
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Lemma D.9. Let Assumption 3.1 hold. Moreover, let pτ (m|x) be defined as in Eq. (8) with pf
replaced by p. Then for any x, x′ ∈ X , there holds∣∣pτ (m|x)− pτ (m|x′)

∣∣ ≤ (4M + 1)|p(m|x)− p(m|x′)| ≤ cL∥x− x′∥α2 ,

where cL := (4M + 1)cα.

Proof of Lemma D.9. Given τ ∈ (0, 1/(2M)), we define the label set Mτ
p,x := {m ∈ [M ] :

pf (m|x) < τ} ⊂ [M ]. By Eq. (8) and Assumption 3.1 (i), for any m ∈ Mτ
p,x, there holds

∣∣pτ (m|x)− pτ (m|x′)
∣∣ = {

0, if m ∈ Mτ
p,x′ ,

p(m|x′)− τ < p(m|x′)− p(m|x) ≤ cα∥x− x′∥α2 , if m /∈ Mτ
p,x′ .

For any m /∈ Mτ
p,x and m ∈ Mτ

p,x′ , by using Assumption 3.1 (i), we get

|pτ (m|x)− pτ (m|x′)| = pτ (m|x)− τ ≤ p(m|x)− p(m|x′) ≤ cα∥x− x′∥α2 .
Otherwise, for any m /∈ Mτ

p,x and m /∈ Mτ
p,x′ , since τ ∈ (0, 1/(2M)), then for any x ∈ X , we

have ∑
ℓ/∈Mτ

p,x

(p(ℓ|x)− τ)−
∑

j∈Mτ
p,x

(τ − p(j|x)) =
M∑
ℓ=1

(p(ℓ|x)− τ) = 1−Mτ > 1/2. (48)

Therefore, by the triangle inequality and Assumption 3.1 (i), there holds∣∣pτ (m|x)− pτ (m|x′)
∣∣ = ∣∣(pτ (m|x)− τ

)
−
(
pτ (m|x′)− τ

)∣∣
=

∣∣∣∣(p(m|x)− τ
)(

1−

∑
j∈Mτ

p,x

(
τ − p(j|x)

)∑
ℓ/∈Mτ

p,x

(
p(ℓ|x)− τ

))−
(
p(m|x′)− τ)

(
1−

∑
j∈Mτ

p,x′

(
τ − p(j|x′)

)
∑

ℓ/∈Mτ
p,x′

(
p(ℓ|x′)− τ)

)∣∣∣∣
=

∣∣∣∣(p(m|x)− τ
)
· 1−Mτ∑

ℓ/∈Mτ
p,x

(
p(ℓ|x)− τ)

−
(
p(m|x′)− τ

)
· 1−Mτ∑

ℓ/∈Mτ
p,x′

(
p(ℓ|x′)− τ

) ∣∣∣∣
=

∣∣∣∣(p(m|x)− τ
)
· 1−Mτ∑

ℓ/∈Mτ
p,x

(
p(ℓ|x)− τ

) −
(
p(m|x′)− τ

)
· 1−Mτ∑

ℓ/∈Mτ
p,x′

(
p(ℓ|x)− τ

)
+
(
p(m|x′)− τ

)
· 1−Mτ∑

ℓ/∈Mτ
p,x

(
p(ℓ|x)− τ

) −
(
p(m|x′)− τ

)
· 1−Mτ∑

ℓ/∈Mτ
p,x′

(
p(ℓ|x′)− τ

) ∣∣∣∣
≤

∣∣p(m|x)− p(m|x′)
∣∣+ ∣∣∣∣∣(p(m|x′)− τ

)
·

∑
ℓ/∈Mτ

p,x′

(
p(ℓ|x′)− τ

)
−

∑
ℓ/∈Mτ

p,x

(
p(ℓ|x)− τ

)(∑
ℓ/∈Mτ

p,x

(
p(ℓ|x)− τ

))
·
(∑

ℓ/∈Mτ
p,x′

(
p(ℓ|x′)− τ

)) ∣∣∣∣∣
≤ cα∥x− x′∥α2 +

∣∣∑
ℓ/∈Mτ

p,x′

(
p(ℓ|x′)− τ

)
−

∑
ℓ/∈Mτ

p,x

(
p(ℓ|x)− τ

)
|(∑

ℓ/∈Mτ
p,x

(
p(ℓ|x)− τ

)
·
(∑

ℓ/∈Mτ
p,x′

(
p(ℓ|x′)− τ

)) . (49)

By the triangle inequality, we have∣∣∣∣ ∑
ℓ/∈Mτ

p,x′

(
p(ℓ|x′)− τ

)
−

∑
ℓ/∈Mτ

p,x

(
p(ℓ|x)− τ

)∣∣∣∣
≤

∑
ℓ/∈(Mτ

p,x∪Mτ
p,x′ )

∣∣p(ℓ|x′)− p(ℓ|x)
∣∣+ ∑

ℓ/∈Mτ
p,x,ℓ∈Mτ

p,x′

∣∣p(ℓ|x′)− τ
∣∣+ ∑

ℓ∈Mτ
p,x,ℓ/∈Mτ

p,x′

∣∣p(ℓ|x)− τ
∣∣.

(50)

For ℓ ∈ Mτ
p,x′ and ℓ /∈ Mτ

p,x, by Assumption 3.1 (i), we have

|p(ℓ|x′)− τ | = τ − p(ℓ|x′) ≤ p(ℓ|x)− p(ℓ|x′) ≤ cα∥x− x′∥α2 .
Similarly, for ℓ ∈ Mτ

p,x and ℓ /∈ Mτ
p,x′ , by Assumption 3.1 (i), we have

|p(ℓ|x)− τ | = τ − p(ℓ|x) ≤ p(ℓ|x′)− p(ℓ|x) ≤ cα∥x− x′∥α2 .
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Therefore, combining Eq. (50) and Assumption 3.1 (i), we obtain∣∣∣∣ ∑
ℓ/∈Mτ

p,x′

(
p(ℓ|x′)− τ

)
−

∑
ℓ/∈Mτ

p,x

(
p(ℓ|x)− τ

)∣∣∣∣ ≤ cα
∑

ℓ/∈
(
Mτ

p,x′∪Mτ
p,x

) ∥x− x′∥α2 ≤ cαM∥x− x′∥α2 .

This together with Eq. (48) and Eq. (49) yields∣∣pτ (m|x)− pτ (m|x′)
∣∣ ≤ cα∥x− x′∥α2 +

cαM∥x− x′∥α2
(1/2) · (1/2)

= (4M + 1)cα∥x− x′∥α2 =: cL∥x− x′∥α2 , (51)

where cL := (4M + 1)cα. Therefore, we finish the proof of the second inequality.

Now, if we assume that |p(m|x)− p(m|x′)| = cL∥x− x′∥α2 holds for any m ∈ [M ], then similar to
the analysis of Eq. (51), we can prove that∣∣pτ (m|x)− pτ (m|x′)

∣∣ ≤ (4M + 1)cα∥x− x′∥α2 = (4M + 1)|p(m|x)− p(m|x′)|,
which yields the first inequality. Thus, we finish the proof.

Proof of Lemma D.7. Lemma D.9 yields that for any x, x′ ∈ X , there holds∣∣pτ (m|x)− pτ (m|x′)
∣∣ ≤ cL∥x− x′∥α2 . (52)

Moreover, Lemma D.8 together with Eq. (52) implies that if pτ (m|x) ≥ pτ (m|x′), then∣∣gτm(x)− gτm(x′)| = log pτ (m|x)− log pτ (m|x′) = log

(
1 +

pτ (m|x)− pτ (m|x′)
pτ (m|x′)

)
≤

log
(
1 + pτ (m|x)− pτ (m|x′)

)
pτ (m|x′)

≤
log

(
1 + cL∥x− x′∥α2

)
pτ (m|x′)

.

Otherwise if pτ (m|x) < pτ (m|x′), then by using Lemma D.8 and Eq. (52) again, we get∣∣gτm(x)− gτm(x′)| = log pτ (m|x′)− log pτ (m|x) = log

(
1 +

pτ (m|x′)− pτ (m|x)
pτ (m|x)

)
≤

log
(
1 + pτ (m|x′)− pτ (m|x)

)
pτ (m|x)

≤
log

(
1 + cL∥x− x′∥α2

)
pτ (m|x)

.

Therefore, we have ∣∣gτm(x)− gτm(x′)
∣∣ ≤ log

(
1 + cL∥x− x′∥α2

)
pτ (m|x) ∧ pτ (m|x′)

,

which yields the assertion.

With the aid of Lemma D.7, we are able to present the pointwise bound for the distance between
f̃τm(x) and f∗τm (x), which is crucial to establish the approximation error bound of pf̃τ (m|x).
Proposition D.10. Let Assumption 3.1 hold. Furthermore, let H be the Gaussian RKHS with the
bandwidth parameter γ ∈

(
0, 2−1/α

)
. Moreover, let τ ∈ (0, 1/(2M)) and let pτ (m|x), f∗τm and f̃τm

be defined as in Eq. (8), Eq. (26), and Eq. (45), respectively. Then, for any m ∈ [M ], there holds
f̃τm ∈ H and∣∣f̃τm(x)− f∗τm (x)

∣∣ ≤ c1(p
τ (m|x)−1 + pτ (M |x)−1)(γα ∨ τ−1γ2α), m ∈ [M ], (53)

where c1 is a constant which will be specified in the proof.

Proposition D.10 demonstrates that the approximation error to the target function depends on
pτ (m|x)−1 and pτ (M |x)−1, highlighting that smaller CCP values are more challenging to approx-
imate. Notably, the upper bound in Eq. (53) adaptively varies for different x and is tighter than the
universal bound that replaces both pτ (m|x)−1 and pτ (M |x)−1 in Eq. (53) by their upper bound
τ−1, especially when p(m|x) is not close to zero. This is crucial for us to obtain the minimal
approximation error bound later by choosing a proper value for τ .
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Proof of Proposition D.10. Let the function K : Rd → R be defined as in Eq. (44). Then for any
x ∈ X and m ∈ [M ], there holds

K ∗ gτm(x) =

∫
Rd

(
2

γ2π

)d/2

exp

(
−2∥x− z∥22

γ2

)
gτm(z) dz

=

∫
Rd

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
gτm(x+ h) dh.

Since the functions gτm, m ∈ [M ], have a compact support and are bounded, we have gτm ∈ L2(Rd).
This together with Proposition 4.46 in Steinwart & Christmann (2008) yields

K ∗ gτm ∈ H. (54)

Moreover, we have

gτm(x) =

∫
Rd

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
gτm(x) dh.

Then for any x ∈ X , there holds

∣∣K ∗ gτm(x)− gτm(x)
∣∣ = ∣∣∣∣∫

Rd

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)(
gτm(x+ h)− gτm(x)

)
dh

∣∣∣∣
≤

∫
Rd

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)∣∣gτm(x+ h)− gτm(x)
∣∣ dh.

For m ∈ [M ], let Am,x := {h ∈ Rd : gτm(x + h) ≥ gτm(x)}. Then by using Lemma D.7 and the
fact that log(1 + x) ≤ x, x > 0, we get

∣∣K ∗ gτm(x)− gτm(x)
∣∣ = ∫

Am,x

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)(
gτm(x+ h)− gτm(x)

)
dh

+

∫
Rd\Am,x

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)(
gτm(x)− gτm(x+ h)

)
dh

≤
∫
Am,x

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
log

(
1 + cL∥h∥α2

)
pτ (m|x)

dh

+

∫
Rd\Am,x

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
log

(
1 + cL∥h∥α2

)
pτ (m|x+ h)

dh

≤
∫
Rd

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
cL∥h∥α2
pτ (m|x)

dh

+

∫
Rd

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
cL∥h∥α2

pτ (m|x+ h)
dh =: (I) + (II). (55)

For the first term (I) in Eq. (55), using the rotation invariance of x 7→ exp(−2∥x∥22/γ2) and Γ(1 +
c) = cΓ(c), c > 0, we get

(I) =
cL

pτ (m|x)

(
γ√
2

)α ∫
Rd

(
1

π

)d/2

exp(−∥h∥22)∥h∥α2 dh

=
cL

pτ (m|x)

(
γ√
2

)α
2

Γ(d/2)

∫ ∞

0

e−r2rα+d−1dr

=
cL

pτ (m|x)
Γ(d/2)−1Γ

(
d+ α

2

)
2−α/2γα. (56)

Using Eq. (52) and pτ (m|x+ h) ≥ τ , for any x ∈ X and h ∈ Rd, we get

pτ (m|x+ h)−1 ≤ pτ (m|x)−1 +
∣∣pτ (m|x+ h)−1 − pτ (m|x)−1

∣∣
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≤ pτ (m|x)−1 +

∣∣pτ (m|x+ h)− pτ (m|x)
∣∣

pτ (m|x+ h)pτ (m|x)
≤ pτ (m|x)−1 +

cL∥h∥α2
τpτ (m|x)

. (57)

For the second term (II) in Eq. (55), using Eq. (56) and Eq. (57), we obtain

(II) ≤ cL

∫
Rd

(
pτ (m|x)−1 +

cL∥h∥α2
τpτ (m|x)

)(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
∥h∥α2 dh

=

∫
Rd

cL
pτ (m|x)

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
∥h∥α2 dh

+

∫
Rd

c2L
τpτ (m|x)

(
2

γ2π

)d/2

exp

(
−2∥h∥22

γ2

)
∥h∥2α2 dh

=
cL

pτ (m|x)
· Γ(d/2)−1Γ

(
d+ α

2

)
2−α/2γα

+
c2L

τpτ (m|x)

(
γ√
2

)2α ∫
Rd

π−d/2 exp(−∥h∥22)∥h∥2α2 dh.

The rotation invariance of x 7→ exp(−2∥x∥22/γ2) together with Γ(1 + c) = cΓ(c), c > 0, yields∫
Rd

π−d/2 exp(−∥h∥22)∥h∥2α2 dh =

∫ ∞

0

2

Γ(d/2)
exp(−r2)r2α+d−1 dr

= Γ(d/2)−1

∫ ∞

0

exp(−r)rα+d/2−1 dr =
Γ(α+ d/2)

Γ(d/2)

and consequently we have

(II) ≤ cL
pτ (m|x)

Γ(d/2)−1Γ

(
d+ α

2

)
2−α/2γα +

c2L
τpτ (m|x)

(
γ√
2

)2α
Γ(α+ d/2)

Γ(d/2)
. (58)

Combining Eq. (56), Eq. (58) and Eq. (55), we obtain∣∣K ∗ gτm(x)− gτm(x)
∣∣

≤ cL
pτ (m|x)

Γ(d/2)−1Γ

(
d+ α

2

)
21−α/2γα +

c2L
τpτ (m|x)

Γ(α+ d/2)

Γ(d/2)

(
γ√
2

)2α

≤ c1(p
τ (m|x))−1(γα ∨ τ−1γ2α), (59)

where c1 := 2cLΓ(d/2)
−1Γ

(
(d + α)/2

)
+ c2LΓ(α + d/2)Γ(d/2)−1. By the definition of f̃τm, we

have

f̃τm = K ∗ gτm −K ∗ gτM = K ∗ f∗τm . (60)

Then by Eq. (54) and the linearity of the RKHS, we have f̃τm ∈ H . Using the triangle inequality
Eq. (59), we obtain that for any x ∈ X , there holds∣∣f̃τm(x)− f∗τm (x)| =

∣∣(K ∗ gτm −K ∗ gτM )− (gτm − gτM )
∣∣

≤
∣∣K ∗ gτm(x)− gτm(x)

∣∣+ ∣∣K ∗ gτM (x)− gτM (x)
∣∣

≤ c1
(
pτ (m|x)−1 + pτ (M |x)−1

)
(γα ∨ τ−1γ2α),

which finishes the proof.

Based on the upper bound of the pointwise distance between f̃τm(x) and f∗τm (x), we are able to
derive the approximation error bound for the CCP estimator pf̃τ (·|x) in Proposition D.11.

Proposition D.11. Let Assumption 3.1 hold. Let γ ∈
(
0, 2−1/α

)
be the bandwidth of the Gaussian

kernel, f̃τ := (f̃τm)m∈[M ] with τ ∈ [0., 1/(2M)] be as in Eq. (45) and c1 > 1 the constant as in
Proposition D.10. Then, its induced estimator pf̃τ (m|x) in Eq. (7) satisfies

(i) pf̃τ (m|x) ≥ τ/M ;
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(ii) |p(m|x) − pf̃τ (m|x)| ≤ 4M exp
(
6c1(1 ∨ (γα/τ)2)

)
τ . This upper bound achieves its

minimum at τ := γα and the resulting order is of γα.

Proof of Proposition D.11. Using the definition of pf̃τ (m|x) and Eq. (47), we get

pf̃τ (m|x) := exp(f̃τm)∑M
j=1 exp(f̃

τ
m)

=
exp(K ∗ f∗τm )∑M
j=1 exp(K ∗ f∗τm )

=
exp(K ∗ gτm)∑M
j=1 exp(K ∗ gτm)

.

Using Eq. (46) and pτ (m|x) ∈ [τ, (1 − (M − 1)τ)], we get gτm ∈ [log τ, log(1 − (M − 1)τ)] and
thus K ∗ gτm ∈ [log τ, log(1− (M − 1)τ)]. Consequently we have

pf̃τ (m|x) ≥ τ∑M
j=1(1− (M − 1)τ)

≥ τ

M
,

which proves the first assertion (i).

Using the definitions of pf̃τ (m|x) and f∗τm in Eq. (26), we get

pτ (m|·)− pf̃τ (m|·) = exp(f∗τm )∑M
j=1 exp(f

∗τ
j )

− exp(f̃τm)∑M
j=1 exp(f̃

τ
j )

=
exp(f∗τm ) ·

∑M
j=1 exp(f̃

τ
j )− exp(f̃τm) ·

∑M
j=1 exp(f

∗τ
j )∑M

j=1 exp(f
∗τ
j ) ·

∑M
j=1 exp(f̃

τ
j )

=
exp(f∗τm ) ·

∑M
j=1 exp(f̃

τ
j )− exp(f∗τj ) + (exp(f∗τm )− exp(f̃τm)) ·

∑M
j=1 exp(f

∗τ
j )∑M

j=1 exp(f
∗τ
j ) ·

∑M
j=1 exp(f̃

τ
j )

= pf̃τ (M |·)
( M∑

j=1

(
ef̃

τ
j − ef

∗τ
j

)
pτ (m|·) + ef

∗τ
m − ef̃

τ
m

)

= pf̃τ (M |·)
(∑

j ̸=m

(
ef̃

τ
j − ef

∗τ
j

)
pτ (m|·) +

(
ef

∗τ
m − ef̃

τ
m

)(
1− pτ (m|·)

))

= pf̃τ (M |·)
(∑

j ̸=m

(
ef̃

τ
j −f∗τ

j − 1
)
ef

∗τ
j pτ (m|·) +

(
1− ef̃

τ
m−f∗τ

m

)
ef

∗τ
m
(
1− pτ (m|·)

))

= pf̃τ (M |·)
(∑

j ̸=m

(
ef̃

τ
j −f∗τ

j − 1
)
ef

∗τ
m pτ (j|·) +

(
1− ef̃

τ
m−f∗τ

m

)
ef

∗τ
m
(
1− pτ (m|·)

))

= pf̃τ (M |·)
( ∑

j ̸=m

(exp(f̃τj − f∗τj )− exp(f̃τm − f∗τm )) exp(f∗τm )pτ (j|·)
)

=
pf̃τ (M |·)
pτ (M |·)

( ∑
j ̸=m

(exp(f̃τj − f∗τj )− exp(f̃τm − f∗τm ))pτ (m|·)pτ (j|·)
)

=
pf̃τ (M |·)
pτ (M |·)

( ∑
j ̸=m

(exp(f̃τj − f∗τj − (f̃τm − f∗τm ))− 1) exp(f̃τm − f∗τm )pτ (m|·)pτ (j|·)
)
.

By the triangle inequality, we have

|pτ (m|·)− pf̃τ (m|·)|

≤
pf̃τ (M |·)
pτ (M |·)

( ∑
j ̸=m

∣∣exp(f̃τj − f∗τj − (f̃τm − f∗τm ))− 1
∣∣pτ (m|·)pτ (j|·)

)
exp(f̃τm − f∗τm ). (61)

Using Eq. (47) and f̃τm = K ∗ f∗τm , we get

f̃τj − f∗τj − (f̃τm − f∗τm ) = K ∗ gτj − gτj − (K ∗ gτm − gτm). (62)
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Then by using the triangle inequality and Eq. (59), for any m ∈ [M ], we obtain

|f̃τj − f∗τj − (f̃τm − f∗τm )| ≤ |K ∗ gτj − gτj |+ |K ∗ gτm − gτm|
≤ c1(p

τ (j|·)−1 + pτ (m|·)−1)(γα ∨ τ−1γ2α) (63)

≤ 2c1(τ
−1γα ∨ τ−2γ2α) =: 2cτ,γ , (64)

where we denote cτ,γ := c1(τ
−1γα ∨ τ−2γ2α). For any function h1 and h2 satisfying |h1 − h2| ≤

2cτ,γ , if h1 > h2, then by using the Lagrange mean value theorem, there exists p ∈ (0, h1 − h2)
such that

| exp(h1 − h2)− 1| = exp(h1 − h2)− 1 = ep(h1 − h2)

≤ exp(h1 − h2) · (h1 − h2) ≤ e2cτ,γ (h1 − h2). (65)

Otherwise if h1 < h2, then by using the Lagrange mean value theorem once again, there exists
p ∈ (h1 − h2, 0) such that

| exp(h1 − h2)− 1| = 1− exp(h1 − h2) = ep(h2 − h1) ≤ h2 − h1. (66)

Combining Eq. (65) and Eq. (66), we find

| exp(h1 − h2)− 1| ≤ e2cτ,γ |h1 − h2|. (67)

Applying Eq. (67) with h1 := f̃τj − f∗τj and h2 := f̃τm − f∗τm , we obtain∣∣exp(f̃τj − f∗τj − (f̃τm − f∗τm ))− 1
∣∣ ≤ e2cτ,γ |f̃τj − f∗τj − (f̃τm − f∗τm )|
≤ e2cτ,γ cτ,γτ

(
pτ (j|·)−1 + pτ (m|·)−1

)
, (68)

where the last inequality is due to Eq. (63). Similar to the analysis in Eq. (62) and Eq. (64), we have

|f̃τm − f∗τm | = |K ∗ gτm −K ∗ gτM − (gτm − gτM )| ≤ |K ∗ gτm − gτm|+ |K ∗ gτM − gτM | ≤ 2cτ,γ .

Applying Eq. (67) once again with h1 := f̃τm and h2 := f∗τm , we obtain

| exp(f̃τm − f∗τm )− 1| ≤ e2c1(τ
−1γα∨τ−2γ2α)|f̃τm − f∗τm | ≤ 2cτ,γe

2cτ,γ ,

which implies

exp(f̃τm − f∗τm ) ≤ 1 + 2cτ,γe
2cτ,γ . (69)

Combining Eq. (61), Eq. (68) and Eq. (69), we obtain

|pτ (m|x)− pf̃τ (m|x)|

≤ (1 + 2cτ,γe
2cτ,γ )

pf̃τ (M |x)
pτ (M |x)

∑
j ̸=m

(
cτ,γe

2cτ,γ τ(pτ (j|x)−1 + pτ (m|x)−1)
)
pτ (m|x)pτ (j|x)

= (1 + 2cτ,γe
2cτ,γ )cτ,γe

2cτ,γ τ
∑
j ̸=m

(
pτ (m|x) + pτ (j|x)

)
≤M(1 + 2cτ,γe

2cτ,γ )cτ,γe
2cτ,γ τ.

By the definition of pτ (m|x) in Eq. (8), we have |pτ (m|x) − p(m|x)| ≤ Mτ . Using the triangle
inequality, we then get

|pf̃τ (m|x)− p(m|x)| ≤ |pf̃τ (m|x)− pτ (m|x)|+ |pτ (m|x)− p(m|x)|

≤M(1 + 2cτ,γe
2cτ,γ )cτ,γe

2cτ,γ τ +Mτ

=M
(
1 + (1 + 2cτ,γe

2cτ,γ )cτ,γe
2cτ,γ

)
τ

≤ 4M
(
1 ∨ c2τ,γe4cτ,γ

)
τ ≤ 4M(1 ∨ cτ,γ)2 exp

(
4(1 ∨ cτ,γ)

)
τ

≤ 4M exp
(
6(1 ∨ cτ,γ)

)
τ ≤ 4M exp

(
6c1(1 ∨ (γα/τ)2)

)
τ,

where the second last inequality follows from e2x ≥ x2, x ≥ 1. This finishes the proof.
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Before we present the proof of Proposition 4.2, we need the following proposition that gives an
upper bound of the excess CE risk for any estimator pf (·|x).
Proposition D.12. Let P be the probability distribution on X × Y . Moreover, let f := (fm)m∈[M ]

with fm : X → R be the score function and its corresponding conditional probability estimator be
pf (m|·) as in Eq. (7). Then we have

RLCE,P (pf (·|x))−R∗
LCE,P ≤ EX∼p

M∑
m=1

(p(m|X)− pf (m|X))2

pf (m|X)
.

Proof of Proposition D.12. By the definition of LCE and pf (m|·), we have

RLCE,P (pf (·|x)) = −
∫
X

M∑
m=1

p(m|x) log pf (m|x) dPX(x).

Then we have R∗
LCE,P = −

∫
X
∑M

m=1 p(m|x) log p(m|x) dPX(x). Consequently, we obtain

RLCE,P (pf (·|x))−R∗
LCE,P = EX∼p

M∑
m=1

p(m|X) log
p(m|X)

pf (m|X)
.

Using Lemma 2.7 in Tsybakov (2008), we get

EX∼p

M∑
m=1

p(m|X) log
p(m|X)

pf (m|X)
≤ EX∼p

M∑
m=1

(p(m|X)− pf (m|X))2

pf (m|X)
,

which finishes the proof.

Proposition D.13. Let the probability distribution P satisfy Assumption 3.1 (ii). Then for any
s ∈ (0, 1] and any β ≥ 0, we have∫

{p(m|x)≥s}

1

p(m|x)
dPX(x) ≤

{
cβ(1− β)−1sβ−1, for 0 ≤ β < 1;

cβ(1 + log s−1), for β ≥ 1.

Proof of Proposition D.13. Since p(m|x) is a probability, we have p(m|x) ≤ 1 and consequently
C ≥ 1. For any nonnegative function h and random variable Z ∼ PZ , there holds

∫
h(Z) dP (Z) =

E[h(Z)] =
∫∞
0
PZ(hZ ≥ u) du. Hence we have∫
{p(m|x)≥s}

1

p(m|x)
dPX(x) =

∫ ∞

0

PX

(
1{p(m|x) ≥ s}

p(m|x)
≥ u

)
du

≤
∫ 1/s

0

PX(p(m|x) ≤ 1/u) du,

where the last inequality follows from the fact that 1{p(m|x) ≥ s}/p(m|x) ≥ u implies s <
p(m|x) ≤ 1/u and u ≤ 1/s. By Assumption 3.1 (ii) with 0 < β < 1, we have∫ 1/s

0

PX

(
p(m|x) ≤ 1/u

)
du ≤ cβ

∫ 1/s

0

u−β du =
cβs

β−1

1− β
. (70)

Since PX(p(m|x) ≤ t) ≤ 1, we have for all t ∈ [0, 1],∫ 1/s

0

PX(p(m|x) ≤ 1/u) du ≤
∫ 1/s

0

1 du = 1/s ≤ cβs
−1.

Therefore, Eq. (70) also holds if β = 0 and thus we obtain the first assertion.

For β > 1, we have PX(p(x|k) ≤ t) ≤ cβt
β ≤ cβt, t ∈ [0, 1]. If C ≤ s−1, then we have∫ 1/s

0

PX(p(m|x) ≤ 1/u) du =

∫ cβ

0

PX(p(m|x) ≤ 1/u) du+

∫ 1/s

cβ

PX(p(m|x) ≤ 1/u) du

≤
∫ cβ

0

1 du+

∫ 1/s

cβ

cβ/u du = cβ + cβ(log s
−1 − log cβ) ≤ cβ(1 + log s−1),

which finishes the proof.
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Now, with all the above preparations, we are able to establish the excess CE risk of the approximator
pt
f̃τ
(y|x).

Proof of Proposition 4.2. Let c1 be the constant as in Propositions D.10. By Proposition D.11, we
have

|p(m|x)− pt
f̃τ (m|x)| ≤ |p(m|x)− pf̃τ (m|x)|+ |pf̃τ (m|x)− pt

f̃τ (m|x)|

≤ 4M exp
(
6c1(1 ∨ (γα/τ)2)

)
τ + t

≤ 4Me6c1
(
τ ∨ τ exp

(
6c1((γ

α/τ)2)
)
∨ t

)
=: a1, (71)

and

pt
f̃τ (m|x) ≥ τ/M ∨ t ≥ (τ ∨ t)/M =: a2. (72)

By Proposition D.12, for the truncated conditional probability estimator pt
f̃τ

, we have

RLCE,P (p
t
f̃τ (y|x))−R∗

LCE,P ≤ Ex∼p

M∑
m=1

(p(m|x)− pt
f̃τ
(m|x))2

pt
f̃τ
(m|x)

=

M∑
m=1

Ex∼p

( (p(m|x)− pt
f̃τ
(m|x))2

pt
f̃τ
(m|x)

· 1{p(m|x) ≤ a1 + a2}
)

+

M∑
m=1

Ex∼p

( (p(m|x)− pt
f̃τ
(m|x))2

pt
f̃τ
(m|x)

· 1{p(m|x) ≥ a1 + a2}
)

=: (I) + (II). (73)

Thus for the first term (I) in Eq. (73), by Eq. (71), Eq. (72) and Assumption 3.1 (ii), we have

(I) ≤ (a21/a2) · PX

(
p(m|x) ≤ (a1 + a2)

)
≤ (a21/a2)cβ(a1 + a2)

β . (74)

For the second term (II) in Eq. (73), if p(m|x) ≥ a1+a2, then we have a1 ≤ (a1/(a1+a2))p(m|x)
and thus p(m|x)− a1 ≥ p(m|x)− (a1/(a1 + a2))p(m|x) = (a2/(a1 + a2))p(m|x). This together
with Eq. (71) yields

pt
f̃τ (m|x) ≥ p(m|x)− |p(m|x)− pt

f̃τ (m|x)| ≥ p(m|x)− a1 ≥ (a2/(a1 + a2))p(m|x).

This together with Eq. (71), Eq. (72) and Proposition D.13 yields

(II) ≤ (a21(a1 + a2)/a2) ·
∫
{p(m|x)≥(a1+a2)}

1

p(m|x)
dPX(x)

≤ (a21(a1 + a2)/a2)cβ

(
(a1 + a2)

β−1

1− β
· 1{β<1} +

(
1 +

1

log(a1 + a2)

)
1{β≥1}

)
. (75)

Combining Eq. (73), Eq. (74), Eq. (75) and a1 ≥ a2, we obtain

RLCE,P (p
t
f̃τ (y|x))−R∗

LCE,P ≲ a2+β
1 /a2 + log(a2)

−1(a31/a2)1{β≥1} ≲ log(a2)
−1(a2+β∧1

1 /a2)

≲ log(τ ∨ t)−1
(
τ ∨ τ exp

(
6c1((γ

α/τ)2)
)
∨ t

)2+β∧1
/(τ ∨ t).

Notice that the right-hand side of the above inequality attains the minimal order at τ := γα. There-
fore, we choose f0 := f̃τ with τ = γα as the approximator to get

RLCE,P (p
t
f̃τ (y|x))−R∗

LCE,P ≲ log(γα)−1
(
γα ∨ t

)1+β∧1
. (76)

In addition, the definition of f̃ tm ∈ H in Eq. (60) together with Proposition 4.46 in Steinwart &
Christmann (2008) yields

∥f0∥2H ≤ π−d/2γ−d∥f∗τm 1X ∥2L2
≤ π−d/2γ−d log2

(
(1− τ)/τ

)
≤ π−d/2γ−d log2(1/τ) ≲ γ−d log2(γ−α).

This together with Eq. (76) proves the assertion.
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D.1.3 PROOFS OF MINIMAX CONVERGENCE RATES FOR KLR

Theorem D.14. Let Assumption 3.1 hold and let the CCP estimator p̂(y|x) be defined as in Eq. (10).
If we choose λ ≍ n−1, γ ≍ n−1/((1+β∧1)α+d), and t ≍ n−θ with θ ≥ 1, then there exists some
N ∈ N such that for any n ≥ N and for any ξ ∈ (0, 1/2), there holds

RLCE,P (p̂(y|x))−R∗
LCE,P ≲ n−

(1+β∧1)α
(1+β∧1)α+d

+ξ

with probability Pn at least 1− 1/n.

Proof of Theorem D.14. By combining Proposition 4.2 and Proposition 4.1, we obtain

λ∥fD∥2H +RLCE,P (p̂(y|x))−R∗
LCE,P

≲ λγ−d log2(γ−α) + log(γα ∨ t)−1 · (γα ∨ t)1+β∧1 + (− log t) · (t+ λ−ξγ−dn−1 + ζ/n)

with probability at least 1− 4e−ζ . In order to minimize the right-hand side with respect to γ, t and
λ, we choose λ = n−1, ζ = 4 log n, γ = n−1/((1+β∧1)α+d) and t = n−θ with θ ≥ 1. Then we
obtain

λ∥fD∥2H +RLCE,P (p̂(y|x))−R∗
LCE,P

≲ n−
(1+β∧1)α

(1+β∧1)α+d log2 n+ log n
(
n−1 + n−

(1+β∧1)α
(1+β∧1)α+dnξ + n−1 log n

)
.

For any n ≥ N , there exists an N ∈ N such that log2 n ≤ nξ. Thus we get

λ∥fD∥2H +RLCE,P (p̂(y|x))−R∗
LCE,P ≲ n−

(1+β∧1)α
(1+β∧1)α+d

+2ξ

with probability Pn at least 1− 1/n. Replacing 2ξ by ξ, we obtain the assertion.

The proof of the lower bound in Theorem 3.5 is based on the construction of two families of distri-
bution Pσ and Qσ as well as Proposition D.15 (Tsybakov, 2008, Theorem 2.5) and the Varshamov-
Gilbert bound in Lemma D.16 (Varshamov, 1957).
Proposition D.15. Let {Πh}h∈H be a family of distributions indexed over a subset H of a semi-
metric (F , ρ). Assume that there exist h0, . . . , hL ∈ H such that for some L ≥ 2,

(i) ρ(hj , hi) ≥ 2s > 0 for all 0 ≤ i < j ≤ L;

(ii) Πhj ≪ Πh0 for all j ∈ [L];

(iii) the average KL divergence to Πh0 satisfies 1
L

∑L
j=1 KL(Πhj ,Πh0) ≤ κ logL for some

κ ∈ (0, 1/8).

Let Z ∼ Πh, and let ĥ : Z → F denote any improper learner of h ∈ H . Then we have

sup
h∈H

Πh

(
ρ(ĥ(Z), h) ≥ s

)
≥

(√
L/(1 +

√
L)

)(
1− 2κ− 2κ/ logL

)
≥ (3− 2

√
2)/8.

Lemma D.16 (Varshamov-Gilbert Bound). Let ℓ ≥ 8 and L ≥ 2ℓ/8. For all 0 ≤ i < j ≤ L,
let ρH(σi, σj) := #{ℓ ∈ [L] : σi

ℓ ̸= σj
ℓ} be the Hamming distance. Then there exists a subset

{σ0, . . . , σL} of {−1, 1}ℓ such that ρH(σi, σj) ≥ ℓ/8, where σ0 := (1, . . . , 1).
Theorem D.17. Let F be the set of all measurable predictors f : X → ∆M−1 and let P be a
collection of all distributions P which satisfies Assumption 3.1. In addition, let a learning algorithm
that accepts data D and outputs a predictor, be denoted as A : (X × Y)n → F . Then, we have

inf
A

sup
P∈P

RLCE,P (A(D))−R∗
LCE,P ≳ n−

(1+β∧1)α
(1+β∧1)α+d

with probability Pn at least (3− 2
√
2)/8.

Theorem D.17 together with Theorem D.14 illustrates that the convergence rates of KLR shown in
Theorem D.14 is minimax optimal up to an arbitrary small order ξ.
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Proof of Theorem D.17. Without loss of generality, we investigate the binary classification, i.e.,
M = 2. Let the input space X := [0, 1]d and the output space as Y = {−1, 1}. Define
r := crn

−1/((β∧1+1)α+d) with the constant cr > 0 to be determined later. In the unit cube X ,
we find a grid of points with radius parameter r,

G := {(2k1r, 2k2r, . . . , 2kdr) : ki = 1, 2, . . . , (2r)−1 − 1, i = 1, 2, . . . , d}.

Denote ℓ := |G| = ((2r)−1−1)d and G = {xi}ℓi=1. Without loss of generality, we let (6r)−1−1/3
be an integer. Define the set of grid points G1 := {(2k1r, 2k2r, . . . , 2kdr) : ki = 1, . . . , (6r)−1 −
1/3, i ∈ [d]} ⊂ G and G2 := {(2k1r, 2k2r, . . . , 2kdr) : ki = (r−1 − 2)/3, . . . , (2r)−1 − 1, i ∈
[d]} ⊂ G. Then we have |G1| = |G2| = ((6r)−1 − 1/3)d = 3−dℓ.

Construction of the Conditional Probability Distribution p(y|x). Since we consider the binary
classification case Y = {−1, 1}, we denote the conditional probability of the positive class as
p(1|x) := p(y = 1|x) and the nagative class as p(−1|x) := 1 − p(1|x). Let the function gr(·) on
[0,∞] be defined by

gr(z) :=

{
1− z/r if 0 ≤ z < r,

0 if z > r.

Moreover, let aU := 1/3+r/3 and aL := 2/3−7r/3, which are close to 1/3 and 2/3, respectively.
Given σ ∈ {−1, 1}ℓ and cα > 0, we define

pσ(1|x) :=



1− cαr
α + cα1{σi = 1}rαgαr (∥x− xi∥2) if x ∈

⋃
xi∈G2

B(xi, r),

1− cαr
α if x ∈ [aL, 1]

d \
⋃

xi∈G2
B(xi, r),

1/2 + cασir
αgαr (∥x− xi∥2) if x ∈

⋃
xi∈G1

B(xi, r),

1/2 if x ∈ [0, aU ]
d \

⋃
xi∈G1

B(xi, r),

∈ [1/2, 1− cαr
α] otherwise.

Construction of the Marginal Distribution p(x). First, we define the marginal density function p(x)
by

p(x) :=


rd+(α−1)β∥x− xi∥β−d

2 if x ∈
⋃

xi∈G2
B(xi, r) \ {xi},(

1−
∑

xi∈G2
P (B(xi, r))

)/∑
xi∈G1

µ(B(xi, r)) if x ∈
⋃

xi∈G1
B(xi, r),

0 otherwise.

Let us verify that p is a density function by proving
∫
X p(x) dx = 1. To be specific,∫

X
p(x) dx =

∫
⋃

xi∈G2
B(xi,r)

p(x) dx+

∫
⋃

xi∈G1
B(xi,r)

p(x) dx

= |G2| · P (B(x1, r)) +
(
1− |G2| · P (B(x1, r))

)
= 3−dℓ · P (B(x1, r)) + 1− 3−dℓP (B(x1, r)) = 1,

where x1 ∈ G2. Finally, for any σj ∈ {−1, 1}ℓ, we write Pσj

X := PX .

Verification of the Hölder Smoothness. First, gr satisfies the Lipschitz continuity with |g(x) −
g(x′)| ≤ r−1|x − x′|. Moreover, using the inequality |aα − bα| ≤ |a − b|α, α ∈ (0, 1), we obtain
that for any x, x′ ∈ B(xi, r), xi ∈ G1 ∪ G2, there holds

|pσ(1|x)− pσ(1|x′)| = cαr
α
∣∣gαr (∥x− xi∥2)− gαr (∥x′ − xi∥2)

∣∣
≤ cαr

α
∣∣gr(∥x− xi∥2)− gr(∥x′ − xi∥2)

∣∣α
≤ cαr

α
∣∣∥x− xi∥2/r − ∥x′ − xi∥2/r

∣∣α ≤ cα∥x′ − x∥α2 .

Therefore, pσ(y|x) satisfies the Hölder smoothness assumption.

Verification of the SVB Condition. Using the inequality 1− (1− x)1/α ≤ 1− (1− α−1x) = α−1x
for any x ∈ (0, 1) and α ∈ (0, 1), we obtain that for any 0 < t ≤ cαr

α,

PX

(
pσ(1|X) ≥ 1− t

)
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=
∑

xi∈G2

PX

(
{x ∈ B(xi, r) : 1− cαr

α + cαr
α1{σi = 1}gαr (∥x− xi∥2) ≥ 1− t}

)
≤ |G2| · PX

(
{x ∈ B(x1, r) : 1− cαr

α + cαr
αgαr (∥x− x1∥2) ≥ 1− t}

)
= 3−dℓ · PX

(
{x ∈ B(x1, r) : r

α − (r − ∥x− x1∥2)α ≤ c−1
α t}

)
= 3−dℓ · PX

(
{x ∈ B(x1, r) : ∥x− x1∥2 ≤ r

(
1− (1− c−1

α r−αt)1/α
)
}
)

≤ 3−dℓ · PX

(
{x ∈ B(x1, r) : ∥x− x1∥2 ≤ α−1c−1

α r1−αt}
)

= 3−dℓ · PX

(
B(x1, α

−1c−1
α r1−αt)

)
= 3−dℓ

∫
B(x1,α−1c−1

α r1−αt)

p(x) dx

=
2πd/2ℓrd+(α−1)β

3dΓ(d/2)

∫ α−1c−1
α r1−αt

0

ρd−1ρβ−d dρ

=
2πd/2

3dΓ(d/2)β(cαα)β
ℓrdtβ ≤ 2πd/2

6dΓ(d/2)β(cαα)β
tβ .

Choosing cβ ≥ 2πd/2/(Γ(d/2)β(cαα)
β6d) ∨ 1, the β-SVB in Assumption 3.1 (ii) is satisfied.

Verification of the Conditions in Proposition D.15. Let L = 2ℓ − 1. For the sake of convenience,
for any σj ∈ {−1, 1}ℓ, j = 0, . . . , L, we write P j := Pσj

and Qj := Qσj

. Denote σ0 :=

(−1, . . . ,−1) and P 0 = Pσ0

. Define the full sample distribution by

Πj := P j⊗n, j = 0, . . . , L.

Moreover, we define the semi-metric ρ in Proposition D.15 by

ρ(pi(·|x), pj(·|x)) :=
∫
X

(
pi(1|x) log p

i(1|x)
pj(1|x)

+ pi(−1|x) log p
i(−1|x)
pj(−1|x)

)
p(x) dx = KL(P i, P j).

Therefore, for any predictor p̂(y|x), we have RLCE,P (p̂(y|x)) − R∗
LCE,P = ρ(p(·|x), p̂(·|x)).

Now, we verify the first condition in Proposition D.15. For sufficient large n, we have
2πd/2rαβ/(6dΓ(d/2)β) ≤ 1/2. For any x ∈

⋃
xk∈G1

B(xk, r), there holds

p(x) =
1−

∑
xi∈G2

P (B(xi, r))∑
xi∈G1

µ(B(xi, r))
=

1− 2πd/2Γ(d/2)−1β−13−dℓrd+αβ

3−dℓπd/2rd/Γ(d/2 + 1)
≥ 6dΓ(d/2 + 1)

2πd/2
.

Denote the Hellinger distance between P i and P j as H(P i, P j) :=
∫
(
√
dP i −

√
dP j)2. Using the

inequality KL(P i, P j) ≥ 2H2(P i, P j),
√
a −

√
b = (a − b)/(

√
a +

√
b) and Lemma D.16, we

obtain that for any 0 ≤ i < j ≤ L, there holds

ρ
(
pj(·|x), pi(·|x)

)
= KL(P i, P j) ≥ 2H2(P i, P j)

= 2

∫
X

((
pi(1|x) 1

2 − pj(1|x) 1
2

)2
+
(
pi(−1|x) 1

2 − pj(−1|x) 1
2

)2)
p(x) dx

= 2

∫
X

(
pj(1|x)− pi(1|x)

)2((
pj(1|x) 1

2 + pi(1|x) 1
2

)−2
+

(
pj(−1|x) 1

2 + pi(−1|x) 1
2

)−2
)
p(x) dx

≥
∫
⋃

xk∈G1
B(xk,r)

(
pj(1|x)− pi(1|x)

)2(
pj(1|x) ∨ pi(1|x)

)−1
p(x) dx

+

∫
⋃

xk∈G2
B(xk,r)

(
pj(1|x)− pi(1|x)

)2(
pj(−1|x) ∨ pi(−1|x)

)−1
p(x) dx

≥ 2ρH(σi, σj)

∫
B(x1,r)

(cα(r − ∥x− x1∥2)α)2 ·
6dΓ(d/2 + 1)

2πd/2
dx

+ ρH(σi, σj)

∫
B(x1,r)

(cα(r − ∥x− x1∥2)α)2(cαrα)−1 · rd+(α−1)β∥x− x1∥β−d
2 dx

≥ ρH(σi, σj)

(
6dc2αd

∫ r

0

(r − ρ)2αρd−1 dρ+
2πd/2cα
Γ(d/2)

rd+(α−1)β−α

∫ r

0

(r − ρ)2αρβ−dρd−1 dρ

)

34



Published as a conference paper at ICLR 2025

= ρH(σi, σj)

(
6dc2αdr

2α+d

∫ 1

0

(1− t)2αtd−1 dt+
2πd/2cα
Γ(d/2)

rd+(β+1)α

∫ 1

0

(1− t)2αtβ−1 dt

)
≥ ℓ

8

(
6dc2αdr

2α+dBeta(2α+ 1, d) +
2πd/2cα
Γ(d/2)

Beta(2α+ 1, β)rd+α(1+β)

)
≥ 2−d−3

(
6dc2αdr

2αBeta(2α+ 1, d) +
2πd/2cα
Γ(d/2)

Beta(2α+ 1, β)rα(1+β)

)
≥ C4r

α(1+β∧1),

where C4 := 2−d−3
(
6dc2αdBeta(2α+ 1, d) ∧ 2πd/2cαΓ(d/2)

−1Beta(2α+ 1, β)
)
. By taking

s := 2−1C4r
α(1+β∧1) = 2−1C4c

α(1+β∧1)
r n−

(1+β∧1)α
(1+β∧1)α+d ,

we obtain ρ(pj(·|x), pi(·|x)) ≥ 2s. The second condition of Proposition D.15 holds obviously.
Therefore, it suffices to verify the third condition in Proposition D.15, which requires to consider
the KL divergence between P j and P 0. Using Lemma 2.7 in Tsybakov (2008) and 1− cαrα ≥ 7/8,
we get

KL(P j , P 0) ≤
∫
X

(pj(1|x)− p0(1|x))2

p0(1|x)p0(−1|x)
p(x) dx

≤
∑

xk∈G1

1{σj
k = 1}

∫
B(xk,r)

4c2α(r − ∥x− xk∥2)2α

(1/2 + cαrα)(1/2− cαrα)
· Γ(d/2 + 1)3d

πd/2
(mrd)−1 dx

+
∑

xk∈G2

1{σj
k = 1}

∫
B(xk,r)

4c2α(r − ∥x− xk∥2)2α

cαrα(1− cαrα)
· rd+(α−1)β∥x− xk∥β−d

2 dx

≤ 20c2αΓ(d/2 + 1)3d

πd/2rd

∫
B(xk,r)

(r − ∥x− xk∥2)2α dx

+
4cαmr

d+(α−1)β

rα(1− cαrα)

∫
B(xk,r)

(r − ∥x− xk∥2)2α · ∥x− xk∥β−d
2 dx

≤ 20c2αd3
d

rd

∫ r

0

(r − ρ)2αρd−1 dx+
8cαπ

d/2

Γ(d/2)

mrd+(α−1)β

rα(1− cαrα)

∫ r

0

(r − ρ)2α · ρβ−dρd−1 dx

= 20c2αd3
dr2α

∫ 1

0

(1− t)2αtd−1 dt+
8cαπ

d/2cα ·mrd+α(1+β)

Γ(d/2)(1− rα)

∫ 1

0

(1− t)2α · tβ−1 dt

≤ 20c2αd3
dBeta(2α+ 1, d)r2α +

8πd/2cα · Beta(2α+ 1, β)

2dΓ(d/2)(1− cαrα)
· rα(1+β) ≤ C3r

α(1+β∧1), (77)

whereC3 := 20c2αd3
dBeta(2α+1, d)+8πd/2cαBeta(2α+1, β)/(2dΓ(d/2)). By the independence

of samples and Eq. (77), we have for any j ∈ {0, 1, . . . , L},

KL(Πj ,Π0) = nKL(P j , P 0) ≤ C3nr
(1+β∧1)α

= C3c
(1+β∧1)α+d
r r−d ≤ C3c

(1+β∧1)α+d
r 4dℓ ≤ 2(log 2)−1C3c

(1+β∧1)α+d
r 4d logL.

By choosing a sufficient small cr such that 2(log 2)−1C3c
(1+β∧1)α+d
r 4d = 1/16, we verify the third

condition. Applying Proposition D.15, we obtain that for any estimator p̂(y|x) built on D, with
probability Pn at least (3− 2

√
2)/8, there holds

sup
P∈P

RLCE,P (p̂(y|x))−R∗
LCE,P ≥ (C4c

α(1+β∧1)
r /2) · n−

(1+β∧1)α
(1+β∧1)α+d ,

which finishes the proof.

D.2 PROOFS RELATED TO SECTION 3

D.2.1 PROOFS RELATED TO SECTION 3.1

Proof of Theorem 3.2. Applying Bernstein’s inequality in (Steinwart & Christmann, 2008, Theorem
6.12) to ξi := 1{Yi = m} − p(m), i ∈ [np], we get

|p̂(m)− p(m)| =
∣∣∣∣ 1np

np∑
i=1

ξi

∣∣∣∣ ≤
√

2p(m)τ

np
+

2τ

3np
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with probability at least 1− 2e−τ . Using the union bound and (a+ b)2 ≤ 2(a2 + b2), we obtain

M∑
m=1

|p̂(m)− p(m)|2 ≤
M∑

m=1

(√
2p(m)τ

np
+

2τ

3np

)2

≤
M∑

m=1

(
4p(m)τ

np
+

4τ2

9n2p

)
with probability at least 1− 2Ke−τ . Taking τ := log(2Knp), we get

M∑
m=1

|p̂(m)− p(m)|2 ≤ 4 log(2Mnp)

np
+

4 log2(2Mnp)

9n2p
≲

log np
np

(78)

with probability at least 1 − 1/np. Combining Inequality (33), Propositions B.7 and B.9 in Wen
et al. (2024), we get

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ RLCE,P (p̂(y|x))−R∗

LCE,P +
∑

y∈[M ]

(1/p(y)− 1/p̂(y))2

≲ RLCE,P (p̂(y|x))−R∗
LCE,P +

∑
y∈[M ]

(p(y)− p̂(y))2

≲ RLCE,P (p̂(y|x))−R∗
LCE,P + log np/np

≲ n
− (1+β∧1)α

(1+β∧1)α+d
+ξ

p + log np/np ≲ n
− (1+β∧1)α

(1+β∧1)α+d
+ξ

p

with probability at least 1 − 2/np, where the third last inequality is due to Eq. (78) and the second
last inequality follows from Theorem D.14.

Proof of Theorem 3.3. Obviously, we have

T := {(P,Q) : P and Q satisfy Eq. (2), P ∈ P} ⊃ T ′ := {(P,Q) : P = Q ∈ P}.

Theorem D.17 then yields that

inf
A

sup
(P,Q)∈T

RLCE,Q(A(Dp))−R∗
LCE,Q ≥ inf

A
sup

(P,Q)∈T ′
RLCE,Q(A(Dp))−R∗

LCE,Q

= inf
A

sup
P∈P

RLCE,P (A(Dp))−R∗
LCE,P ≳ n

− (1+β∧1)α
(1+β∧1)α+d

p

holds with probability Pnp at least (3− 2
√
2)/8. This finishes the proof.

D.2.2 PROOFS RELATED TO SECTION 3.2

Proof of Theorem 3.4. Combining Inequality (33), Propositions B.7 and B.9 in Wen et al. (2024),
we get

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ RLCE,P (p̂(y|x))−R∗

LCE,P + ∥w∗ − ŵ∥22.

Using Proposition B.1 in Wen et al. (2024) and Theorem D.14, we obtain that for any ξ ∈ (0, 1/2),
there holds

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ RLCE,P (p̂(y|x))−R∗

LCE,P + log nq/nq + log np/np

≲ n
− (1+β)α

(1+β)α+d
+ξ

p + log nq/nq

with probability at least 1− 1/np − 1/nq .

Proof of Theorem 3.5. Note that the lower bound of the excess risk consists of two parts depending
on np and nq , respectively. Thus in the following, we prove the excess risk is larger than the
two parts, respectively. First, we prove that the excess risk is larger than the first part related to
np. To this end, we construct a sequence of the probability distribution P as in Theorem D.17,
and then we construct the probability distribution Q. To satisfy the label shift assumption, for any
σj ∈ {−1, 1}ℓ, j = 0, . . . , 2ℓ − 1, we let Qσj

:= Pσj

. For the sake of convenience, we write
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P j := Pσj

and Qj := Qσj

. Correspondingly, we write pj(y|x) := Pσj

(Y = y|X = x) and
qj(y|x) := Qσj

(Y = y|X = x).

Verification of the Conditions in Proposition D.15. Let L = 2ℓ − 1, and we define the full sample
distribution by Πj := P j⊗np ⊗Q

j⊗nq

X , j = 0, . . . , L. Moreover, we define the semi-metric ρ in in
Proposition D.15 by

ρ(qi(·|x), qj(·|x)) :=
∫
X

(
qTV i(1|x) log q

i(1|x)
qj(1|x)

+ qi(−1|x) log q
i(−1|x)
qj(−1|x)

)
q(x) dx = KL(Qi, Qj).

Therefore, for any predictor q̂(y|x), we have RLCE,Q(q̂(y|x))−R∗
LCE,Q = ρ(q(·|x), q̂(·|x)). Since

Qj = P j , the first and second conditions in Proposition D.15 can be verified in the same way
as in Theorem D.17. Thus it suffices to verify the third condition in Proposition D.15. By the
independence of samples, Qj

X = Q0
X = PX and Eq. (77), we have for any j ∈ {0, 1, . . . , L},

KL(Πj ,Π0) = npKL(P j , P 0) + nqKL(Qj
X , Q

0
X) = npKL(P j , P 0) ≤ C3npr

(1+β∧1)α

= C3c
(1+β∧1)α+d
r r−d ≤ C3c

(1+β∧1)α+d
r 4dℓ ≤ 2(log 2)−1C3c

(1+β∧1)α+d
r 4d logL,

where the constant C3 is defined in Eq. (77). By choosing a sufficient small cr such that
2(log 2)−1C3c

(1+β∧1)α+d
r 4d = 1/16, we verify the third condition. Apply Proposition D.15, we ob-

tain that for any estimator q̂(y|x) built onDp∪Du
q , with probability Pnp⊗Qnq

X at least (3−2
√
2)/8,

there holds

sup
(P,Q)∈T

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≥ (C4/2) · n

− (1+β∧1)α
(1+β∧1)α+d

p . (79)

Next, we construct a new class of probability to prove the second part n−1
Q of the lower bound. Let

w := 1/16 and δ > 0. Define the 1-dimension class conditional densities:

q(x|1) :=


4wδ if x ∈ [0, 1/4],

4(1− δ) if x ∈ [3/8, 5/8],

4(1− w)δ if x ∈ [3/4, 1],

0 otherwise;

q(x| − 1) :=


4(1− w)δ if x ∈ [0, 1/4],

4(1− δ) if x ∈ [3/8, 5/8],

4wδ if x ∈ [3/4, 1],

0 otherwise.
(80)

Let σ ∈ {−1, 1} and δ will be chosen later. We specify the class probabilities in the following way:
p(1) := p(y = 1) := 1/2, qσ(1) := qσ(y = 1) := (1 + σθ)/2. Then we compute the conditional
probability function qσ(1|x). By the Bayes formula, we have

qσ(1|x) = qσ(1)q(x|1)
qσ(1)q(x|1) + qσ(−1)q(x| − 1)

=


w(1 + σθ)/[w(1 + σθ) + (1− w)(1− σθ)] if x ∈ [0, 1/4],

(1 + σθ)/2 if x ∈ [3/8, 5/8],

(1− w)(1 + σθ)/[(1− w)(1 + σθ) + w(1− σθ)] if x ∈ [3/4, 1],

1/2 otherwise.

Verification of the SVB Condition. Denote

t1 :=
w(1− θ)

w(1− θ) + (1− w)(1 + θ)
, t2 :=

w(1 + θ)

w(1 + θ) + (1− w)(1− θ)
.

For t < t1, we have Qσ(qσ(1|x) < t) = 0. For t ∈ [t1, t2), by taking θ := 1/(16
√
nq) and

δ := cβt
β
1 , we have

Qσ(qσ(1|x) < t) = 1{σ = −1}Q([0, 1/4])

= 1{σ = −1}
(
(1− θ)wδ/2 + (1 + θ)(1− w)δ/2

)
= 1{σ = −1}(1 + θ − 2θw)δ/2 ≤ δ = cβt

β
1 ≤ cβt

β .
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Moreover, for t ∈ [t2, (1− θ)/2), we have

Qσ(qσ(1|x) < t) = Q([0, 1/4]) = (1 + θ − 2θw)δ/2 ≤ δ ≤ cβt
β
1 ≤ cβt

β .

Otherwise if t ∈ [(1− θ)/2, 1/2], by taking cβ := 4β , there holds

Qσ(qσ(1|x) < t) = Q([0, 1/4] ∪ [3/8, 5/8]) = (1 + θ − 2θw)δ/2 + 1− δ ≤ 1 ≤ cβt
β .

We define our distribution class K := {Πσ : σ ∈ {−1, 1}}, where Πσ is defined as Πσ := Pnp ⊗
(Qσ

X)nq . Then using the inequality log((1 + x)/(1 − x)) ≤ 3x for 0 ≤ x ≤ 1/2, the Kullback-
Leibler divergence between Π−1 and Π1 is

KL(Π−1|Π1) = nqKL(Q1
X |Q−1

X ) ≤ nqKL(Q1|Q−1)

= nq
(
log

(
(1 + θ)/(1− θ)

)
(1 + θ)/2 + log

(
(1− θ)/(1 + θ)

)
(1− θ)/2

)
= 2θnq log

(
(1 + θ)/(1− θ)

)
≤ 6θ2nq = 3/128.

Since |K| = 2, Π1 ≪ Π−1 and |K|−1KL(Π−1|Π1) = 3/256 < (log 2)/8. Then we calculate the
excess risk. Define qσ(y|x) := Qσ(Y = y|X = x) and qσ(y) := Qσ(Y = y). The semi-metric ρ
is defined by

ρ(q1(y|x), q−1(y|x)) :=
∫
X

(
q1(1|x) log q1(1|x)

q−1(1|x)
+ q1(−1|x) log q1(−1|x)

q−1(−1|x)

)
q(x) dx

=

∫
[0,1/4]

log(t2/t1)q
1(1)q(x|1) + log((1− t2)/(1− t1))q

1(−1)q(x| − 1) dx

+

∫
[3/8,5/8]

log((1 + θ)/(1− θ))q1(1)q(x|1) + log((1− θ)/(1 + θ))q1(−1)q(x| − 1) dx

+

∫
[3/4,1]

log(t2/t1)q
1(1)q(x|1) + log((1− t2)/(1− t1))q

1(−1)q(x| − 1) dx

= θ log((1 + θ)/(1− θ)) + θt(−2w + 1) log((1 + θ − 2θw)/(1− θ + 2θw))

≥ θ2

1− θ
+
θ2t(1− 2w)2

1− θ + 2θw
≥ 256−1(1 + (7/8)24β)n−1

q =: 2c2n
−1
q , (81)

where the second last inequality is due to log(1 + x) ≥ x/2 for x ∈ (0, 1) and c2 := 512−1(1 +

(7/8)24β). By Proposition D.15, we then obtain that with probability Π at least (3− 2
√
2)/8, there

holds

sup
Π∈K

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≥ c2n

−1
q . (82)

Combining Eq. (79) and Eq. (82), we obtain that for any q̂(y|x) built on Dp ∪Dq , with probability
Pnp ⊗Q

nq

X at least (3− 2
√
2)/8, there holds

sup
(P,Q)∈T

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≥ cℓ

(
n
− (1+β∧1)α

(1+β∧1)α+d
p + n−1

q

)
, (83)

where cℓ := C4/2 ∧ c2. This finishes the proof.

D.2.3 PROOFS RELATED TO SECTION 3.3

Proof of Theorem 3.6. First, let C̄ be the true matrix, i.e., C̄kj := EPs(X|Y=j)p(k|X). By the
triangle inequality, we have

|Ckj − C̄kj | ≤ |Ckj − EPs(X|Y=j)p̂(k|X)|+ |EPs(X|Y=j)p̂(k|X)− C̄kj |

≤
∣∣∣∣ 1

ns,j

∑
i∈[ns],Yi=j

(
p̂(k|X)− EPs(X|Y=j)p̂(k|X)

)∣∣∣∣+ EPs(X|Y=j)

∣∣p̂(k|X)− p(k|X)
∣∣. (84)

Applying Bernstein’s inequality, we get∣∣∣∣ 1

ns,j

∑
i∈[ns],Yi=j

(
p̂(k|X)− EPs(X|Y=j)p̂(k|X)

)∣∣∣∣ ≤
√

2τ

ns,j
+

2τ

3ns,j
≤ 2

√
τ

ns,j
≤ 2cs,1

√
τ

ns
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with probability at least 1− 2e−τ , where cs,1 := (
∧

j∈[M ] ps(j))
−1. By the union bound, we have

max
j,k

∣∣∣∣ 1

ns,j

∑
i∈[ns],Yi=j

(
p̂(k|X)− EPs(X|Y=j)p̂(k|X)

)∣∣∣∣ ≤ 2cs,1

√
3 log(nsM)

ns
(85)

with probability at least 1−1/ns. Moreover, using the Bayes formula and the label shift assumption,
we get

EPs(X|Y=j)

∣∣p̂(k|X)− p(k|X)
∣∣

= EP (X|Y=j)

∣∣p̂(k|X)− p(k|X)
∣∣ = ∫

X

∣∣p̂(k|x)− p(k|x)
∣∣ · p(x|j) dx

=

∫
X

∣∣p̂(k|x)− p(k|x)
∣∣ · p(x)p(j|x)

p(j)
dx ≤ p(j)−1

∫
X

∣∣p̂(k|x)− p(k|x)
∣∣ · p(x) dx

≲

(∫
X

∣∣p̂(k|x)− p(k|x)
∣∣2 · p(x) dx)1/2

≲
(
RLCE,P (p̂(y|x))−R∗

LCE,P

)1/2
where the last two inequalities follow from (EX)2 ≤ EX2 and Lemma B.4 in Wen et al. (2024),
respectively. This together with Eq. (84) and Eq. (85) yields

max
j,k

|Ckj − C̄kj | ≲
(
log ns/ns

)1/2
+

(
RLCE,P (p̂(y|x))−R∗

LCE,P

)1/2
with probability at least 1− 1/ns − 1/np. Using Theorem 4.2 in Meyer (1980), we get

∥p̂− p∥1 ≤ ∥(C − C̄)A∥1 ≤ ∥C − C̄∥1∥A∥1 ≲ (log ns/ns)
1/2 +

(
RLCE,P (p̂(y|x))−R∗

LCE,P

)1/2
,

where A is the group inverse of the matrix Id− C̄. Combining Inequality (33), Propositions B.7 and
B.9 in Wen et al. (2024), we obtain

RLCE,Q(q̂(y|x))−R∗
LCE,Q ≲ RLCE,P (p̂(y|x))−R∗

LCE,P +
∑

y∈[M ]

(1/p(y)− 1/p̂(y))2

≲ RLCE,P (p̂(y|x))−R∗
LCE,P +

∑
y∈[M ]

(p(y)− p̂(y))2

≲ RLCE,P (p̂(y|x))−R∗
LCE,P + ∥p− p̂∥21

≲ n
− (1+β∧1)α

(1+β∧1)α+d
+ξ

p + log ns/ns

with probability at least 1 − 1/ns − 1/np, where the last two inequalities follow from ∥p − p̂∥22 ≤
∥p− p̂∥21 and Theorem D.14. This finishes the proof.

Proof of Theorem 3.7. Note that the lower bound of the excess risk consists of two parts. Thus in
the following, we prove the excess risk is larger than the two parts, respectively. First, we prove that
the excess risk is larger than the first part. Similar to the first part of proof of Theorem 3.5, we let
Qσj

= Pσj

= Sσj

, where j ∈ {0, . . . , 2ℓ−1}. Then similar analysis as in Eq. (79) yields the lower
bound

(np + ns)
− (1+β∧1)α

(1+β∧1)α+d ≍ (np ∨ ns)−
(1+β∧1)α

(1+β∧1)α+d .

For the second part, the construction of distribution P and Qσ totally follow the second part as in
Eq. (80) and we let Sσ = Qσ . Similar arguments for proving Eq. (83) show the lower bound n−1

s .
This together with the first part yields the conclusion.

E CONVERGENCE RATES FOR THE CLASSIFICATION LOSS

In this section, we present the convergence rates with respect to the classification loss for the three
complex scenarios. To this end, we first combine the calibration inequality in Eq. (1) and the con-
vergence rates with respect to the CE loss in Eq. (11), Eq. (13) and Eq. (15) yields the following
results.
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(a) In the long-tailed learning, we have

RLclass,Q(q̂(y|x))−R∗
Lclass,Q

≲ n
− (1+β∧1)α

2(1+β∧1)α+2d
+ξ/2

p . (86)

(b) In the label shift adaptation, we have

RLclass,Q(q̂(y|x))−R∗
Lclass,Q

≲ n
− (1+β∧1)α

2(1+β∧1)α+2d
+ξ/2

p + (log nq/nq)
1/2. (87)

(c) In the transfer learning, we have

RLclass,Q(q̂(y|x))−R∗
Lclass,Q

≲ n
− (1+β∧1)α

2(1+β∧1)α+2d
+ξ/2

p + (log ns/ns)
1/2. (88)

To derive the lower bound for the classification loss, we follow the analysis for the constructed
probability distribution in Theorem 4.1 of Audibert & Tsybakov (2007). Since the constructed CCP
lies within a range [cϕ, 1 − cϕ] with a constant cϕ ∈ (0, 1/2), the distribution satisfies the SVB in
Assumption 3.1 (ii) with any β ∈ [0,∞] and therefore their established lower bound n−α/(2α+d)

holds under Assumption 3.1 for the standard classification.

(a) In the long-tailed learning, we let Q := P , then the lower bound would be

inf
A

sup
P,Q

RLclass,Q(A(Dp))−R∗
Lclass,Q

≳ n
− α

2α+d
p . (89)

(b) In the label shift adaptation, we have two parts of lower bounds. For the first part, we let Q := P

and thus get the lower bound n−α/(2α+d)
p by applying the conclusion in the standard classification.

For the second part, we follow the constructed probability distribution in Theroerm 3.5 and obtain
that the excess classification error

ρ(q1(y|x), q−1(y|x)) :=
∫
X
|2q1(1|x)− 1| · 1

{
max

y
q1(y|x) ̸= max

y
q−1(y|x)

}
q1(x) dx

=

∫
[3/8,5/8]

θ q1(x) dx = (1− δ)θ = (1− δ)/(16
√
nq)

holds with probability at least a constant c ∈ (0, 1). Similar analysis of Eq. (82) yields the lower
bound of the order n−1/2

q . Combining these two parts, we get

inf
A

sup
P,Q

RLclass,Q(A(D))−R∗
Lclass,Q

≳ n
− α

2α+d
p + n−1/2

q (90)

with probability at least a constant c ∈ (0, 1).

(c) In the transfer learning, similar analysis of Eq. (90) yields the lower bound

inf
A

sup
P,Q,S

RLclass,Q(A(D))−R∗
Lclass,Q

≳ n
− α

2α+d
p + n−1/2

s (91)

holds with probability at least a constant c ∈ (0, 1).

If β ≥ 1, then the upper bounds in Eq. (86), Eq. (87) and Eq. (88) match the lower bounds in
Eq. (89), Eq. (90) and Eq. (91), respectively. This demonstrates that the KLR-based approaches in
Section 2 are minimax optimal with respect to the classification loss when the probability that CCP
is less than a threshold increases sub-linearly as the threshold increases from zero, i.e. β ≥ 1.

F EXPERIMENTAL DETAILS

Using the benchmark datasets, we construct the labeled data Dp and the unlabeled test data Du
t :=

(X
(t)
i )nt

i=1 from the distribution Q to evaluate performance. Additionally, we construct Du
q for label

shift adaptation and Ds for transfer learning. To achieve this, we first generate label distributions
using either a uniform or Dirichlet distribution. Based on these distributions, we randomly resample
data from the original benchmark datasets to create the required datasets. Specifically, we generate
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10 labeled datasets Dp, and for each Dp, we create 10 test datasets Du
t and 10 additional datasets

(e.g., Du
q or Ds) using different random seeds, resulting in a total of 100 repeated experiments.

(a) In the context of long-tailed learning, the label distribution q(y) is set to be uniform, while
the long-tailed label distribution p(y) is generated using a Dirichlet distribution with parameter
α = 1. Based on p(y), we resample np samples from the original benchmark dataset to construct the
labeled dataset Dp. Similarly, we resample nq samples according to q(y) to generate the unlabeled
test dataset Du

t , which will be used for prediction, along with their corresponding true labels for
evaluation.

(b) In domain adaptation under label shift, following the setup in Lipton et al. (2018), the source la-
bel distribution p(y) is uniform, while the target label distribution q(y) is generated using a Dirichlet
distribution with α = 1. Using these distributions, we construct Dp, Du

q , and Du
t from the bench-

mark data, sampled according to p(y), q(y), and q(y), respectively. The CCP estimator q̂(y|x) is
trained on the combined dataset (Dp, D

u
q ) and evaluated on the test dataset Du

t .

(c) In transfer learning, while the labeled dataset Dp is unavailable, we do have access to the CCP
estimator p̂(y|x), pre-trained on Dp using the KLR method. Additionally, we utilize auxiliary data
Ds, constructed by resampling ns samples from the remaining benchmark data based on a label
distribution s(y). This distribution is generated using a Dirichlet distribution with the parameter
α = 10.

Table 2: Data Descriptions in Three Complex Classification Scenarios

Dataset n d M
Long-tailed Domain Adaptation Transfer Learning
np nt np nq nt np ns nt

Dionis 416188 61 355 14200 7100 14200 7100 14200 14200 5000 7100
Gas Sensor 13910 128 6 3000 1000 3000 1000 3000 3000 1000 1000
Satimage 6430 36 6 1500 1000 2400 1200 1200 1500 1000 1000

When fitting the KLR model to the source domain Dp, we select two key hyperparameters: the
regularization parameter C and the kernel coefficient γ. These are determined using 5-fold cross-
validation. Unlike the commonly used classification loss, we use the CE loss as the criterion for
cross-validation, as our primary objective is to accurately estimate p(y|x). Specifically, C is chosen
from seven values evenly spaced on a logarithmic scale between 10−6 and 100, while γ is selected
from seven values evenly spaced on a logarithmic scale between 2−6 and 20.
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