
A Codes for numerical experiment416

All codes for the numerical experiment can be found in https://github.com/ai-submit/417

OptimalWasserstein.418

B Additional numerical experiment419

B.1 PDE-constrained linear Bayesian inference420

In this experiment, we consider a linear Bayesian inference problem constrained by a partial dif-
ferential equation (PDE) model for contaminant diffusion in environmental engineering in domain
D = (0, 1),

−κ∆u+ νu = x in D,

where x is a contaminant source field parameter in domain D, u is the contaminant concentration421

which we can observe at some locations, κ and ν are diffusion and reaction coefficients. For422

simplicity, we set κ, ν = 1, u(0) = u(1) = 0, and consider 15 pointwise observations of u with 1%423

noise, equidistantly distributed in D. We consider a Gaussian prior distribution x ∼ N (0, C) with424

covariance given by a differential operator C = (−δ∆ + γI)−α with δ, γ, α > 0 representing the425

correlation length and variance, which is commonly used in geoscience. We set δ = 0.1, γ = 1, α = 1.426

In this linear setting, the posterior is Gaussian with the mean and covariance given analytically, which427

are used as reference to assess the sample goodness. We solve this forward model by a finite element428

method with piece-wise linear elements on a uniform mesh of size 2k, k ≥ 1. We project this high-429

dimensional parameter to the data-informed low dimensions as in Wang et al. (2021) to alleviate the430

curse of dimensionality when applying WGD-cvxNN and WGD-NN, which we call pWGD-cvxNN431

and pWGD-NN, respectively. For k = 4 we have 17 dimensions for the discrete parameter and 4432

dimensions after projection.433

We run pWGD-cvxNN and pWGD-NN using 16 samples for 200 iterations with αl = 10−3, β = 5,434

γ1 = 0.95, and γ2 = 0.9510 for both methods. We use m = 200 neurons for pWGD-NN and train435

it by the Adam optimizer for 200 sub-iterations as in the first example. From Figure 5, we observe436

that pWGD-cvxNN achieves better root mean squared error (RMSE) than pWGD-NN for both the437

sample mean and the sample variance compared to the reference.438
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Figure 5: Ten trials and the RMSE of the sample mean (top) and sample variance (bottom) by
pWGD-NN and pWGD-cvxNN at different iterations. Linear inference problem.
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C Choice of the regularization parameter439

As the constraints in the relaxed dual problem (16) depends on the regularization parameter β̃, it is440

possible that for small β̃, the relaxed dual problem (16) is infeasible. Consider the following SDP441

min β̃, s.t. Ãj(Λ) + B̃j +

N∑

n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

− Ãj(Λ)− B̃j +
N∑

n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p].

(21)

Here the variables are β̃,Λ and {r(j,+), r(j,−)}pj=1. Let β̃1 be the optimal value of the above problem.442

Then, only for β̃ ≥ β̃1, there exists Λ ∈ RN×d satisfying the constraints in (16). In other words, the443

relaxed dual problem (16) is feasible. We also note that β̃1 only depends on the samples X and it444

does not depend on the value of∇ log π evaluated on x1, . . . , xN . On the other hand, consider the445

following SDP446

min β̃, s.t. Ãj(Y ) + B̃j +
N∑

n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

− Ãj(Y )− B̃j +

N∑

n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p],

(22)

where the variables are β̃ and {r(j,+), r(j,−)}pj=1. Let β̃2 be the optimal value of the above problem.447

For β̃ ≥ β̃2, as Y is feasible for the constraints in (16), the optimal value of the relaxed dual problem448

(16) is 0. In short, only when β̃ ∈ [β̃1, β̃2], the variational problem (16) is non-trivial. To ensure449

that solving the relaxed dual problem (16) gives a good approximation of the Wasserstein gradient450

direction, we shall avoid choosing β̃ either too small or too large.451

D Proofs452

D.1 Proof of Proposition 1453

PROOF We first note that454

1

2

∫
‖∇Φ−∇ log ρ+∇ log π‖22ρdx

=
1

2

∫
‖∇Φ‖22ρdx+

∫
〈∇ log π −∇ log ρ,∇Φ〉 ρdx

+
1

2

∫
‖∇ log ρ−∇ log π‖22ρdx.

(23)

We notice that the term 1
2

∫
‖∇ log ρ−∇ log π‖22ρdx does not depend on Φ. Utilizing the integration455

by parts, we can compute that456 ∫
〈∇ log ρ,∇Φ〉 ρdx =

∫ 〈∇ρ
ρ
,∇Φ

〉
ρdx

=

∫
〈∇ρ,∇Φ〉 dx

=−
∫

∆Φρdx.

(24)

Therefore, the variational problem (4) is equivalent to457

inf
Φ∈C∞(Rd)

1

2

∫
‖∇Φ‖22ρdx+

∫
〈∇ log π,∇Φ〉 ρdx+

∫
∆Φρdx. (25)

By restricting the domain C∞(Rd) toH, we complete the proof.458
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D.2 Proof of Proposition 2459

PROOF Suppose that ŵi = β−1
i wi and α̂i = β2

i αi, where βi > 0 is a scale parameter for i ∈ [m].460

Let θ′ = {(ŵi, α̂i)}mi=1. We note that461

α̂iŵiψ
′(ŵTi xn) = βiαiwiψ

′ (β−1
i wTi xn

)
= αiwiψ

′(wTi xn), (26)
and462

α̂i‖ŵi‖22ψ′′(ŵTi xn) = αi‖wi‖22ψ′′(ŵTi xn) = αi‖wi‖22ψ′′(wTi xn). (27)
This implies that Φθ(x) = Φθ′(x) and ∇ · Φθ(x) = ∇ · Φθ′(x). For the regularization term R(θ),463

we note that464

‖ŵi‖32 + ‖α̂i‖32 =β6
i |αi|3 + β−3

i ‖wi‖32
=β6

i |αi|3 +
1

2
β−3
i ‖wi‖32 +

1

2
β−3
i ‖wi‖32

=3 · 2−2/3‖wi‖22|αi|.

(28)

The optimal scaling parameter is given by αi = 2−1/9 ‖wi‖1/32

|αi|1/31

. As the scaling operation does not465

change ‖wi‖22|αi|, we can simply let ‖wi‖2 = 1. Thus, the regularization term β
2R(θ) becomes466

β̃
N

∑m
i=1 ‖ui‖1. This completes the proof.467

D.3 Proof of Proposition 3468

PROOF Consider the Lagrangian function469

L(Z,W,α,Λ) =
1

2
‖Z‖2F +

N∑

n=1

m∑

i=1

αi‖wi‖22ψ′′(wTi xn) + tr(Y TZ) + β̃‖α‖1

+
N∑

n=1

λTn

(
zn −

m∑

i=1

αiwiψ
′(xTnwi)

)

=β̃‖α‖1 +
m∑

i=1

αi

N∑

n=1

(
‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTmwi)

)

+
1

2
‖Z‖2F + tr((Y + Λ)TZ).

(29)

For fixed W , the constraints on Z and α are linear and the strong duality holds. Thus, we can470

exchange the order of minZ,α and maxΛ. Thus, we can compute that471

min
Z,W,α

max
Λ

L(Z,W,α,Λ)

= min
W

max
Λ

min
α,Z

L(Z,W,α,Λ)

= min
W

max
Λ

min
α,Z

β̃‖α‖1 +
m∑

i=1

αi

N∑

n=1

(
‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTmwi)

)
+

1

2
‖Z‖2F + tr((Y + Λ)TZ)

= min
W

max
Λ
−1

2
‖Λ + Y ‖2F +

m∑

i=1

I

(
max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑

n=1

‖wi‖22ψ′′(wTi xn)− yTnwiψ′(xTnwi)
∣∣∣∣∣ ≤ β̃

)
.

(30)
By exchanging the order of min and max, we can derive the dual problem:472

max
Λ

min
W
−1

2
‖Λ + Y ‖2F +

m∑

i=1

I

(
max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑

n=1

‖wi‖22ψ′′(wTi xn)− yTnwiψ′(xTnwi)
∣∣∣∣∣ ≤ β̃

)

= max
Λ
−1

2
‖Λ + Y ‖2F s.t. max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑

n=1

‖wi‖22ψ′′(wTi xn)− yTnwiψ′(xTnwi)
∣∣∣∣∣ ≤ β̃, i ∈ [m]

= max
Λ
−1

2
‖Λ + Y ‖2F s.t. max

w:‖w‖2≤1

∣∣∣∣∣
N∑

n=1

‖w‖22ψ′′(wTxn)− yTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃, i ∈ [m]

(31)

15



This completes the proof.473

D.4 Proof of Proposition 4474

PROOF Based on the hyper-plane arrangements D1, . . . , Dp, the dual constraint is equivalent to that475

for all j ∈ [p],476 ∣∣2 tr(Dj)‖w‖22 − 2wTΛTDjXw
∣∣ ≤ β̃ (32)

holds for all w ∈ Rd satisfying ‖w‖2 ≤ 1, (2Dj − I)Xw ≥ 0. This is equivalent to say that for all477

j ∈ [p]478

−β̃ ≥min 2 tr(Dj)‖w‖22 − 2wTΛTDjXw, (33)
s.t. ‖w‖2 ≤ 1, 2(Dj − I)Xw ≥ 0,

β̃ ≤max 2 tr(Dj)‖w‖22 − 2wTΛTDjXw,

s.t. ‖w‖2 ≤ 1, 2(Dj − I)Xw ≥ 0.

From a convex optimization perspective, the natural idea to interpret the constraint (33) is to transform479

the minimization problem into a maximization problem. We can rewrite the minimization problem in480

(33) as a trust region problem with inequality constraints:481

min
w∈Rd

wT (Bj +Aj(Λ))w,

s.t. ‖w‖2 ≤ 1, (2Dj − I)Xw ≥ 0.
(34)

As the problem (34) is a convex problem, by taking the dual of (34) w.r.t. w, we can transform (34)482

into a maximization problem. However, as (34) is a trust region problem with inequality constraints,483

the dual problem of (34) can be very complicated. According to (Jeyakumar & Li, 2014), the optimal484

value of the problem (34) is bounded by the optimal value of the following SDP485

min
Z∈Sd+1

tr((Ãj(Λ) + B̃j)Z),

s.t. tr(H(j)
n Z) ≤ 0, n = 0, . . . , N,

Zd+1,d+1 = 1, Z � 0.

(35)

from below.486

Lemma 1 The dual problem of SDP (35) takes the form487

max−γ, s.t. S = Ãj(Λ) + B̃j +
N∑

n=0

rnH
(j)
n + γed+1e

T
d+1, r ≥ 0, S � 0, (36)

in variables r =



r0

...
rN


 ∈ RN+1 and γ ∈ R.488

PROOF Consider the Lagrangian489

L(Z, r, γ) = tr((Ãj(y) + B̃j)Z) +
N∑

n=0

rn tr(H(j)
n Z) + γ(tr(Zed+1e

T
d+1)− 1), (37)

where r ∈ RN+1
+ and γ ∈ R. By minimizing L(Z, r, γ) w.r.t. Z ∈ Sd+1

+ , we derive the dual problem490

(36).491

The constraints on Λ in the dual problem (14) include that the optimal value of (35) is bounded from492

below by −β̃. According to Lemma 1, this constraint is equivalent to that there exist r ∈ RN+1 and493

γ such that494

−γ ≥ −β̃, S = Ãj(Λ) + B̃j +
N∑

n=0

rnH
(j)
n + γed+1e

T
d+1, r ≥ 0, S � 0. (38)
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As ed+1e
T
d+1 is positive semi-definite, the above condition on Λ is also equivalent to that there exist495

r ∈ RN+1 such that496

Ãj(Λ) + B̃j +
N∑

n=0

rnH
(j)
n + β̃ed+1e

T
d+1 � 0, r ≥ 0. (39)

Therefore, the following convex set of Λ497

{
Λ : Ãj(Λ) + B̃j +

N∑

n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0, r(j,−) ≥ 0

}
(40)

is a subset of the set of Λ satisfying the dual constraints498 {
Λ : min
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≥ −β̃
}

(41)

On the other hand, the constraint on Λ499

max
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≤ β̃ (42)

is equivalent to500

min
‖w‖2≤1,(2Dj−I)w≥0

−wT (Bj +Aj(Λ))w ≥ −β̃. (43)

By applying the previous analysis on the above trust region problem, the following convex set of Λ501

{
Λ : −Ãj(Λ)− B̃j +

N∑

n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0, r(j,+) ≥ 0

}
(44)

is a subset of the set of Λ satisfying the dual constraints502 {
Λ : max
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≤ β̃
}
. (45)

Therefore, replacing the dual constraint maxw:‖w‖2≤1

∣∣∣
∑N
n=1 ‖w‖22ψ′′(wTxn)− yTnwψ′(xTnw)

∣∣∣ ≤503

β̃ by504

Ãj(Λ) + B̃j +
N∑

n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0, j ∈ [p],

− Ãj(Λ)− B̃j +

N∑

n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0, j ∈ [p],

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p].

(46)

we obtain the relaxed dual problem. As its feasible domain is a subset of the feasible domain of the505

dual problem, the optimal value of the relaxed dual problem gives a lower bound for the optimal506

value of the dual problem.507

D.5 Proof of Proposition 5508

PROOF Consider the Lagrangian function509

L(Λ, r,S) =− 1

2
‖Λ + Y ‖22 −

p∑

j=1

tr

(
S(j,−)

(
Ãj(Λ) + B̃j +

N∑

n=0

r(j,−)
n H(j)

n +
β̃

2
ed+1e

T
d+1

))

−
p∑

j=1

tr

(
S(j,+)

(
−Ãj(Λ)− B̃j +

N∑

n=0

r(j,+)
n H(j)

n +
β̃

2
ed+1e

T
d+1

))
,

(47)
where we write510

r =
(
r(1,−), . . . , r(p,−), r(1,+), . . . , r(p,+)

)
∈
(
RN+1

)2p
,

S =
(
S(1,−), . . . , S(p,−), S(1,+), . . . , S(p,+)

)
∈
(
Sd+1

+

)2p
.

(48)

Here we write Sd+1
+ = {S ∈ Sd+1|S � 0}. By maximizing w.r.t. Λ and r, we derive the bi-dual511

problem (17).512
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D.6 Proof of Theorem 1513

Suppose that (Z,W,α) is a feasible solution to (12). Let Dj1 , . . . , Djk be the enumeration of514

{diag(I(Xwi ≥ 0))|i ∈ [m]}. For i ∈ [k], we let515

S(ji,+) =
∑

l:αl≥0,diag(I(Xwl≥0))=Dji

αl

[
wlw

T
l wl

wTl 1

]
, S(ji,−) = 0, (49)

and516

S(ji,+) = 0, S(ji,−) = −
∑

l:αl<0,diag(I(Xwl≥0))=Dji

αl

[
wlw

T
l wl

wTl 1

]
. (50)

For j /∈ {j1, . . . , jk}, we simply set S(j,+) = 0, S(j,−) = 0. As ‖wi‖2 ≤ 1 and Dji = I(Xwi ≥ 0),517

we can verify that tr(S(j,−)H
(j)
n ) ≤ 0, tr(S(j,+)H

(j)
n ) ≤ 0 are satisfied for j = j1, . . . , jm and518

n = 0, 1, . . . , N . This is because for n = 0, as H(ji)
0 =

[
Id 0
0 −1

]
, it follows that519

tr(S(ji,+)H
(ji)
0 ) =

∑

l:αl≥0,diag(I(Xwl≥0))=Dji

αl(‖wl‖2 − 1) ≤ 0,

tr(S(ji,−)H
(ji)
0 ) =−

∑

l:αl<0,diag(I(Xwl≥0))=Dji

αl(‖wl‖2 − 1) ≤ 0.
(51)

For n = 1, . . . , N , we have520

tr(S(ji,+)H
(ji)
0 ) =

∑

l:αl≥0,diag(I(Xwl≥0))=Dji

2αl(1− 2(Dji)nn)xTnwl ≤ 0,

tr(S(ji,−)H
(ji)
0 ) =−

∑

l:αl<0,diag(I(Xwl≥0))=Dji

αl(1− 2(Dji)nn)xTnwl ≤ 0.
(52)

Based on the above transformation, we can rewrite the bidual problem in the form of the primal521

problem (13). For S ∈ Sd+1, we note that522

tr(SÃj(Λ))

=− tr((ΛTDjX +XTDjΛ)S1:d,1:d)

=− 2 tr(ΛTDjXS1:d,1:d),

where S1:d,1:d denotes the d× d block of S consisting the first d rows and columns. This implies that
Ã∗j (S) = −2DjXS1:d,1:d. Hence, we have

Ãji(S
(ji,+) − S(ji,−)) = −

∑

l:diag(I(Xwl≥0)

2αlDjiXwlw
T
l = −

∑

l:diag(I(Xwl≥0)

2αl(Xwl)+w
T
l .

Therefore, we have
p∑

j=1

Ã∗j (S
(j,−) − S(j,+)) = 2

m∑

i=1

αi(Xwi)+w
T
i .

As n-th row of Z satisfies that zn = 2
∑m
i=1 αiwi(x

T
nwi)+, this implies that

Z = 2
m∑

i=1

αi(Xwi)+w
T
i =

p∑

j=1

Ã∗j (S
(j,−) − S(j,+)).

Hence (Z, {(S(j,−), (S(j,−)}pj=1) is feasible to the relaxed bi-dual problem (17).523

We can also compute that
p∑

j=1

tr(B̃j(S
(j,+) − S(j,−))) = 2

m∑

i=1

αi

N∑

n=1

I(xTnwi ≥ 0)‖wi‖22,
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and
p∑

j=1

tr
(

(S(j,+) + S(j,−))ed+1e
T
d+1

)
=

m∑

i=1

|αi|.

Thus, the primal problem (13) with (Z,W,α) and the relaxed bi-dual problem (17) with524

(Z, {(S(j,−), (S(j,−)}pj=1) have the same objective value.525
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