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A Codes for numerical experiment

All codes for the numerical experiment can be found in https://github.com/ai-submit/
OptimalWasserstein.

B Additional numerical experiment

B.1 PDE-constrained linear Bayesian inference

In this experiment, we consider a linear Bayesian inference problem constrained by a partial dif-
ferential equation (PDE) model for contaminant diffusion in environmental engineering in domain
D =(0,1),

—kAu+vu=zx inD,

where x is a contaminant source field parameter in domain D, v is the contaminant concentration
which we can observe at some locations, x and v are diffusion and reaction coefficients. For
simplicity, we set x,v = 1, u(0) = u(1) = 0, and consider 15 pointwise observations of u with 1%
noise, equidistantly distributed in D. We consider a Gaussian prior distribution z ~ N (0, C') with
covariance given by a differential operator C' = (—dA + vI)~“ with 0,7, @ > 0 representing the
correlation length and variance, which is commonly used in geoscience. Wesetd = 0.1,v =1, = 1.
In this linear setting, the posterior is Gaussian with the mean and covariance given analytically, which
are used as reference to assess the sample goodness. We solve this forward model by a finite element
method with piece-wise linear elements on a uniform mesh of size 2*, k > 1. We project this high-
dimensional parameter to the data-informed low dimensions as in Wang et al. (2021) to alleviate the
curse of dimensionality when applying WGD-cvxNN and WGD-NN, which we call pWGD-cvxNN
and pWGD-NN, respectively. For k = 4 we have 17 dimensions for the discrete parameter and 4
dimensions after projection.

We run pWGD-cvxNN and pWGD-NN using 16 samples for 200 iterations with ; = 1073, 8 = 5,
~1 = 0.95, and v5 = 0.95'9 for both methods. We use m = 200 neurons for pWGD-NN and train
it by the Adam optimizer for 200 sub-iterations as in the first example. From Figure 5, we observe
that pWGD-cvxNN achieves better root mean squared error (RMSE) than pWGD-NN for both the
sample mean and the sample variance compared to the reference.

0.0 == pWGD-NN 0.4 = pWGD-NN
== pWGD-cvxNN =4— pWGD-cvxNN

02 0.2

0.0
-0.4

-0.6

-0.8

Log10(RMSE of mean)
Log10(RMSE of variance)
S
IS

-1.0

-12

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
# iterations # iterations

Figure 5: Ten trials and the RMSE of the sample mean (top) and sample variance (bottom) by
pWGD-NN and pWGD-cvxNN at different iterations. Linear inference problem.
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C Choice of the regularization parameter

As the constraints in the relaxed dual problem (16) depends on the regularization parameter B, itis
possible that for small /3, the relaxed dual problem (16) is infeasible. Consider the following SDP

N
min f, s.t. flj(A) + Bj + Z r I HY) + B€d+1€dT+1 = 0,
n=0

- . N L (2D
—A;(N) =B+ Y rPPHD + Bearedy, =0,
n=0
r0=) > 0,701 > 0,5 € [p].
Here the variables are B, A and {r(j ) (@) }5:1. Let Bl be the optimal value of the above problem.

Then, only for B > 51, there exists A € RV*d satisfying tpe constraints in (16). In other words, the
relaxed dual problem (16) is feasible. We also note that 31 only depends on the samples X and it

does not depend on the value of V log 7 evaluated on x4, ...,z 5. On the other hand, consider the
following SDP

N
min 3, s.t. flj(Y) + Bj + Z Tﬁbj’*)Hr(Lj) + B€d+1edT+1 =0,
n=0

) . (22)
- A;(Y)-B;+ Z rO D HO) 4 Beqriegiy =0,
n=0
r07) > 0,700 > 0,5 € [p],
where the variables are BN and {r(j ) ")}§=1- Let 32 be the optimal value of the above problem.

For 3 > Bg, as Y is feasible for the constraints in (16), the optimal value of the relaxed dual problem
(16) is 0. In short, only when 8 € [$31, B2], the variational problem (16) is non-trivial. To ensure
that solving the relaxed dual problem (16) gives a good approximation of the Wasserstein gradient

direction, we shall avoid choosing [ either too small or too large.

D Proofs

D.1 Proof of Proposition 1

PROOF We first note that
1
3 / |[V® — Vlog p + Vlog 7||3pdx

1
25/||V<I>||§pdx+/(VlogﬂfVlog@V(I)}pdx (23)

1
+§/||Vlogpr10g7rH§pdx.

We notice that the term § [ ||V log p — V log 7||3 pdx does not depend on ®. Utilizing the integration
by parts, we can compute that

/(Vlogp,V@)pdw—/<vpp,V(I>>pdz

= / (Vp, V) da (24)

=— /Aq)pdx.

Therefore, the variational problem (4) is equivalent to

1
inf o3 1 ®) pdx Adpdz. 2
sodi 5 [ IV@l3pds + [ (Vlogm V) i+ [ Ay 25)

By restricting the domain C*°(R?) to H, we complete the proof.
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459 D.2 Proof of Proposition 2

40 PROOF Suppose that w; = 3; Lw; and &; = 6?0@, where 3; > 0 is a scale parameter for i € [m].
a1 Let @ = {(w;, &;)}™,. We note that
G (W] 2,) = Bicywid)! (ﬁ w; xn) = aw (Wl T,), (26)

462 and

az||wl||21/1”(w Ty) = O‘ZszH2¢N(w T,) = a,—||wi|\§1/)”(wiTxn). (27)
463 This implies that $g(z) = Pg/(z) and V - $g(z) = V - P/ (). For the regularization term R(8),
464 We note that

l[ill3 + llélls =67 laal® + 8;° [lwill3

1 1.
=Blail® + 587wl + 387wl @8)

=327 %% |lw,[3]cui-
1/9 szH2

Jily”?
a6 change ||w;||3]c;|, we can simply let ||w;||2 = 1. Thus, the regularization term gR(O) becomes

465 The optimal scaling parameter is given by a; = 27 . As the scaling operation does not

467 % S>> llugll1. This completes the proof.

468 D.3 Proof of Proposition 3

469 PROOF Consider the Lagrangian function

N m
L(Z, W, a, A) *HZIIF +D > aillwll3y (W) + (YT Z) + Bllal
n=1 i=1
N m
DB )
n=1 1 (29)

m N
=Bllal + Y @ Y (lwill5e” (wf @) = Apwi! (@h,w;))

n=1

=

1
+ §||Z|\% +tr(Y + M7 2).

470 For fixed W, the constraints on Z and « are linear and the strong duality holds. Thus, we can
471 exchange the order of minz . and max,. Thus, we can compute that

min max L(Z, W, a, A)
ZW,a A

=minmaxmin L(Z, W, a, A)
w A o, Z

m N
~ 1
. . // T - 2 T
=g Blall + 3o 3 (0" o ) = Nt () + 1215 + (Y +4)72)
=1  n=
:minmaXfEHA +Y|% + ZH H 120" (wlzy,) — yTwi (X w;)| < B
WA 2 2\ wlhwiazr [ £ TR " K
(30)
472 By exchanging the order of min and max, we can derive the dual problem:
1 m N ~
maxmin——|[A+ Y[+ ) I max w;i |30 (wlz,) — yLw! (xw;)| <
g0 130 ( e [3° 2) a) <7
1 al "
=max ——||[A+Y[%st.  max Zle”%d)”(w?xn)—ygwlwl(xZU)Z) < B,i € [m]
A 2 wiiflwill2<1 | =
1 al .
=max—o A+ Y|t max ; w]3¢" (wT2n) — yTwi! (@Tw)| < B,i € [m]
€2y
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This completes the proof.

D.4 Proof of Proposition 4

PROOF Based on the hyper-plane arrangements Dy, . .., D, the dual constraint is equivalent to that
forall j € [p],

|2t0(D;) w3 — 20T ATD; Xw| < B (32)
holds for all w € R? satisfying ||w||]2 < 1, (2D; — I) Xw > 0. This is equivalent to say that for all
j € [p]

—f3 >min2tr(D;)|lw|3 — 2wT AT D; Xw, (33)
s.t. |Jwll2 <1,2(D; — I Xw >0,
B <max2tr(D;)|wl|? — 20T AT D; Xw,
s.t. flw|l2 <1,2(D; — INXw > 0.

From a convex optimization perspective, the natural idea to interpret the constraint (33) is to transform
the minimization problem into a maximization problem. We can rewrite the minimization problem in
(33) as a trust region problem with inequality constraints:
min w? (B + A;(A)) w,
wER (34)
s.t. Jlw|l2 < 1,(2D; — N Xw > 0.

As the problem (34) is a convex problem, by taking the dual of (34) w.r.t. w, we can transform (34)
into a maximization problem. However, as (34) is a trust region problem with inequality constraints,
the dual problem of (34) can be very complicated. According to (Jeyakumar & Li, 2014), the optimal
value of the problem (34) is bounded by the optimal value of the following SDP

in - tr((4;(A) + B;)2),

st te(HYVZ) < 0,n=0,...,N, (35)
Zat1,d+1=1,Z = 0.
from below.
Lemma 1 The dual problem of SDP (35) takes the form

N
max —v, s.t. S = flj(A) + Bj + Z TnHT(Lj) + 'yedﬂedTH,r >0,5 >0, (36)
n=0
To
invariablesr = | 1 | € RN+ and v € R.
N

PROOF Consider the Lagrangian

N
L(Z,r,y) = (A (y) + B)Z) + > ra tr(HP Z) + y(tr(Zearrefy,) = 1), (37)
n=0

where r € Rf“ and v € R. By minimizing L(Z,r,v) w.rt. Z € S‘fl, we derive the dual problem
(36).

The constraints on A in the dual problem (14) include that the optimal value of (35) is bounded from

below by — B. According to Lemma 1, this constraint is equivalent to that there exist r € RV *! and
-+ such that

N
—B.8 =A;(A)+ B+ raHY +yeaiefy,,r > 0,8 = 0. (38)

n=0

Y

-
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As eqi1€y, is positive semi-definite, the above condition on A is also equivalent to that there exist
r € RN*! such that

N
A;(N) + B+ > raHY) + Beaprel, = 0,7 > 0. (39)
n=0
Therefore, the following convex set of A
N
{A : Aj(A) + Bj + Z rO I HO) Bedﬁegﬂ =0, r07) > 0} (40)
n=0
is a subset of the set of A satisfying the dual constraints
. T =
: B:+ A;(A > — 41
{ i (Bj +4;(A)w > B} (41)
On the other hand, the constraint on A
T -
B+ A;(A < 42
ot BB (Bj +Aj(M))w < p (42)
is equivalent to
. T P
— B+ A;(A > —f. 43
T (Bj +4;(A)w = —p (43)

By applying the previous analysis on the above trust region problem, the following convex set of A

N
{A :—A;(N) - Bj + Z rOHHO 4 B€d+le§+1 =0, r&*) > O} (44)
n=0
is a subset of the set of A satisfying the dual constraints

: T(p. . <5l
{A Hwnle,r(g%}jfl)wzow (Bj + A;(A) w < ﬁ} (45)

Therefore, replacing the dual constraint max,.|j,|j,<1 25:1 |lwl|Zy"” (whx,) — ygww’(xfw)’ <
A by
A;(8)+ By + Y T HD + Bearaedyy = 0.5 € [pl,

n=0

. X S (40)
— A (A) = Bj + ) r{PVHY + Bearieqiy = 0,5 € [p],
n=0
r=) >0, p0H) > 0,7 € [p).
we obtain the relaxed dual problem. As its feasible domain is a subset of the feasible domain of the
dual problem, the optimal value of the relaxed dual problem gives a lower bound for the optimal
value of the dual problem.

D.5 Proof of Proposition 5

PROOF Consider the Lagrangian function

1 P . N . N . 3
L(A,r,8) == Z[|A + Y5> tr (sm) <Aj(A) + B+ > I HD + ged+1e§+1>>

j=1 n=0

P N )
-y (5(“) <_AJ(A) ~ B+ rtHY + §€d+165+1>> ,
j=1

n=0
47)
where we write

r= (r(l’f), @) ) .,r(p’+)) € (RNH)QP,
S = (S0, 800, S0 g0 e (557

Here we write ST = {S € S?+1|S > 0}. By maximizing w.r.t. A and r, we derive the bi-dual
problem (17).

(48)
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D.6 Proof of Theorem 1

Suppose that (Z, W, a) is a feasible solution to (12). Let D;,,...,D;, be the enumeration of
{diag(I(Xw; > 0))|i € [m]}. Fori € [k], we let
glint) — o {wlluwl 1;1] L SU) =, (49)
l:a; >0,diag(l(Xw; >0))=Dj, !
and .
(i +) — (=) — _ wiwy Wy
St =0,800) = > al[wlT 1}. (50)

l:a; <0,diag(I(Xw, ZO)):Dh

Forj ¢ {j1,.-.,jx}, we simply set SU+) = 0,507 = 0. As |lw;||2 < 1 and D;, = I[(Xw; > 0),
we can verify that tr(SU—) HY)) < 0,tr(SUHHY)) < 0 are satisfied for j = j1, ..., jm and

n=20,1,..., N. This is because for n = 0, as H(gj"') = {161 _01] , it follows that
tr(S(j“*)H(gji)) = Z a(Jlw]* = 1) <0,
l:a;>0,diag(I(Xw; >0))=D;,
i (4i) J 2 GD
r(SU HID) = — 3 ([l ~ 1) < 0.
l:a; <0,diag(I(Xw; >0))=D;,
Forn=1,..., N, we have
tr(g(jl,ﬂHéji)) - Z 200(1 = 2(D;, )pn )z Ly <0,
l:cy>0,diag(I(Xw; >0))=Dj,
| ) 1> g((Xw;>0)) (52)
tr(SUH ) HI)) = — > a1(1=2(D;,)pn)zEw; < 0.

l:0;<0,diag(I(Xw; >0))=Dj,

Based on the above transformation, we can rewrite the bidual problem in the form of the primal
problem (13). For S € S, we note that

tr(SA;(A))

=—tr(ATD; X + XTD;jA)S1.4.1.0)

=—2t1(A"D; X S1.4,1:4).
vzhere S1:d,1:q denotes the d x d block of .S consisting the first d rows and columns. This implies that
A;T(S) = —2D; X S51.4,1:4- Hence, we have

Aj (SUsH) - gUnT)y = Z 200Dy, Xwyw] = — Z 20 (Xwy) pwi .

l:diag(I(Xw; >0) l:diag(I(Xw; >0)

Therefore, we have .
i S(]’_) S(j’+)) = 2Zai(Xwi)+w
j=1 i=1

As n-th row of Z satisfies that z,, =2 " | a;w; (X w;) 1, this implies that
P
_ 2201()(101 Z S(j,*) _ S(j,+))_
Jj=1
Hence (Z,{(SU:7), (5(47”)}?:1) is feasible to the relaxed bi-dual problem (17).

We can also compute that

N

i (504~ §00) =23 o Y K, > 0) s
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and .

>t (89 4 80 D)esnedy) = 3 lal.

j=1 i=1
524 Thus, the primal problem (13) with (Z,W,«) and the relaxed bi-dual problem (17) with
525 (Z,{(SU7),(SU)}¥_, ) have the same objective value.
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