A Codes for numerical experiment

All codes for the numerical experiment can be found in https://github.com/ai-submit/ OptimalWasserstein.

B Additional numerical experiment

B. 1 PDE-constrained linear Bayesian inference

In this experiment, we consider a linear Bayesian inference problem constrained by a partial differential equation (PDE) model for contaminant diffusion in environmental engineering in domain $D=(0,1)$,

$$
-\kappa \Delta u+\nu u=x \quad \text { in } D,
$$

where x is a contaminant source field parameter in domain D, u is the contaminant concentration which we can observe at some locations, κ and ν are diffusion and reaction coefficients. For simplicity, we set $\kappa, \nu=1, u(0)=u(1)=0$, and consider 15 pointwise observations of u with 1% noise, equidistantly distributed in D. We consider a Gaussian prior distribution $x \sim \mathcal{N}(0, C)$ with covariance given by a differential operator $C=(-\delta \Delta+\gamma I)^{-\alpha}$ with $\delta, \gamma, \alpha>0$ representing the correlation length and variance, which is commonly used in geoscience. We set $\delta=0.1, \gamma=1, \alpha=1$. In this linear setting, the posterior is Gaussian with the mean and covariance given analytically, which are used as reference to assess the sample goodness. We solve this forward model by a finite element method with piece-wise linear elements on a uniform mesh of size $2^{k}, k \geq 1$. We project this highdimensional parameter to the data-informed low dimensions as in Wang et al. (2021) to alleviate the curse of dimensionality when applying WGD-cvxNN and WGD-NN, which we call pWGD-cvxNN and pWGD-NN, respectively. For $k=4$ we have 17 dimensions for the discrete parameter and 4 dimensions after projection.
We run $\mathrm{pWGD}-\mathrm{cvxNN}$ and $\mathrm{pWGD}-\mathrm{NN}$ using 16 samples for 200 iterations with $\alpha_{l}=10^{-3}, \beta=5$, $\gamma_{1}=0.95$, and $\gamma_{2}=0.95^{10}$ for both methods. We use $m=200$ neurons for pWGD-NN and train it by the Adam optimizer for 200 sub-iterations as in the first example. From Figure 5, we observe that pWGD-cvxNN achieves better root mean squared error (RMSE) than pWGD-NN for both the sample mean and the sample variance compared to the reference.

Figure 5: Ten trials and the RMSE of the sample mean (top) and sample variance (bottom) by pWGD-NN and pWGD-cvxNN at different iterations. Linear inference problem.

C Choice of the regularization parameter

As the constraints in the relaxed dual problem (16) depends on the regularization parameter $\tilde{\beta}$, it is possible that for small $\tilde{\beta}$, the relaxed dual problem (16) is infeasible. Consider the following SDP

$$
\begin{align*}
& \min \tilde{\beta} \text {, s.t. } \tilde{A}_{j}(\Lambda)+\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,-)} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, \\
& \quad-\tilde{A}_{j}(\Lambda)-\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,+)} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, \tag{21}\\
& r^{(j,-)} \geq 0, r^{(j,+)} \geq 0, j \in[p] .
\end{align*}
$$

Here the variables are $\tilde{\beta}, \Lambda$ and $\left\{r^{(j,+)}, r^{(j,-)}\right\}_{j=1}^{p}$. Let $\tilde{\beta}_{1}$ be the optimal value of the above problem. Then, only for $\tilde{\beta} \geq \tilde{\beta}_{1}$, there exists $\Lambda \in \mathbb{R}^{N \times d}$ satisfying the constraints in (16). In other words, the relaxed dual problem (16) is feasible. We also note that $\tilde{\beta}_{1}$ only depends on the samples X and it does not depend on the value of $\nabla \log \pi$ evaluated on x_{1}, \ldots, x_{N}. On the other hand, consider the following SDP

$$
\begin{align*}
& \min \tilde{\beta} \text {, s.t. } \tilde{A}_{j}(Y)+\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,-)} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, \\
& \quad-\tilde{A}_{j}(Y)-\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,+)} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, \tag{22}\\
& \\
& r^{(j,-)} \geq 0, r^{(j,+)} \geq 0, j \in[p],
\end{align*}
$$

where the variables are $\tilde{\beta}$ and $\left\{r^{(j,+)}, r^{(j,-)}\right\}_{j=1}^{p}$. Let $\tilde{\beta}_{2}$ be the optimal value of the above problem. For $\tilde{\beta} \geq \tilde{\beta}_{2}$, as \mathbf{Y} is feasible for the constraints in (16), the optimal value of the relaxed dual problem (16) is 0 . In short, only when $\tilde{\beta} \in\left[\tilde{\beta}_{1}, \tilde{\beta}_{2}\right]$, the variational problem (16) is non-trivial. To ensure that solving the relaxed dual problem (16) gives a good approximation of the Wasserstein gradient direction, we shall avoid choosing $\tilde{\beta}$ either too small or too large.

D Proofs

D. 1 Proof of Proposition 1

Proof We first note that

$$
\begin{align*}
& \frac{1}{2} \int\|\nabla \Phi-\nabla \log \rho+\nabla \log \pi\|_{2}^{2} \rho d x \\
= & \frac{1}{2} \int\|\nabla \Phi\|_{2}^{2} \rho d x+\int\langle\nabla \log \pi-\nabla \log \rho, \nabla \Phi\rangle \rho d x \tag{23}\\
& +\frac{1}{2} \int\|\nabla \log \rho-\nabla \log \pi\|_{2}^{2} \rho d x .
\end{align*}
$$

Therefore, the variational problem (4) is equivalent to

$$
\begin{equation*}
\inf _{\Phi \in C^{\infty}\left(\mathbb{R}^{d}\right)} \frac{1}{2} \int\|\nabla \Phi\|_{2}^{2} \rho d x+\int\langle\nabla \log \pi, \nabla \Phi\rangle \rho d x+\int \Delta \Phi \rho d x . \tag{25}
\end{equation*}
$$

By restricting the domain $C^{\infty}\left(\mathbb{R}^{d}\right)$ to \mathcal{H}, we complete the proof.

D. 2 Proof of Proposition 2

Proof Suppose that $\hat{w}_{i}=\beta_{i}^{-1} w_{i}$ and $\hat{\alpha}_{i}=\beta_{i}^{2} \alpha_{i}$, where $\beta_{i}>0$ is a scale parameter for $i \in[m]$. Let $\boldsymbol{\theta}^{\prime}=\left\{\left(\hat{w}_{i}, \hat{\alpha}_{i}\right)\right\}_{i=1}^{m}$. We note that

$$
\begin{equation*}
\hat{\alpha}_{i} \hat{w}_{i} \psi^{\prime}\left(\hat{w}_{i}^{T} x_{n}\right)=\beta_{i} \alpha_{i} w_{i} \psi^{\prime}\left(\beta_{i}^{-1} w_{i}^{T} x_{n}\right)=\alpha_{i} w_{i} \psi^{\prime}\left(w_{i}^{T} x_{n}\right), \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\alpha}_{i}\left\|\hat{w}_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(\hat{w}_{i}^{T} x_{n}\right)=\alpha_{i}\left\|w_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(\hat{w}_{i}^{T} x_{n}\right)=\alpha_{i}\left\|w_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(w_{i}^{T} x_{n}\right) . \tag{27}
\end{equation*}
$$

This implies that $\Phi_{\boldsymbol{\theta}}(x)=\Phi_{\boldsymbol{\theta}^{\prime}}(x)$ and $\nabla \cdot \Phi_{\boldsymbol{\theta}}(x)=\nabla \cdot \Phi_{\boldsymbol{\theta}^{\prime}}(x)$. For the regularization term $R(\boldsymbol{\theta})$, we note that

$$
\begin{align*}
\left\|\hat{w}_{i}\right\|_{2}^{3}+\left\|\hat{\alpha}_{i}\right\|_{2}^{3} & =\beta_{i}^{6}\left|\alpha_{i}\right|^{3}+\beta_{i}^{-3}\left\|w_{i}\right\|_{2}^{3} \\
& =\beta_{i}^{6}\left|\alpha_{i}\right|^{3}+\frac{1}{2} \beta_{i}^{-3}\left\|w_{i}\right\|_{2}^{3}+\frac{1}{2} \beta_{i}^{-3}\left\|w_{i}\right\|_{2}^{3} \tag{28}\\
& =3 \cdot 2^{-2 / 3}\left\|w_{i}\right\|_{2}^{2}\left|\alpha_{i}\right| .
\end{align*}
$$

The optimal scaling parameter is given by $\alpha_{i}=2^{-1 / 9} \frac{\left\|w_{i}\right\|_{2}^{1 / 3}}{\left|\alpha_{i}\right|_{1}^{1 / 3}}$. As the scaling operation does not change $\left\|w_{i}\right\|_{2}^{2}\left|\alpha_{i}\right|$, we can simply let $\left\|w_{i}\right\|_{2}=1$. Thus, the regularization term $\frac{\beta}{2} R(\boldsymbol{\theta})$ becomes $\frac{\tilde{\beta}}{N} \sum_{i=1}^{m}\left\|u_{i}\right\|_{1}$. This completes the proof.

D. 3 Proof of Proposition 3

Proof Consider the Lagrangian function

$$
\begin{align*}
L(Z, W, \alpha, \Lambda)= & \frac{1}{2}\|Z\|_{F}^{2}+\sum_{n=1}^{N} \sum_{i=1}^{m} \alpha_{i}\left\|w_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(w_{i}^{T} x_{n}\right)+\operatorname{tr}\left(Y^{T} Z\right)+\tilde{\beta}\|\alpha\|_{1} \\
& +\sum_{n=1}^{N} \lambda_{n}^{T}\left(z_{n}-\sum_{i=1}^{m} \alpha_{i} w_{i} \psi^{\prime}\left(x_{n}^{T} w_{i}\right)\right) \tag{29}\\
= & \tilde{\beta}\|\alpha\|_{1}+\sum_{i=1}^{m} \alpha_{i} \sum_{n=1}^{N}\left(\left\|w_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(w_{i}^{T} x_{n}\right)-\lambda_{n}^{T} w_{i} \psi^{\prime}\left(x_{m}^{T} w_{i}\right)\right) \\
& +\frac{1}{2}\|Z\|_{F}^{2}+\operatorname{tr}\left((Y+\Lambda)^{T} Z\right) .
\end{align*}
$$

For fixed W, the constraints on Z and α are linear and the strong duality holds. Thus, we can exchange the order of $\min _{Z, \alpha}$ and $\max _{\Lambda}$. Thus, we can compute that

$$
\begin{align*}
& \min _{Z, W, \alpha} \max _{\Lambda} L(Z, W, \alpha, \Lambda) \\
= & \min _{W} \max _{\Lambda} \min _{\alpha, Z} L(Z, W, \alpha, \Lambda) \\
= & \min _{W} \max _{\Lambda} \min _{\alpha, Z} \tilde{\beta}\|\alpha\|_{1}+\sum_{i=1}^{m} \alpha_{i} \sum_{n=1}^{N}\left(\left\|w_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(w_{i}^{T} x_{n}\right)-\lambda_{n}^{T} w_{i} \psi^{\prime}\left(x_{m}^{T} w_{i}\right)\right)+\frac{1}{2}\|Z\|_{F}^{2}+\operatorname{tr}\left((Y+\Lambda)^{T} Z\right) \\
= & \min _{W} \max _{\Lambda}-\frac{1}{2}\|\Lambda+Y\|_{F}^{2}+\sum_{i=1}^{m} \mathbb{I}\left(\max _{w_{i}:\left\|w_{i}\right\|_{2} \leq 1}\left|\sum_{n=1}^{N}\left\|w_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(w_{i}^{T} x_{n}\right)-y_{n}^{T} w_{i} \psi^{\prime}\left(x_{n}^{T} w_{i}\right)\right| \leq \tilde{\beta}\right) \tag{30}
\end{align*}
$$

By exchanging the order of min and max, we can derive the dual problem:

$$
\begin{align*}
& \max _{\Lambda} \min _{W}-\frac{1}{2}\|\Lambda+Y\|_{F}^{2}+\sum_{i=1}^{m} \mathbb{I}\left(\max _{w_{i}:\left\|w_{i}\right\|_{2} \leq 1}\left|\sum_{n=1}^{N}\left\|w_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(w_{i}^{T} x_{n}\right)-y_{n}^{T} w_{i} \psi^{\prime}\left(x_{n}^{T} w_{i}\right)\right| \leq \tilde{\beta}\right) \\
= & \max _{\Lambda}-\frac{1}{2}\|\Lambda+Y\|_{F}^{2} \text { s.t. } \max _{w_{i}:\left\|w_{i}\right\|_{2} \leq 1}\left|\sum_{n=1}^{N}\left\|w_{i}\right\|_{2}^{2} \psi^{\prime \prime}\left(w_{i}^{T} x_{n}\right)-y_{n}^{T} w_{i} \psi^{\prime}\left(x_{n}^{T} w_{i}\right)\right| \leq \tilde{\beta}, i \in[m] \\
= & \max _{\Lambda}-\frac{1}{2}\|\Lambda+Y\|_{F}^{2} \text { s.t. } \max _{w:\|w\|_{2} \leq 1}\left|\sum_{n=1}^{N}\|w\|_{2}^{2} \psi^{\prime \prime}\left(w^{T} x_{n}\right)-y_{n}^{T} w \psi^{\prime}\left(x_{n}^{T} w\right)\right| \leq \tilde{\beta}, i \in[m] \tag{31}
\end{align*}
$$

This completes the proof.

D. 4 Proof of Proposition 4

Proof Based on the hyper-plane arrangements D_{1}, \ldots, D_{p}, the dual constraint is equivalent to that for all $j \in[p]$,

$$
\begin{equation*}
\left|2 \operatorname{tr}\left(D_{j}\right)\|w\|_{2}^{2}-2 w^{T} \Lambda^{T} D_{j} X w\right| \leq \tilde{\beta} \tag{32}
\end{equation*}
$$

holds for all $w \in \mathbb{R}^{d}$ satisfying $\|w\|_{2} \leq 1,\left(2 D_{j}-I\right) X w \geq 0$. This is equivalent to say that for all $j \in[p]$

$$
\begin{align*}
-\tilde{\beta} \geq & \min 2 \operatorname{tr}\left(D_{j}\right)\|w\|_{2}^{2}-2 w^{T} \Lambda^{T} D_{j} X w \tag{33}\\
& \text { s.t. }\|w\|_{2} \leq 1,2\left(D_{j}-I\right) X w \geq 0 \\
\tilde{\beta} \leq & \max 2 \operatorname{tr}\left(D_{j}\right)\|w\|_{2}^{2}-2 w^{T} \Lambda^{T} D_{j} X w, \\
& \text { s.t. }\|w\|_{2} \leq 1,2\left(D_{j}-I\right) X w \geq 0
\end{align*}
$$

From a convex optimization perspective, the natural idea to interpret the constraint (33) is to transform the minimization problem into a maximization problem. We can rewrite the minimization problem in (33) as a trust region problem with inequality constraints:

$$
\begin{align*}
\min _{w \in \mathbb{R}^{d}} w^{T}\left(B_{j}+A_{j}(\Lambda)\right) w, \tag{34}\\
\text { s.t. }\|w\|_{2} \leq 1,\left(2 D_{j}-I\right) X w \geq 0 .
\end{align*}
$$

As the problem (34) is a convex problem, by taking the dual of (34) w.r.t. w, we can transform (34) into a maximization problem. However, as (34) is a trust region problem with inequality constraints, the dual problem of (34) can be very complicated. According to (Jeyakumar \& Li, 2014), the optimal value of the problem (34) is bounded by the optimal value of the following SDP

$$
\begin{align*}
& \min _{Z \in \mathbb{S}^{d+1}} \operatorname{tr}\left(\left(\tilde{A}_{j}(\Lambda)+\tilde{B}_{j}\right) Z\right), \\
& \text { s.t. } \operatorname{tr}\left(H_{n}^{(j)} Z\right) \leq 0, n=0, \ldots, N, \tag{35}\\
& Z_{d+1, d+1}=1, Z \succeq 0 .
\end{align*}
$$

from below.
Lemma 1 The dual problem of SDP (35) takes the form

$$
\begin{equation*}
\max -\gamma \text {, s.t. } S=\tilde{A}_{j}(\Lambda)+\tilde{B}_{j}+\sum_{n=0}^{N} r_{n} H_{n}^{(j)}+\gamma e_{d+1} e_{d+1}^{T}, r \geq 0, S \succeq 0 \tag{36}
\end{equation*}
$$

488 in variables $r=\left[\begin{array}{c}r_{0} \\ \vdots \\ r_{N}\end{array}\right] \in \mathbb{R}^{N+1}$ and $\gamma \in \mathbb{R}$.
Proof Consider the Lagrangian

$$
\begin{equation*}
L(Z, r, \gamma)=\operatorname{tr}\left(\left(\tilde{A}_{j}(y)+\tilde{B}_{j}\right) Z\right)+\sum_{n=0}^{N} r_{n} \operatorname{tr}\left(H_{n}^{(j)} Z\right)+\gamma\left(\operatorname{tr}\left(Z e_{d+1} e_{d+1}^{T}\right)-1\right), \tag{37}
\end{equation*}
$$

where $r \in \mathbb{R}_{+}^{N+1}$ and $\gamma \in \mathbb{R}$. By minimizing $L(Z, r, \gamma)$ w.r.t. $Z \in \mathbb{S}_{+}^{d+1}$, we derive the dual problem (36).

The constraints on Λ in the dual problem (14) include that the optimal value of (35) is bounded from below by $-\tilde{\beta}$. According to Lemma 1, this constraint is equivalent to that there exist $r \in \mathbb{R}^{N+1}$ and γ such that

$$
\begin{equation*}
-\gamma \geq-\tilde{\beta}, S=\tilde{A}_{j}(\Lambda)+\tilde{B}_{j}+\sum_{n=0}^{N} r_{n} H_{n}^{(j)}+\gamma e_{d+1} e_{d+1}^{T}, r \geq 0, S \succeq 0 \tag{38}
\end{equation*}
$$

As $e_{d+1} e_{d+1}^{T}$ is positive semi-definite, the above condition on Λ is also equivalent to that there exist $r \in \mathbb{R}^{N+1}$ such that

$$
\begin{equation*}
\tilde{A}_{j}(\Lambda)+\tilde{B}_{j}+\sum_{n=0}^{N} r_{n} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, r \geq 0 \tag{39}
\end{equation*}
$$

Therefore, the following convex set of Λ

$$
\begin{equation*}
\left\{\Lambda: \tilde{A}_{j}(\Lambda)+\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,-)} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, r^{(j,-)} \geq 0\right\} \tag{40}
\end{equation*}
$$

is a subset of the set of Λ satisfying the dual constraints

$$
\begin{equation*}
\left\{\Lambda: \min _{\|w\|_{2} \leq 1,\left(2 D_{j}-I\right) w \geq 0} w^{T}\left(B_{j}+A_{j}(\Lambda)\right) w \geq-\tilde{\beta}\right\} \tag{41}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\max _{\|w\|_{2} \leq 1,\left(2 D_{j}-I\right) w \geq 0} w^{T}\left(B_{j}+A_{j}(\Lambda)\right) w \leq \tilde{\beta} \tag{42}
\end{equation*}
$$

On the other hand, the constraint on Λ

$$
\max _{\|w\|_{2} \leq 1,\left(2 D_{j}-I\right) w \geq 0} w^{T}\left(B_{j}+A_{j}(\Lambda)\right) w \leq \tilde{\beta}
$$

$$
\begin{equation*}
\min _{\|w\|_{2} \leq 1,\left(2 D_{j}-I\right) w \geq 0}-w^{T}\left(B_{j}+A_{j}(\Lambda)\right) w \geq-\tilde{\beta} \tag{43}
\end{equation*}
$$

By applying the previous analysis on the above trust region problem, the following convex set of Λ

$$
\begin{equation*}
\left\{\Lambda:-\tilde{A}_{j}(\Lambda)-\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,+)} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, r^{(j,+)} \geq 0\right\} \tag{44}
\end{equation*}
$$

is a subset of the set of Λ satisfying the dual constraints

$$
\begin{equation*}
\left\{\Lambda: \max _{\|w\|_{2} \leq 1,\left(2 D_{j}-I\right) w \geq 0} w^{T}\left(B_{j}+A_{j}(\Lambda)\right) w \leq \tilde{\beta}\right\} \tag{45}
\end{equation*}
$$

${ }_{503}$ Therefore, replacing the dual constraint $\max _{w:\|w\|_{2} \leq 1}\left|\sum_{n=1}^{N}\|w\|_{2}^{2} \psi^{\prime \prime}\left(w^{T} x_{n}\right)-y_{n}^{T} w \psi^{\prime}\left(x_{n}^{T} w\right)\right| \leq$ 504 $\tilde{\beta}$ by

$$
\begin{align*}
& \tilde{A}_{j}(\Lambda)+\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,-)} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, j \in[p], \\
& -\tilde{A}_{j}(\Lambda)-\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,+)} H_{n}^{(j)}+\tilde{\beta} e_{d+1} e_{d+1}^{T} \succeq 0, j \in[p], \tag{46}\\
& r^{(j,-)} \geq 0, r^{(j,+)} \geq 0, j \in[p] .
\end{align*}
$$ dual problem, the optimal value of the relaxed dual problem gives a lower bound for the optimal value of the dual problem.

D. 5 Proof of Proposition 5

Proof Consider the Lagrangian function

$$
\begin{aligned}
L(\Lambda, \mathbf{r}, \mathbf{S})= & -\frac{1}{2}\|\Lambda+Y\|_{2}^{2}-\sum_{j=1}^{p} \operatorname{tr}\left(S^{(j,-)}\left(\tilde{A}_{j}(\Lambda)+\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,-)} H_{n}^{(j)}+\frac{\tilde{\beta}}{2} e_{d+1} e_{d+1}^{T}\right)\right) \\
& -\sum_{j=1}^{p} \operatorname{tr}\left(S^{(j,+)}\left(-\tilde{A}_{j}(\Lambda)-\tilde{B}_{j}+\sum_{n=0}^{N} r_{n}^{(j,+)} H_{n}^{(j)}+\frac{\tilde{\beta}}{2} e_{d+1} e_{d+1}^{T}\right)\right),
\end{aligned}
$$

510 where we write

$$
\begin{align*}
\mathbf{r} & =\left(r^{(1,-)}, \ldots, r^{(p,-)}, r^{(1,+)}, \ldots, r^{(p,+)}\right) \in\left(\mathbb{R}^{N+1}\right)^{2 p} \\
\mathbf{S} & =\left(S^{(1,-)}, \ldots, S^{(p,-)}, S^{(1,+)}, \ldots, S^{(p,+)}\right) \in\left(\mathbb{S}_{+}^{d+1}\right)^{2 p} \tag{48}
\end{align*}
$$

Here we write $\mathbb{S}_{+}^{d+1}=\left\{S \in \mathbb{S}^{d+1} \mid S \succeq 0\right\}$. By maximizing w.r.t. Λ and \mathbf{r}, we derive the bi-dual problem (17).

D. 6 Proof of Theorem 1

Suppose that (Z, W, α) is a feasible solution to (12). Let $D_{j_{1}}, \ldots, D_{j_{k}}$ be the enumeration of $\left\{\operatorname{diag}\left(\mathbb{I}\left(X w_{i} \geq 0\right)\right) \mid i \in[m]\right\}$. For $i \in[k]$, we let

$$
S^{\left(j_{i},+\right)}=\sum_{l: \alpha_{l} \geq 0, \operatorname{diag}\left(\mathbb{I}\left(X w_{l} \geq 0\right)\right)=D_{j_{i}}} \alpha_{l}\left[\begin{array}{cc}
w_{l} w_{l}^{T} & w_{l} \tag{49}\\
w_{l}^{T} & 1
\end{array}\right], S^{\left(j_{i},-\right)}=0,
$$

and

$$
S^{\left(j_{i},+\right)}=0, S^{\left(j_{i},-\right)}=-\sum_{l: \alpha_{l}<0, \operatorname{diag}\left(\mathbb{I}\left(X w_{l} \geq 0\right)\right)=D_{j_{i}}} \alpha_{l}\left[\begin{array}{cc}
w_{l} w_{T}^{T} & w_{l} \tag{50}\\
w_{l}^{T} & 1
\end{array}\right] .
$$

For $j \notin\left\{j_{1}, \ldots, j_{k}\right\}$, we simply set $S^{(j,+)}=0, S^{(j,-)}=0$. As $\left\|w_{i}\right\|_{2} \leq 1$ and $D_{j_{i}}=\mathbb{I}\left(X w_{i} \geq 0\right)$, we can verify that $\operatorname{tr}\left(S^{(j,-)} H_{n}^{(j)}\right) \leq 0, \operatorname{tr}\left(S^{(j,+)} H_{n}^{(j)}\right) \leq 0$ are satisfied for $j=j_{1}, \ldots, j_{m}$ and $n=0,1, \ldots, N$. This is because for $n=0$, as $H_{0}^{\left(j_{i}\right)}=\left[\begin{array}{cc}I_{d} & 0 \\ 0 & -1\end{array}\right]$, it follows that

$$
\begin{align*}
& \operatorname{tr}\left(S^{\left(j_{i},+\right)} H_{0}^{\left(j_{i}\right)}\right)=\sum_{l: \alpha_{l} \geq 0, \operatorname{diag}\left(\mathbb{I}\left(X w_{l} \geq 0\right)\right)=D_{j_{i}}} \alpha_{l}\left(\left\|w_{l}\right\|^{2}-1\right) \leq 0, \tag{51}\\
& \operatorname{tr}\left(S^{\left(j_{i},-\right)} H_{0}^{\left(j_{i}\right)}\right)=-\sum_{l: \alpha_{l}<0, \operatorname{diag}\left(\mathbb{I}\left(X w_{l} \geq 0\right)\right)=D_{j_{i}}} \alpha_{l}\left(\left\|w_{l}\right\|^{2}-1\right) \leq 0 .
\end{align*}
$$

For $n=1, \ldots, N$, we have

$$
\begin{align*}
& \operatorname{tr}\left(S^{\left(j_{i},+\right)} H_{0}^{\left(j_{i}\right)}\right)=\sum_{l: \alpha_{l} \geq 0, \operatorname{diag}\left(\mathbb{I}\left(X w_{l} \geq 0\right)\right)=D_{j_{i}}} 2 \alpha_{l}\left(1-2\left(D_{j_{i}}\right)_{n n}\right) x_{n}^{T} w_{l} \leq 0, \\
& \operatorname{tr}\left(S^{\left(j_{i},-\right)} H_{0}^{\left(j_{i}\right)}\right)=-\sum_{l: \alpha_{l}<0, \operatorname{diag}\left(\mathbb{I}\left(X w_{l} \geq 0\right)\right)=D_{j_{i}}} \alpha_{l}\left(1-2\left(D_{j_{i}}\right)_{n n}\right) x_{n}^{T} w_{l} \leq 0 . \tag{52}
\end{align*}
$$

521 Based on the above transformation, we can rewrite the bidual problem in the form of the primal 522 problem (13). For $S \in \mathbb{S}^{d+1}$, we note that

$$
\begin{aligned}
& \operatorname{tr}\left(S \tilde{A}_{j}(\Lambda)\right) \\
= & -\operatorname{tr}\left(\left(\Lambda^{T} D_{j} X+X^{T} D_{j} \Lambda\right) S_{1: d, 1: d}\right) \\
= & -2 \operatorname{tr}\left(\Lambda^{T} D_{j} X S_{1: d, 1: d}\right),
\end{aligned}
$$

where $S_{1: d, 1: d}$ denotes the $d \times d$ block of S consisting the first d rows and columns. This implies that $\tilde{A}_{j}^{*}(S)=-2 D_{j} X S_{1: d, 1: d}$. Hence, we have

$$
\tilde{A}_{j_{i}}\left(S^{\left(j_{i},+\right)}-S^{\left(j_{i},-\right)}\right)=-\sum_{l: \operatorname{diag}\left(\mathbb{I}\left(X w_{l} \geq 0\right)\right.} 2 \alpha_{l} D_{j_{i}} X w_{l} w_{l}^{T}=-\sum_{l: \operatorname{diag}\left(\mathbb{I}\left(X w_{l} \geq 0\right)\right.} 2 \alpha_{l}\left(X w_{l}\right)_{+} w_{l}^{T}
$$

Therefore, we have

$$
\sum_{j=1}^{p} \tilde{A}_{j}^{*}\left(S^{(j,-)}-S^{(j,+)}\right)=2 \sum_{i=1}^{m} \alpha_{i}\left(X w_{i}\right)_{+} w_{i}^{T}
$$

As n-th row of Z satisfies that $z_{n}=2 \sum_{i=1}^{m} \alpha_{i} w_{i}\left(x_{n}^{T} w_{i}\right)_{+}$, this implies that

$$
Z=2 \sum_{i=1}^{m} \alpha_{i}\left(X w_{i}\right)_{+} w_{i}^{T}=\sum_{j=1}^{p} \tilde{A}_{j}^{*}\left(S^{(j,-)}-S^{(j,+)}\right) .
$$

Hence $\left(Z,\left\{\left(S^{(j,-)},\left(S^{(j,-)}\right\}_{j=1}^{p}\right)\right.\right.$ is feasible to the relaxed bi-dual problem (17).
We can also compute that

$$
\sum_{j=1}^{p} \operatorname{tr}\left(\tilde{B}_{j}\left(S^{(j,+)}-S^{(j,-)}\right)\right)=2 \sum_{i=1}^{m} \alpha_{i} \sum_{n=1}^{N} \mathbb{I}\left(x_{n}^{T} w_{i} \geq 0\right)\left\|w_{i}\right\|_{2}^{2}
$$

and

$$
\sum_{j=1}^{p} \operatorname{tr}\left(\left(S^{(j,+)}+S^{(j,-)}\right) e_{d+1} e_{d+1}^{T}\right)=\sum_{i=1}^{m}\left|\alpha_{i}\right|
$$

524 Thus, the primal problem (13) with (Z, W, α) and the relaxed bi-dual problem (17) with $525 \quad\left(Z,\left\{\left(S^{(j,-)},\left(S^{(j,-)}\right\}_{j=1}^{p}\right)\right.\right.$ have the same objective value.

