
Appendix: Bridging the Imitation Gap by Adaptive Insubordination

The appendix includes theoretical extensions of ideas presented in the main paper and details of
empirical analysis. We structure the appendix into the following subsections:

A.1 A formal treatment of Ex. 2 on 1D-Lighthouse.
A.2 Proof of Proposition 1.
A.3 Distance measures beyond d

0
⇡(⇡f )(s) = d(⇡(s),⇡f (s)) utilized in ADVISOR.6

A.4 Future strategies for improving statistical efficiency of d
0
⇡teach(⇡IL

f )(s) estimator and a prospec-
tive approach towards it.

A.5 Descriptions of all the tasks that we evaluate baselines on, including values for grid size,
obstacles, corruption distance etc. We also include details about observation space for each
of these tasks.

A.6 Initial results showing that ADVISOR can outperform behavior cloning even when there is
no imitation gap.

A.7 Additional details about nature of learning, expert supervision and hyperparameters searched
for each baseline introduced in Sec. 4.2.

A.8 Details about the underlying model architecture for all baselines across different tasks.
A.9 Methodologies adopted for ensuring fair hyperparameter tuning of previous baselines when

comparing ADVISOR to them.
A.10 Training implementation including maximum steps per episode, reward structure and com-

puting infrastructure adopted for this work. We clearly summarize all structural and training
hyperparameters for better reproducibility.

A.11 Additional results including plots for all tasks to supplement Fig. 5, a table giving an
expanded version of the Tab. 1, and learning curves to supplement Tab. 2.

A Additional Information

A.1 Formal treatment of Example 2

Let N � 1 and consider a 1-dimensional grid-world with states S = {�N, N} ⇥ {0, . . . , T} ⇥

{�N, . . . , N}
T . Here g 2 {�N, N} are possible goal positions, elements t 2 {0, . . . , T} corre-

spond to the episode’s current timestep, and (pi)T
i=1 2 {�N, . . . , N}

T correspond to possible agent
trajectories of length T . Taking action a 2 A = {left, right} = {�1, 1} in state (g, t, (pi)T

i=1) 2 S

results in the deterministic transition to state (g, t + 1, (p1, . . . , pt, clip(pt + a,�N, N), 0, . . . , 0)).
An episode start state is chosen uniformly at random from the set {(±N, 0, (0, . . . , 0))} and the goal
of the agent is to reach some state (g, t, (pi)T

i=1) with pt = g in the fewest steps possible. We now
consider a collection of filtration functions f

i, that allow the agent to see spaces up to i steps left/right
of its current position but otherwise has perfect memory of its actions. See Figs. 2c, 2d for examples
of f

1- and f
2-restricted observations. For 0  i  N we define f

i so that

f
i(g, t, (pi)

T
i=1) = ((`0, . . . , `t), (p1 � p0, . . . , pt � pt�1)) and (5)
`j = (1[pj+k=N ] � 1[pj+k=�N ] | k 2 {�i, . . . , i}) for 0  j  t. (6)

Here `j is a tuple of length 2 · i+1 and corresponds to the agent’s view at timestep j while pk+1� pk

uniquely identifies the action taken by the agent at timestep k. Let ⇡teach be the optimal policy
given full state information so that ⇡teach(g, t, (pi)T

i=1) = (1[g=�N ], 1[g=N ]) and let µ be a uniform
distribution over states in S. It is straightforward to show that an agent following policy ⇡IL

fi will
take random actions until it is within a distance of i from one of the corners {�N, N} after which
it will head directly to the goal, see the policies highlighted in Figs. 2c, 2d. The intuition for this
result is straightforward: until the agent observes one of the corners it cannot know if the goal is
to the right or left and, conditional on its observations, each of these events is equally likely under
µ. Hence in half of these events the expert will instruct the agent to go right and in the other half

6We overload main paper’s notation d0(⇡,⇡f )(s) with d0⇡(⇡f )(s)
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Algorithm A.1: On-policy ADVISOR algorithm overview. Some details omitted for clarity.
Input: Trainable policies (⇡f ,⇡

aux
f ), expert policy ⇡teach, rollout length L, environment E .

Output: Trained policy
1 begin
2 Initialize the environment E

3 ✓  randomly initialized parameters
4 while Training completion criterion not met do
5 Take L steps in the environment using ⇡f (·; ✓) and record resulting rewards and

observations (restarting E whenever the agent has reached a terminal state)
6 Evaluate ⇡aux

f (·; ✓) and ⇡teach at each of the above steps
7 L the empirical version of the loss from Eq. (2) computed using the above rollout
8 Compute r✓L using backpropagation
9 Update ✓ using r✓L via gradient descent

10 return ⇡f (·; ✓)

to go left. The cross entropy loss will thus force ⇡IL
fi to be uniform in all such states. Formally,

we will have, for s = (g, t, (pi)T
i=1), ⇡IL

fi(s) = ⇡
teach(s) if and only if min0qt(pq)� i  �N or

max0qt(pq) + i � N and, for all other s, we have ⇡IL
fi(s) = (1/2, 1/2). In Sec. 4, see also Fig. 6,

we train f
i-restricted policies with f

j-optimal teachers for a 2D variant of this example. ⌅

A.2 Proof of Proposition 1

We wish to show that the minimizer of Eµ[�⇡teach
fe (S)� log ⇡f (S)] among all f -restricted policies

⇡f is the policy ⇡ = Eµ[⇡teach(S) | f(S)]. This is straightforward, by the law of iterated expectations
and as ⇡f (s) = ⇡f (f(s)) by definition. We obtain

Eµ[�⇡teach
fe (S)� log ⇡f (S)] = �Eµ[Eµ[⇡teach

fe (S)� log ⇡f (S) | f(S)]]

= �Eµ[Eµ[⇡teach
fe (S)� log ⇡f (f(S)) | f(S)]]

= �Eµ[Eµ[⇡teach
fe (S) | f(S)]� log ⇡f (f(S))]

= Eµ[�⇡(f(S))� log ⇡f (f(S))] . (7)

Now let s 2 S and let o = f(s). It is well known, by Gibbs’ inequality, that �⇡(o)� log ⇡f (o) is
minimized (in ⇡f (o)) by letting ⇡f (o) = ⇡(o) and this minimizer is feasible as we have assumed
that ⇧f contains all f -restricted policies. Hence it follows immediately that Eq. (7) is minimized by
letting ⇡f = ⇡ which proves the claimed proposition.

A.3 Other Distance Measures

As discussed in Section 3.2, there are several different choices one may make when choosing
a measure of distance between the expert policy ⇡

teach and an f -restricted policy ⇡f at a state
s 2 S. The measure of distance we use in our experiments, d

0
⇡teach(⇡f )(s) = d(⇡teach(s),⇡f (s)),

has the (potentially) undesirable property that f(s) = f(s0) does not imply that d
0
⇡teach(⇡f )(s) =

d
0
⇡teach(⇡f )(s0). While an in-depth evaluation of the merits of different distance measures is beyond

this current work, we suspect that a careful choice of such a distance measure may have a substantial
impact on the speed of training. The following proposition lists a collection of possible distance
measures with a conceptual illustration given in Fig. A.1.
Proposition 2. Let s 2 S and o = f(s) and for any 0 < � < 1 define, for any policy ⇡ and

f -restricted policy ⇡f ,

d
�
µ,⇡(⇡f )(s) = Eµ[

�
d
0
⇡(⇡f )(S)

��
| f(S) = f(s)]1/�

, (8)

with d
1
µ,⇡(⇡f )(s) equalling the essential supremum of d

0
⇡(⇡f ) under the conditional distribution

Pµ(· | f(S) = f(s)). As a special case note that

d
1
µ,⇡(⇡f )(s) = Eµ[d0

⇡(⇡f )(S) | f(S) = f(s)].
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Then, for all � � 0 and s 2 S (almost surely µ), we have that ⇡(s) 6= ⇡f (f(s)) if and only if

d
�
⇡(⇡f )(s) > 0.

Proof. This statement follows trivially from the definition of ⇡IL and the fact that d(⇡,⇡
0) � 0 with

d(⇡,⇡
0) = 0 if and only if ⇡ = ⇡

0.

The above proposition shows that any d
� can be used to consistently detect differences between ⇡teach

and ⇡IL
f , i.e., it can be used to detect the imitation gap. Notice also that for any � > 0 we have that

d
�
µ,⇡teach(⇡IL

f )(s) = d
�
µ,⇡teach(⇡IL

f )(s0) whenever f(s) = f(s0).

As an alternative to using d
0, we now describe how d

1
µ,⇡teach(⇡IL

f )(s) can be estimated in practice
during training. Let ⇡aux

f be an estimator of ⇡IL
f as usual. To estimate d

1
µ,⇡teach(⇡IL

f )(s) we assume
we have access to a function approximator g : Of ! R parameterized by  2  , e.g., a neural
network. Then we estimate d

1
µ,⇡teach(⇡IL

f )(s) with g b where b is taken to be the minimizer of the loss

Lµ,⇡teach,⇡aux
f

( ) = Eµ

h⇣
d(⇡teach(S),⇡aux

f (f(S)))� g (f(S))
⌘2i

. (9)

The following proposition then shows that, assuming that d
1
µ,⇡teach(⇡aux

f ) 2 {g |  2  }, g b will
equal d

1
µ,⇡teach(⇡aux

f ) and thus g b may be interpreted as a plug-in estimator of d
1
µ,⇡teach(⇡IL

f ).

Proposition 3. For any  2  ,

Lµ,⇡teach,⇡aux

f
( ) = Eµ[(d1

µ,⇡teach(⇡aux

f )(S)� g (f(S)))2] + c,

where c = Eµ[(d(⇡teach(S),⇡aux(f(S)))� d
1
µ,⇡teach,b⇡(S))2] is constant in  and this implies that if

d
1
µ,⇡teach(⇡aux

f ) 2 {g |  2  } then g b = d
1
µ,⇡teach(⇡aux

f ).

Proof. In the following we let Of = f(S). We now have that

Eµ[
�
d(⇡teach(S),⇡aux

f (Of ))� g (Of )
�2

]

= Eµ[
�
(d(⇡teach(S),⇡aux

f (Of ))� d
1
µ,⇡teach(⇡aux

f )(S)) + (d1
µ,⇡teach(⇡aux

f )(S)� g (Of ))
�2

]

= Eµ[(d(⇡teach(S),⇡aux
f (Of ))� d

1
µ,⇡teach(⇡aux

f )(S))2] + Eµ[(d1
µ,⇡teach(⇡aux

f )(S)� g (Of )))2]

+ 2 · Eµ[((d(⇡teach(S),⇡aux
f (Of ))� d

1
µ,⇡teach(⇡aux

f )(S)) · (d1
µ,⇡teach(⇡aux

f )(S)� g (Of )))]

= c + Eµ[(d1
µ,⇡teach(⇡aux

f )(S)� g (Of )))2]

+ 2 · Eµ[((d(⇡teach(S),⇡aux
f (Of ))� d

1
µ,⇡teach(⇡aux

f )(S)) · (d1
µ,⇡teach(⇡aux

f )(S)� g (Of )))].

Now as as d
1
µ,⇡teach(⇡aux

f )(s) = d
1
µ,⇡teach(⇡aux

f )(s0) for any s, s
0 with f(s) = f(s0) we have that

d
1
µ,⇡teach(⇡aux

f )(S)� g (Of ) is constant conditional on Of and thus

Eµ[(d(⇡teach(S),⇡aux
f (Of ))� d

1
µ,⇡teach(⇡aux

f )(S)) · (d1
µ,⇡teach(⇡aux

f )(S)� g (Of )) | Of ]

= Eµ[(d(⇡teach(S),⇡aux
f (Of ))� d

1
µ,⇡teach(⇡aux

f )(S) | Of ] · Eµ[d1
µ,⇡teach(⇡aux

f )(S)� g (Of ) | Of ]

= Eµ[d1
µ,⇡teach(⇡aux

f )(S)� d
1
µ,⇡teach(⇡aux

f )(S) | Of ] · Eµ[d1
µ,⇡teach(⇡aux

f )(S)� g (Of ) | Of ]

= 0.

Combining the above results and using the law of iterated expectations gives the desired result.

A.4 Future Directions in Improving Distance Estimators

In this section we highlight possible directions towards improving the estimation of d
0
⇡teach(⇡IL

f )(s)
for s 2 S . As a comprehensive study of these directions is beyond the scope of this work, our aim in
this section is intuition over formality. We will focus on d

0 here but similar ideas can be extended to
other distance measures, e.g., those in Sec. A.3.
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d
0
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|f(s)) = 0.1

µ3 = µ(s3
|f(s)) = 0.6
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d
1
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= µ2 · d
0
⇡exp(⇡IL)(s2)

= µ3 · d
0
⇡exp(⇡IL)(s3)

(a) (c) (d)(b)

Figure A.1: Concept Illustration. Here we illustrate several of the concepts from our paper. Suppose
our action space A contains three elements. Then for any s 2 S and policy ⇡, the value ⇡(s) can
be represented as a single point in the 2-dimensional probability simplex {(x, y) 2 R2

| x � 0, y �

0, x + y  1} shown as the grey area in (a). Suppose that the fiber f
�1(f) contains the three unique

states s
1
, s

2
, and s

3. In (a) we show the hypothetical values of ⇡exp when evaluated at these points.
Proposition 1 says that ⇡IL(s) lies in the convex hull of {⇡

teach(si)}3
i=1 visualized as a magenta

triangle in (a). Exactly where ⇡IL(s) lies depends on the probability measure µ, in (b) we show how
a particular instantiation of µ may result in a realization of ⇡IL(s) (not to scale). (c) shows how d

1
⇡teach

measures the distance between ⇡teach(s1) and ⇡IL(s1). Notice that it ignores s
2 and s

3. In (d), we
illustrate how d

0
⇡teach produces a “smoothed” measure of distance incorporating information about all

s
i.

As discussed in the main paper, we estimate d
0
⇡teach(⇡IL

f )(s) by first estimating ⇡IL
f with ⇡aux

f and
then forming the “plug-in” estimator d

0
⇡teach(⇡aux

f )(s). For brevity, we will write d
0
⇡teach(⇡aux

f )(s) as bd.
While such plug-in estimators are easy to estimate and conceptually compelling, they need not be
statistically efficient. Intuitively, the reason for this behavior is because we are spending too much
effort in trying to create a high quality estimate ⇡aux

f of ⇡IL
f when we should be willing to sacrifice

some of this quality in service of obtaining a better estimate of d
0
⇡teach(⇡IL

f )(s). Very general work in
this area has brought about the targeted maximum-likelihood estimation (TMLE) [63] framework.
Similar ideas may be fruitful in improving our estimator bd.

Another weakness of bd discussed in the main paper is that is not prospective. In the main paper we
assume, for readability, that we have trained the estimator ⇡aux

f before we train our main policy. In
practice, we train ⇡aux

f alongside our main policy. Thus the quality of ⇡aux
f will improve throughout

training. To clarify, suppose that, for t 2 [0, 1], ⇡aux
f,t is our estimate of ⇡IL

f after (100 · t)% of training
has completed. Now suppose that (100 · t)% of training has completed and we wish to update
our main policy using the ADVISOR loss given in Eq. (2). In our current approach we estimate
d
0
⇡teach(⇡IL

f )(s) using d
0
⇡teach(⇡aux

f,t )(s) when, ideally, we would prefer to use d
0
⇡teach(⇡aux

f,1)(s) from the
end of training. Of course we will not know the value of d

0
⇡teach(⇡aux

f,1)(s) until the end of training
but we can, in principle, use time-series methods to estimate it. To this end, let q! be a time-series
model with parameters ! 2 ⌦ (e.g., q! might be a recurrent neural network) and suppose that we
have stored the model checkpoints (⇡aux

f,i/K | i/K  t). We can then train q! to perform forward
prediction, for instance to minimize

bt·KcX

j=1

⇣
d
0
⇡teach(⇡aux

f,j/K)(s)� q!(s, (⇡aux
f,i/K(s))j�1

i=1 )
⌘2

,

and then use this trained q! to predict the value of d
0
⇡teach(⇡aux

f,1)(s). The advantage of this prospective
estimator q! is that it can detect that the auxiliary policy will eventually succeed in exactly imitating
the expert in a given state and thus allow for supervising the main policy with the expert cross entropy
loss earlier in training. The downside of such a method: it is significantly more complicated to
implement and requires running inference using saved model checkpoints.

A.5 Additional Task Details

In Figure 4 we gave a quick qualitative glimpse at the various tasks we use in our experiments.
Here, we provide additional details for each of them along with information about observation space
associated with each task. For training details for the tasks, please see Sec. A.10.
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A.5.1 PoisonedDoors (PD)

This environment is a reproduction of our example from Sec. 1. An agent is presented with N = 4
doors d1, . . . , d4. Door d1 is locked, requiring a fixed {0, 1, 2}

10 code to open, but always results in
a reward of 1 when opened. For some randomly chosen j 2 {2, 3, 4}, opening door dj results in a
reward of 2 and for i 62 {1, j}, opening door di results in a reward of �2. The agent must first choose
a door after which, if it has chosen door 1, it must enter the combination (receiving a reward of 0 if
it enters the incorrect combination) and, otherwise, the agent immediately receives its reward. See
Fig. 1.

A.5.2 2D-Lighthouse (2D-LH)

Goal Corner

AgentBoundary

A

A
Observ
-ations

Figure A.2: 2D-LIGHTHOUSE

2D variant of the exemplar grid-world task introduced in Ex. 2,
aimed to empirically verify our analysis of the imitation gap.
A reward awaits at a randomly chosen corner of a square grid
of size 2N + 1 and the agent can only see the local region, a
square of size 2i + 1 about itself (an f

i-restricted observation).
Additionally, all f

i allow the agent access to it’s previous ac-
tion. As explained in Ex. 2, we experiment with optimizing
f

i-policies when given supervision from f
j-optimal teachers

(i.e., experts that are optimal when restricted to f
j-restricted

observations). See Fig. A.2 for an illustration.

A.5.3 LavaCrossing (LC)

Initialized on the top-left corner the agent must navigate to
the bottom-right goal location. There exists at least one path
from start to end, navigating through obstacles. Refer to Fig. 4
where, for illustration, we show a simpler grid. Here the episode
terminates if the agent steps on any of the lava obstacles. This
LC environment has size 25⇥ 25 with 10 lava rivers (‘S25, N10’ as per the notation of [9]), which
are placed vertically or horizontally across the grid. The expert is a shortest path agent with access to
the entire environment’s connectivity graph and is implemented via the networkx python library.

A.5.4 WallCrossing (WC)

Similar to LAVACROSSING in structure and expert, except that obstacles are walls instead of lava.
Unlike lava (which immediately kills the agent upon touching), the agent may run into walls
without consequence (other than wasting time). Our environment is of size 25⇥ 25 with 10 walls
(‘S25, N10’).

A.5.5 WC/LC Switch

In this task the agent faces a more challenging filtration function. In addition to navigational actions,
agents for this task have a ‘switch’ action. Using this switch action, the agents can switch-on the lights
of an otherwise darkened environment which is implemented as an observation tensor of all zeros. In
WC, even in the dark, an agent can reach the target by taking random actions with non-negligible
probability. Achieving this in LC is nearly impossible as random actions will, with high probability,
result in stepping into lava and thereby immediately end the episode.

We experiment with two variants of this ‘switch’ – ONCE and FAULTY. In the ONCE SWITCH variant,
once the the ‘switch’ action is taken, the lights remain on for the remainder of the episode. This is
implemented as the unaffected observation tensor being available to the agent. In contrast, in the
FAULTY SWITCH variant, taking the ‘switch’ action will only turn the lights on for a single timestep.
This is implemented as observations being available for one timestep followed by zero tensors (unless
the ‘switch’ action is executed again).

The expert for these tasks is the same as for WC and LC. Namely, the expert always takes actions
along the shortest path from the agents current position to the goal and is unaffected by whether the
light is on or off. For the expert-policy-based methods this translates to the learner agent getting
perfect (navigational) supervision while struggling in the dark, with no cue for trying the switch
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action. For the expert-demonstrations-based methods this translates to the demonstrations being
populated with blacked-out observations paired with perfect actions: such actions are, of course,
difficult to imitate. As FAULTY is more difficult than ONCE (and LC more difficult than WC) we set
grid sizes to reduce the difference in difficulty between tasks. In particular, we choose to set WC
ONCE SWITCH on a (S25, N10) grid and the LC ONCE SWITCH on a (S15, N7) grid. Moreover,
WC FAULTY SWITCH is set with a (S15, N7) grid and LC FAULTY SWITCH with a (S9, N4) grid.

A.5.6 WC/LC Corrupt

In the SWITCH task, we study agents with observations affected by a challenging filtration function.
In this task we experiment with corrupting the expert’s actions. The expert policy flips over to a
random policy when the expert is NC steps away from the goal. For the expert-policy-based method
this translates to the expert outputting uniformly random actions once it is within NC steps from the
target. For the expert-demonstrations-based methods this translates to the demonstrations consisting
of some valid (observation, expert action) tuples, while the tuples close to the target have the expert
action sampled from a uniform distribution over the action space. WC CORRUPT is a (S25, N10)
grid with NC = 15, while the LC CORRUPT is significantly harder, hence is a (S15, N7) grid with
NC = 10.

A.5.7 PointGoal Navigation

In PointGoal Navigation, a randomly spawned agent must navigate to a goal specified by a relative-
displacement vector. The observation space is composed of rich egocentric RGB observations
(256⇥256⇥3) with a limited field of view. The action space is {move_ahead, rotate_right,
rotate_left, stop}. The task was formulated by [1] and implemented for the AIHABITAT
simulator by [54]. Our reward structure, train/val/test splits, PointNav dataset, and implementation
follow [54]. RL agents are trained using PPO following authors’ implementation7. The IL agent
is trained with on-policy behavior cloning using the shortest-path action. A static combination of
the PPO and BC losses (i.e. a simple sum of the PPO loss and IL cross entropy loss) is also used a
competing baseline for ADVISOR. Note that the agent observes a filtered egocentric observation
while the shortest-path action is inferred from the entire environment state leading to a significant
imitation gap. We train on the standard Gibson set of 76 scenes, and report metrics as an average over
the val. set consisting of 14 unseen scenes in AIHABITAT. We use a budget of 50 million frames, i.e.,
⇠2 days of training on 4 NVIDIA TitanX GPUs, and 28 CPUs for each method.

A.5.8 ObjectGoal Navigation

In ObjectGoal Navigation within the RoboTHOR environment, a randomly spawned agent must
navigate to a goal specified by an object category. In particular, the agent must search it’s environment
to find an object of the given category and take a stop action (which ends the episode regardless of
success) when that object is within 1m of the agent and visible. The observation space is composed
of rich egocentric RGB observations (300⇥400⇥3) with a limited field of view. The action space is
{move_ahead, rotate_right, rotate_left, look_up, ,look_down, stop}. The OBJECTNAV
task within the RoboTHOR environment was proposed by [14], we use the version of this task
corresponding to the 2021 RoboTHOR ObjectNav Challenge8 and use this challenge’s reward
structure, dataset, train/val/test splits, and their baseline model architecture. This challenge provides
implementations of PPO and DAgger where the DAgger agent is trained with supervision coming
from a shortest-path expert. We implement our ADVISOR methodology (with no teacher forcing) as
well as a baseline where we simply sum PPO and IL losses. We use a budget of 100 million frames,
i.e., ⇠2-5 days of training, 8 NVIDIA TitanX GPUs, and 56 CPUs for each method. At every update
step we use 60 rollouts of length 128 and perform 4 gradient steps with the rollout.

A.5.9 Cooperative Navigation

In Cooperative Navigation, there are three agents and three landmarks. The goal of the three agents is
to cover the three landmarks. Agents are encouraged to move toward uncovered landmarks and get
penalized when they collide with each other. Agents have limited visibility range. The agents can

7https://github.com/facebookresearch/habitat-lab
8https://ai2thor.allenai.org/robothor/cvpr-2021-challenge
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only observe other agents and landmarks within its visibility range (euclidean distance to the agent).
The action space has five dimensions. The first dimension is no-op, and the other four dimensions
represent the forward, backward, left, and right force applied to the agent. The RL agents are trained
with MADDPG [37] with a permutation invariant critic [36]. The IL agents are trained using DAgger.
The experts are pre-trained RL agents with no limits to their visibility range. Following [37, 36], we
use a budge of 1.5 million environment steps. We use one NVIDIA GTX1080 and 2 CPUs to train
these agents.

A.5.10 Observation spaces

2D-LH. Within our 2D-LH environment we wish to train our agent in the context of Proposition
1 so that the agent may learn any f -restricted policy. As the 2D-LH environment is quite simple,
we are able to uniquely encode the state observed by an agent using a 44

· 52 = 6400 dimensional
{0, 1}-valued vector such that any f -restricted policy can be represented as a linear function applied
to this observation (followed by a soft-max).9

PD. Within the PD environment the agent’s observed state is very simple: at every timestep the agent
observes an element of {0, 1, 2, 3} with 0 denoting that no door has yet been chosen, 1 denoting that
the agent has chosen door d1 but has not begun entering the code, 2 indicating that the agent has
chosen door d1 and has started entering the code, and 3 representing the final terminal state after a
door has been opened or combination incorrectly entered.

MINIGRID. The MINIGRID environments [9] enable agents with an egocentric “visual” observation
which, in practice, is an integer tensor of shape 7⇥ 7⇥ 3, where the channels contain integer labels
corresponding to the cell’s type, color, and state. Kindly see [9, 8] for details. For the above tasks,
the cell types belong to the set of (empty, lava, wall, goal).

POINTNAV. Agents in the POINTNAV task observe, at every step, egocentric RGB observations
(256⇥256⇥3) of their environment along with a relative displacement vector towards the goal (i.e. a
2d vector specifying the location of the goal relative the goal). See Figure 4 for an example of one
such egocentric RGB image.

OBJECTNAV. Agents in the OBJECTNAV task observe, at every step, egocentric RGB observations
(300⇥400⇥3) of their environment along with an object category (e.g. “BaseballBat”) specifying
their goal. See Figure 4 for an example of one such egocentric RGB image. Note that agents in the
OBJECTNAV task are generally also allowed access to egocentric depth frames, we do not use these
depth frames in our experiments as their use slows simulation speed.

COOPNAV. At each step, each agent in COOPNAV task observes a 14-dimensional vector, which
contains the absolute location and speed of itself, the relative locations to the three landmarks, and
the relative location to other two agents.

A.6 ADVISOR can outperform BC in the no-imitation-gap setting

Recall the setting of our 2D-LH experiments in Section 4.4 where we train f
i-restricted policies

(i.e., an agent that can see i grid locations away) using f
j-optimal teachers. In particular, we train

25 policies on each i, j pair where for 1  i  j  15 and i, j are both odd. Each trained policy is
then evaluated on 200 random episodes and we record average performance across various metrics
across these episodes. Complementing Fig. 6 from the main paper, Fig. A.3 shows the box plots of
the trained policies average episode lengths, lower being better, when training with BC, BC! PPO,
ADVISOR, and PPO (PPO does not use expert supervision so we simply report the performance of
PPO trained f

i-restricted policies for each i).

As might be expected: ADVISOR has consistently low episode lengths across all i, j pairs suggesting
that ADVISOR is able to mitigate the impact of the imitation gap. One question that is not well-
answered by Fig. A.3 is that of the relative performance of ADVISOR and IL methods when there

is no imitation gap, namely the i = j case. As ADVISOR requires the training of an auxiliary
policy in addition (but, in parallel) to a main policy, we test the sample efficiency of ADVISOR
head-on with IL methods. Table A.1 records the percentage of runs in which ADV, BC, and † attain
near optimal (within 5%) performance when trained in the no-imitation-gap setting (i.e. i = j) for

9As the softmax function prevents us from learning a truly deterministic policy we can only learn a policy
arbitrarily close to such policies. In our setting, this distinction is irrelevant.
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Method % converged to near optimal performance
i = 1 3 5 7 9 11 13 15

ADV 1 1 1 1 1 1 1 1
BC 1 0.72 0.52 0.72 0.68 0.84 0.96 1
† 0.88 0.56 0.24 0.08 0.52 0.96 1 1

Table A.1: Comparing efficiency of IL vs. ADVISOR in 2D-LH. Here we report the percentage
of runs (of 25 runs per (method, i) pair) that various methods converged to near-optimal performance
(within 5% of optimal) with a budget of 300,000 training steps. Here i corresponds to an f

i-restricted
(student) policy trained with expert supervision from an f

i-optimal teacher (i.e. the ‘no-imitation-gap’
setting).

different grid visibility i. We find that only ADVISOR consistently reaches near-optimal performance
within the budget of 300,000 training steps. We suspect that this is due to the RL loss encouraging
early exploration that results in the agent more frequently entering states where imitation learning is
easier. This interpretation is supported by the observation that ADV, BC, and † all consistently reach
near-optimal performance when i is very small (almost all states look identical so exploration can be
of little help) and when i is quite large (the agent can see nearly the whole environment so there is no
need to explore). While we do no expect this trend to hold in all cases, indeed there are likely many
cases where pure-IL is more effective than ADV in the no-imitation-gap setting, it is encouraging to
see that ADV can bring benefits even when there is no imitation gap.

A.7 Additional baseline details

A.7.1 Baselines details for 2D-LH, PD, and MINIGRID tasks

In Tab. A.2, we include details about the baselines considered in this work, including – purely RL
(1), purely IL (2� 4, 9), a sequential combination of IL/RL (6� 8), static combinations of IL/RL
(5, 10), a method that uses expert demonstrations to generate rewards for reward-based RL (i.e. GAIL,
11), and our dynamic combinations (12� 15). Our imitation learning baselines include those which
learn from both expert policy (i.e. an expert action is assumed available for any state) and expert
demonstrations (offline dataset of pre-collected trajectories).

In our study of hyperparameter robustness (using the PD and MINIGRID tasks) the hyperparameters
(hps) we consider for optimization have been chosen as those which, in preliminary experiments,
had a substantial impact on model performance. This includes the learning rate (lr), portion of the
training steps devoted to the first stage in methods with two stages (stage-split), and the temperature
parameter in the ADVISOR weight function (↵).10 Note that, the random environment seed also acts
as an implicit hyperparameter. We sample hyperparameters uniformly at random from various sets.
In particular, we sample lr from [10�4

, 0.5) on a log-scale, stage-split from [0.1, 0.9), and ↵ from
{4, 8, 16, 32}.

In the below we give additional detailis regarding the GAIL and ADVdemo + PPO methods.

Generative adversarial imitation learning (GAIL). For a comprehensive overview of GAIL, please
see [24]. Our implementation closely follows that of Ilya Kostrikov [32]. We found GAIL to be quite
unstable without adopting several critical implementation details. In particular, we found it critical
to (1) normalize rewards using a (momentum-based) running average of the standard deviation of
past returns and (2) provide an extensive “warmup” period in which the discriminator network is
pretrained. Because of the necessity of this “warmup period”, our GAIL baseline observes more
expert supervision and is given a budget of substantially more gradient steps than all other methods.
Because of this, our comparison against GAIL disadvantages our ADVISOR method. Despite this
disadvantage, ADVISOR still outperforms.

The ADVdemo +PPO method. As described in the main paper, the ADVdemo +PPO method attempts
to bring the benefits of our ADVISOR methodology to the setting where expert demonstrations are

10See Sec. 3.2 for definition of the weight function for ADVISOR.
11While implemented with supervision from expert policy, due to the teacher forcing being set to 1.0, this

method can never explore beyond states (and supervision) in expert demonstrations.
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# Method IL/RL Expert supervision Hps. searched
1 PPO RL Policy lr
2 BC IL Policy lr
3 † IL Policy lr, stage-split
4 BCtf=1 IL Policy11 lr
5 BC + PPO IL&RL Policy lr
6 BC! PPO IL!RL Policy lr, stage-split
7 †! PPO IL!RL Policy lr, stage-split
8 BCtf=1

! PPO IL!RL Policy lr, stage-split
9 BCdemo IL Demonstrations lr
10 BCdemo + PPO IL&RL Demonstrations lr
11 GAIL IL&RL Demonstrations lr

12 ADV IL&RL Policy lr, ↵
13 †! ADV IL&RL Policy lr, ↵, stage-split
14 BCtf=1

! ADV IL&RL Policy lr, ↵, stage-split
15 BCdemo + ADV IL&RL Demonstrations lr, ↵

Table A.2: Baseline details. IL/RL: Nature of learning, Expert supervision: the type of expert
supervision leveraged by each method, Hps. searched: hps. that were randomly searched over, fairly
done with the same budget (see Sec. A.9 for details).

available but an expert policy (i.e., an expert that can be evaluated at arbitrary states) is not. Attempting
to compute the ADVISOR loss (recall Eq. (2)) on off-policy demonstrations is complicated however,
as our RL loss assumes access to on-policy demonstrations. In theory, importance sampling methods,
see, e.g., [39], can be used to “reinterpret” expert demonstrations as though they were on-policy.
But such methods are known to be somewhat unstable, non-trivial to implement, and may require
information about the expert policy that we do not have access to. For these reasons, we choose to
use a simple solution: when computing the ADVISOR loss on expert demonstrations we ignore the
RL loss. Thus ADVdemo + PPO works by looping between two phases:

• Collect an (on-policy) rollout using the agent’s policy, compute the PPO loss for this rollout
and perform gradient descent on this loss to update the parameters.

• Sample a rollout from the expert demonstrations and, using this rollout, compute the
demonstration-based ADVISOR loss

L
ADV-demo(✓) = Edemos.[w(S) · CE(⇡teach(S),⇡f (S; ✓))], (10)

and perform gradient descent on this loss to update the parameters.

A.7.2 Baselines used in POINTNAV experiments

Our POINTNAV baselines are described in Appendix A.5.9. See also Table A.4.

A.7.3 Baselines details for OBJECTNAV experiments

Our OBJECTNAV baselines are described in Appendix A.5.8. See also Table A.4.

A.7.4 Baselines used in COOPNAV experiments

Our COOPNAV baselines are described in Appendix A.5.9. We follow the implementation of [36].

A.8 Architecture Details

2D-LH model. As discussed in Sec. A.5.10, we have designed the observation given to our agent
so that a simple linear layer followed by a soft-max function is sufficient to capture any f -restricted
policy. As such, our main and auxiliary actor models for this task are simply linear functions mapping
the input 6400-dimensional observation to a 4-dimensional output vector followed by a soft-max
non-linearity. The critic is computed similarly but with a 1-dimensional output and no non-linearity.
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PD model. Our PD model has three sequential components. The first embedding layer maps a given
observation, a value in {0, 1, 2, 3}, to an 128-dimensional embedding. This 128-dimensional vector
is then fed into a 1-layer LSTM (with a 128-dimensional hidden state) to produce an 128-output
representation h. We then compute our main actor policy by applying a 128⇥ 7 linear layer followed
by a soft-max non-linearity. The auxiliary actor is produced similarly but with separate parameters in
its linear layer. Finally the critic’s value is generated by applying a 128⇥ 1 linear layer to h.

MINIGRID model. Here we detail each component of the model architecture illustrated in Fig. 3.
The encoder (‘Enc.’) converts observation tensors (integer tensor of shape 7⇥7⇥3) to a corresponding
embedding tensor via three embedding sets (of length 8) corresponding to type, color, and state of
the object. The observation tensor, which represents the ‘lights-out’ condition, has a unique (i.e.,
different from the ones listed by [9]) type, color and state. This prevents any type, color or state from
having more than one connotation. The output of the encoder is of size 7⇥ 7⇥ 24. This tensor is
flattened and fed into a (single-layered) LSTM with a 128-dimensional hidden space. The output of
the LSTM is fed to the main actor, auxiliary actor, and the critic. All of these are single linear layers
with output size of |A|, |A| and 1, respectively (main and auxiliary actors are followed by soft-max
non-linearities).

POINTNAV, OBJECTNAV, and COOPNAV model.
For the POINTNAV [54], OBJECTNAV [14], and COOPNAV [36] tasks, we (for fair comparison) use
model architectures from prior work. For use with ADVISOR, these model architectures require an
additional auxiliary policy head. We define this auxiliary policy head as a linear layer applied to the
model’s final hidden representation followed by a softmax non-linearity.

A.9 Fair Hyperparameter Tuning

As discussed in the main paper, we attempt to ensuring that comparisons to baselines are fair.
In particular, we hope to avoid introducing misleading bias in our results by extensively tuning
the hyperparameters (hps) of our ADVISOR methodology while leaving other methods relatively
un-tuned.

2D-LH: Tune by Tuning a Competing Method. The goal of our experiments with the 2D-LH
environment are, principally, to highlight that increasing the imitation gap can have a substantial
detrimental impact on the quality of policies learned by training IL. Because of this, we wish to give
IL the greatest opportunity to succeed and thus we are not, as in our PD/MINIGRID experiments,
attempting to understand its expected performance when we must search for good hyperparameters.
To this end, we perform the following procedure for every i, j 2 {1, 3, 5 . . . , 15} with i < j.

For every learning rate � 2 {100 values evenly spaced in [10�4
, 1] on a log-scale} we train a f

i-
restricted policy to imitate a f

j-optimal teacher using BC. For each such trained policy, we roll
out trajectories from the policy across 200 randomly sampled episodes (in the 2D-LH there is no
distinction between training, validation, and test episodes as there are only four unique initial world
settings). For each rollout, we compute the average cross entropy between the learned policy and
the expert’s policy at every step. A “best” learning rate �i,j is then chosen by selecting the learning
rate resulting in the smallest cross entropy (after having smoothed the results with a locally-linear
regression model [70]).

A final learning rate is then chosen as the average of the �i,j and this learning rate is then used
when training all methods to produce the plots in Fig. 6. As some baselines require additional
hyperparameter choices, these other hyperparameters were chosen heuristically (post-hoc experiments
suggest that results for the other methods are fairly robust to these other hyperparameters).

PD and MINIGRID tasks: Random Hyperparameter Evaluations. As described in the main
paper, we follow the best practices suggested by Dodge et al. [15]. In particular, for our PD and
MINIGRID tasks we train each of our baselines when sampling that method’s hyperparameters, see
Table A.2 and recall Sec. A.7, at random 50 times. Our plots, e.g., Fig. 5, then report an estimate of
the expected (validation set) performance of each of our methods when choosing the best performing
model from a fixed number of random hyperparameter evaluations. Unlike [15], we compute this
estimate using a U-statistic [64, Chapter 12] which is unbiased. Shaded regions encapsulate the
25-to-75th quantiles of the bootstrap distribution of this statistic.

23



0 200 400 600 800
Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

a
d
iu

s
(
i
)

0 100
Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

a
d
iu

s
(
f

i
)

0 100
Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

a
d
iu

s
(
f

i
)

0 200 400 600 800
Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

a
d
iu

s
(
f

i
)

(a) PPO (b) Behavior Cloning (d) ADV(c)

1

3

5

7

9

11

1

3

5

7

9

11

1

3

5

7

9

11

1

3

5

7

9

11

0 100
Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

ad
iu

s
(f

i )

0 200 400 600 800
Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

ad
iu

s
(f

i )

0 100
Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

ad
iu

s
(f

i )

0 200 400 600 800
Avg Ep Length

1

3

5

7

9

11

V
ie

w
R

ad
iu

s
(f

i )

V
ie

w
R

ad
iu

s
of

S
tu

d
en

t
A

ge
nt

(i
)

<latexit sha1_base64="kfTlDAwwnnKpk6+9dOa8osmG24A=">AAACInicbVDLTgIxFO3gC/GFunTTCCa4ITNs1B3GjUt88EiAkE7nDjR0OpO2IyETvsWNv+LGhUZdmfgxdoCFgidpc3Lu+7gRZ0rb9peVWVldW9/Ibua2tnd29/L7Bw0VxpJCnYY8lC2XKOBMQF0zzaEVSSCBy6HpDq/SePMBpGKhuNfjCLoB6QvmM0q0kXr5i6RDQWiQTPRxg8EI3xKPxQqHPu4IGKV98Z2OPZOEL/vpj0tFVjyd9PIFu2xPgZeJMycFNEetl//oeCGNA9ODcqJU27Ej3U2I1IxymOQ6sYKI0CHpQ9tQQQJQ3WR64gSfGMXDfijNMztM1d8VCQmUGgeuyQyIHqjFWCr+F2vH2j/vJkxEsQZBZ4P8mGMd4tQv7DEJVPOxIYRKZnbFdEAkocYzlTMmOIsnL5NGpezYZeemUqjaczuy6AgdoxJy0BmqomtUQ3VE0SN6Rq/ozXqyXqx363OWmrHmNYfoD6zvH4QxouI=</latexit><latexit sha1_base64="kfTlDAwwnnKpk6+9dOa8osmG24A=">AAACInicbVDLTgIxFO3gC/GFunTTCCa4ITNs1B3GjUt88EiAkE7nDjR0OpO2IyETvsWNv+LGhUZdmfgxdoCFgidpc3Lu+7gRZ0rb9peVWVldW9/Ibua2tnd29/L7Bw0VxpJCnYY8lC2XKOBMQF0zzaEVSSCBy6HpDq/SePMBpGKhuNfjCLoB6QvmM0q0kXr5i6RDQWiQTPRxg8EI3xKPxQqHPu4IGKV98Z2OPZOEL/vpj0tFVjyd9PIFu2xPgZeJMycFNEetl//oeCGNA9ODcqJU27Ej3U2I1IxymOQ6sYKI0CHpQ9tQQQJQ3WR64gSfGMXDfijNMztM1d8VCQmUGgeuyQyIHqjFWCr+F2vH2j/vJkxEsQZBZ4P8mGMd4tQv7DEJVPOxIYRKZnbFdEAkocYzlTMmOIsnL5NGpezYZeemUqjaczuy6AgdoxJy0BmqomtUQ3VE0SN6Rq/ozXqyXqx363OWmrHmNYfoD6zvH4QxouI=</latexit><latexit sha1_base64="kfTlDAwwnnKpk6+9dOa8osmG24A=">AAACInicbVDLTgIxFO3gC/GFunTTCCa4ITNs1B3GjUt88EiAkE7nDjR0OpO2IyETvsWNv+LGhUZdmfgxdoCFgidpc3Lu+7gRZ0rb9peVWVldW9/Ibua2tnd29/L7Bw0VxpJCnYY8lC2XKOBMQF0zzaEVSSCBy6HpDq/SePMBpGKhuNfjCLoB6QvmM0q0kXr5i6RDQWiQTPRxg8EI3xKPxQqHPu4IGKV98Z2OPZOEL/vpj0tFVjyd9PIFu2xPgZeJMycFNEetl//oeCGNA9ODcqJU27Ej3U2I1IxymOQ6sYKI0CHpQ9tQQQJQ3WR64gSfGMXDfijNMztM1d8VCQmUGgeuyQyIHqjFWCr+F2vH2j/vJkxEsQZBZ4P8mGMd4tQv7DEJVPOxIYRKZnbFdEAkocYzlTMmOIsnL5NGpezYZeemUqjaczuy6AgdoxJy0BmqomtUQ3VE0SN6Rq/ozXqyXqx363OWmrHmNYfoD6zvH4QxouI=</latexit><latexit sha1_base64="kfTlDAwwnnKpk6+9dOa8osmG24A=">AAACInicbVDLTgIxFO3gC/GFunTTCCa4ITNs1B3GjUt88EiAkE7nDjR0OpO2IyETvsWNv+LGhUZdmfgxdoCFgidpc3Lu+7gRZ0rb9peVWVldW9/Ibua2tnd29/L7Bw0VxpJCnYY8lC2XKOBMQF0zzaEVSSCBy6HpDq/SePMBpGKhuNfjCLoB6QvmM0q0kXr5i6RDQWiQTPRxg8EI3xKPxQqHPu4IGKV98Z2OPZOEL/vpj0tFVjyd9PIFu2xPgZeJMycFNEetl//oeCGNA9ODcqJU27Ej3U2I1IxymOQ6sYKI0CHpQ9tQQQJQ3WR64gSfGMXDfijNMztM1d8VCQmUGgeuyQyIHqjFWCr+F2vH2j/vJkxEsQZBZ4P8mGMd4tQv7DEJVPOxIYRKZnbFdEAkocYzlTMmOIsnL5NGpezYZeemUqjaczuy6AgdoxJy0BmqomtUQ3VE0SN6Rq/ozXqyXqx363OWmrHmNYfoD6zvH4QxouI=</latexit>

View Radius
of Teacher (j)

<latexit sha1_base64="M3gyPQ0J80ILoTPMHW0nRyWzTlw=">AAACHHicbVDLTgIxFO3gC/GFunTTCCa4ITO40CWJG5doeCUwIZ1yByqdzqTtSMiED3Hjr7hxoTFuXJj4NxaYhYInaXJyzn30Hi/iTGnb/rYya+sbm1vZ7dzO7t7+Qf7wqKnCWFJo0JCHsu0RBZwJaGimObQjCSTwOLS80fXMbz2AVCwUdT2JwA3IQDCfUaKN1MtfJF0KQoNkYoCbDMb4jvRZrHBXwHg2FIc+rgOhQ5AYl4r3xfNpL1+wy/YceJU4KSmgFLVe/rPbD2kcmEWUE6U6jh1pNyFSM8phmuvGCiJCR2QAHUMFCUC5yfy4KT4zSh/7oTRPaDxXf3ckJFBqEnimMiB6qJa9mfif14m1f+UmTESxBkEXi/yYYx3iWVK4zyRQzSeGECqZ+SumQyIJNWmpnAnBWT55lTQrZccuO7eVQtVO48iiE3SKSshBl6iKblANNRBFj+gZvaI368l6sd6tj0Vpxkp7jtEfWF8/zpygbQ==</latexit><latexit sha1_base64="M3gyPQ0J80ILoTPMHW0nRyWzTlw=">AAACHHicbVDLTgIxFO3gC/GFunTTCCa4ITO40CWJG5doeCUwIZ1yByqdzqTtSMiED3Hjr7hxoTFuXJj4NxaYhYInaXJyzn30Hi/iTGnb/rYya+sbm1vZ7dzO7t7+Qf7wqKnCWFJo0JCHsu0RBZwJaGimObQjCSTwOLS80fXMbz2AVCwUdT2JwA3IQDCfUaKN1MtfJF0KQoNkYoCbDMb4jvRZrHBXwHg2FIc+rgOhQ5AYl4r3xfNpL1+wy/YceJU4KSmgFLVe/rPbD2kcmEWUE6U6jh1pNyFSM8phmuvGCiJCR2QAHUMFCUC5yfy4KT4zSh/7oTRPaDxXf3ckJFBqEnimMiB6qJa9mfif14m1f+UmTESxBkEXi/yYYx3iWVK4zyRQzSeGECqZ+SumQyIJNWmpnAnBWT55lTQrZccuO7eVQtVO48iiE3SKSshBl6iKblANNRBFj+gZvaI368l6sd6tj0Vpxkp7jtEfWF8/zpygbQ==</latexit><latexit sha1_base64="M3gyPQ0J80ILoTPMHW0nRyWzTlw=">AAACHHicbVDLTgIxFO3gC/GFunTTCCa4ITO40CWJG5doeCUwIZ1yByqdzqTtSMiED3Hjr7hxoTFuXJj4NxaYhYInaXJyzn30Hi/iTGnb/rYya+sbm1vZ7dzO7t7+Qf7wqKnCWFJo0JCHsu0RBZwJaGimObQjCSTwOLS80fXMbz2AVCwUdT2JwA3IQDCfUaKN1MtfJF0KQoNkYoCbDMb4jvRZrHBXwHg2FIc+rgOhQ5AYl4r3xfNpL1+wy/YceJU4KSmgFLVe/rPbD2kcmEWUE6U6jh1pNyFSM8phmuvGCiJCR2QAHUMFCUC5yfy4KT4zSh/7oTRPaDxXf3ckJFBqEnimMiB6qJa9mfif14m1f+UmTESxBkEXi/yYYx3iWVK4zyRQzSeGECqZ+SumQyIJNWmpnAnBWT55lTQrZccuO7eVQtVO48iiE3SKSshBl6iKblANNRBFj+gZvaI368l6sd6tj0Vpxkp7jtEfWF8/zpygbQ==</latexit><latexit sha1_base64="M3gyPQ0J80ILoTPMHW0nRyWzTlw=">AAACHHicbVDLTgIxFO3gC/GFunTTCCa4ITO40CWJG5doeCUwIZ1yByqdzqTtSMiED3Hjr7hxoTFuXJj4NxaYhYInaXJyzn30Hi/iTGnb/rYya+sbm1vZ7dzO7t7+Qf7wqKnCWFJo0JCHsu0RBZwJaGimObQjCSTwOLS80fXMbz2AVCwUdT2JwA3IQDCfUaKN1MtfJF0KQoNkYoCbDMb4jvRZrHBXwHg2FIc+rgOhQ5AYl4r3xfNpL1+wy/YceJU4KSmgFLVe/rPbD2kcmEWUE6U6jh1pNyFSM8phmuvGCiJCR2QAHUMFCUC5yfy4KT4zSh/7oTRPaDxXf3ckJFBqEnimMiB6qJa9mfif14m1f+UmTESxBkEXi/yYYx3iWVK4zyRQzSeGECqZ+SumQyIJNWmpnAnBWT55lTQrZccuO7eVQtVO48iiE3SKSshBl6iKblANNRBFj+gZvaI368l6sd6tj0Vpxkp7jtEfWF8/zpygbQ==</latexit>

j = 3, 5, ..., 15
<latexit sha1_base64="SBO5HTTYcpKYPhSMMLD0PSE8TVM=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQqEUvQsGLxwr2A9pQNttNu3azCbsboZb+Ei8eFPHqT/Hmv3Hb5qCtDwYe780wMy9IOFPadb+t3Nr6xuZWfruws7u3X7QPDpsqTiWhDRLzWLYDrChngjY005y2E0lxFHDaCkY3M7/1SKVisbjX44T6ER4IFjKCtZF6dvHh+ryCqhXkOE4FedWeXXIddw60SryMlCBDvWd/dfsxSSMqNOFYqY7nJtqfYKkZ4XRa6KaKJpiM8IB2DBU4osqfzA+folOj9FEYS1NCo7n6e2KCI6XGUWA6I6yHatmbif95nVSHV/6EiSTVVJDFojDlSMdolgLqM0mJ5mNDMJHM3IrIEEtMtMmqYELwll9eJc0zx3Md7+6iVCtnceThGE6gDB5cQg1uoQ4NIJDCM7zCm/VkvVjv1seiNWdlM0fwB9bnDxwQkAo=</latexit><latexit sha1_base64="SBO5HTTYcpKYPhSMMLD0PSE8TVM=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQqEUvQsGLxwr2A9pQNttNu3azCbsboZb+Ei8eFPHqT/Hmv3Hb5qCtDwYe780wMy9IOFPadb+t3Nr6xuZWfruws7u3X7QPDpsqTiWhDRLzWLYDrChngjY005y2E0lxFHDaCkY3M7/1SKVisbjX44T6ER4IFjKCtZF6dvHh+ryCqhXkOE4FedWeXXIddw60SryMlCBDvWd/dfsxSSMqNOFYqY7nJtqfYKkZ4XRa6KaKJpiM8IB2DBU4osqfzA+folOj9FEYS1NCo7n6e2KCI6XGUWA6I6yHatmbif95nVSHV/6EiSTVVJDFojDlSMdolgLqM0mJ5mNDMJHM3IrIEEtMtMmqYELwll9eJc0zx3Md7+6iVCtnceThGE6gDB5cQg1uoQ4NIJDCM7zCm/VkvVjv1seiNWdlM0fwB9bnDxwQkAo=</latexit><latexit sha1_base64="SBO5HTTYcpKYPhSMMLD0PSE8TVM=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQqEUvQsGLxwr2A9pQNttNu3azCbsboZb+Ei8eFPHqT/Hmv3Hb5qCtDwYe780wMy9IOFPadb+t3Nr6xuZWfruws7u3X7QPDpsqTiWhDRLzWLYDrChngjY005y2E0lxFHDaCkY3M7/1SKVisbjX44T6ER4IFjKCtZF6dvHh+ryCqhXkOE4FedWeXXIddw60SryMlCBDvWd/dfsxSSMqNOFYqY7nJtqfYKkZ4XRa6KaKJpiM8IB2DBU4osqfzA+folOj9FEYS1NCo7n6e2KCI6XGUWA6I6yHatmbif95nVSHV/6EiSTVVJDFojDlSMdolgLqM0mJ5mNDMJHM3IrIEEtMtMmqYELwll9eJc0zx3Md7+6iVCtnceThGE6gDB5cQg1uoQ4NIJDCM7zCm/VkvVjv1seiNWdlM0fwB9bnDxwQkAo=</latexit><latexit sha1_base64="SBO5HTTYcpKYPhSMMLD0PSE8TVM=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQqEUvQsGLxwr2A9pQNttNu3azCbsboZb+Ei8eFPHqT/Hmv3Hb5qCtDwYe780wMy9IOFPadb+t3Nr6xuZWfruws7u3X7QPDpsqTiWhDRLzWLYDrChngjY005y2E0lxFHDaCkY3M7/1SKVisbjX44T6ER4IFjKCtZF6dvHh+ryCqhXkOE4FedWeXXIddw60SryMlCBDvWd/dfsxSSMqNOFYqY7nJtqfYKkZ4XRa6KaKJpiM8IB2DBU4osqfzA+folOj9FEYS1NCo7n6e2KCI6XGUWA6I6yHatmbif95nVSHV/6EiSTVVJDFojDlSMdolgLqM0mJ5mNDMJHM3IrIEEtMtMmqYELwll9eJc0zx3Md7+6iVCtnceThGE6gDB5cQg1uoQ4NIJDCM7zCm/VkvVjv1seiNWdlM0fwB9bnDxwQkAo=</latexit>

j = 5, 7, ..., 15
<latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit><latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit><latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="xsUfcz7xnEPOFKMDU/0j/9Tqn/g=">AAAB7XicbZBLSwMxFIXv1Fet1Y5u3QSL4KIMM0KpG0Fw47KCfUA7lEyaaWOTzJBkhDr0l7hxoYh/x53/xvSx0NYDgY9zEu7NiVLOtPH9b6ewtb2zu1fcLx2UD48q7nG5rZNMEdoiCU9UN8KaciZpyzDDaTdVFIuI0040uZ3nnSeqNEvkg5mmNBR4JFnMCDbWGriVx+t6DTVqyPO8GgrqA7fqe/5CaBOCFVRhpebA/eoPE5IJKg3hWOte4KcmzLEyjHA6K/UzTVNMJnhEexYlFlSH+WLxGTq3zhDFibJHGrRwf7/IsdB6KiJ7U2Az1uvZ3Pwv62UmvgpzJtPMUEmWg+KMI5OgeQtoyBQlhk8tYKKY3RWRMVaYGNtVyZYQrH95E9qXXuB7wb0PRTiFM7iAABpwA3fQhBYQyOAF3uDdeXZenY9lXQVn1dsJ/JHz+QP1Y47F</latexit><latexit sha1_base64="xsUfcz7xnEPOFKMDU/0j/9Tqn/g=">AAAB7XicbZBLSwMxFIXv1Fet1Y5u3QSL4KIMM0KpG0Fw47KCfUA7lEyaaWOTzJBkhDr0l7hxoYh/x53/xvSx0NYDgY9zEu7NiVLOtPH9b6ewtb2zu1fcLx2UD48q7nG5rZNMEdoiCU9UN8KaciZpyzDDaTdVFIuI0040uZ3nnSeqNEvkg5mmNBR4JFnMCDbWGriVx+t6DTVqyPO8GgrqA7fqe/5CaBOCFVRhpebA/eoPE5IJKg3hWOte4KcmzLEyjHA6K/UzTVNMJnhEexYlFlSH+WLxGTq3zhDFibJHGrRwf7/IsdB6KiJ7U2Az1uvZ3Pwv62UmvgpzJtPMUEmWg+KMI5OgeQtoyBQlhk8tYKKY3RWRMVaYGNtVyZYQrH95E9qXXuB7wb0PRTiFM7iAABpwA3fQhBYQyOAF3uDdeXZenY9lXQVn1dsJ/JHz+QP1Y47F</latexit><latexit sha1_base64="NOBoj7mKVwP+oA9+Bye2Qzj0Jj4=">AAAB+HicbVBNS8NAEJ34WetHox69LBahhxISodSLUPDisYL9gDaUzXbTrt1swu5GqKG/xIsHRbz6U7z5b9y2OWjrg4HHezPMzAsSzpR23W9rY3Nre2e3sFfcPzg8KtnHJ20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObud95pFKxWNzraUL9CI8ECxnB2kgDu/RwXauiehU5jlNFXm1gl13HXQCtEy8nZcjRHNhf/WFM0ogKTThWque5ifYzLDUjnM6K/VTRBJMJHtGeoQJHVPnZ4vAZujDKEIWxNCU0Wqi/JzIcKTWNAtMZYT1Wq95c/M/rpTq88jMmklRTQZaLwpQjHaN5CmjIJCWaTw3BRDJzKyJjLDHRJquiCcFbfXmdtC8dz3W8O7fcqORxFOAMzqECHtShAbfQhBYQSOEZXuHNerJerHfrY9m6YeUzp/AH1ucPIQqQCg==</latexit><latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit><latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit><latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit><latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit><latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit><latexit sha1_base64="AMMWZnDChpjW9Zfsy6/YDgu9lsQ=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiKVehIIXjxXsB7ShbLbbdu1mE3Y3Qg39JV48KOLVn+LNf+O2zUFbHww83pthZl4Qc6a0635buY3Nre2d/G5hb//gsGgfHbdUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HUxu5n77kUrFInGvpzH1QzwSbMgI1kbq28WH62oF1SrIcZwK8qp9u+Q67gJonXgZKUGGRt/+6g0ikoRUaMKxUl3PjbWfYqkZ4XRW6CWKxphM8Ih2DRU4pMpPF4fP0LlRBmgYSVNCo4X6eyLFoVLTMDCdIdZjterNxf+8bqKHV37KRJxoKshy0TDhSEdongIaMEmJ5lNDMJHM3IrIGEtMtMmqYELwVl9eJ60Lx3Md7+6yVC9nceThFM6gDB7UoA630IAmEEjgGV7hzXqyXqx362PZmrOymRP4A+vzByJKkA4=</latexit>

j = 7, 9, ..., 15
<latexit sha1_base64="Fw4Dw+WC/rWdb3Fl66YkH6yvZ6k=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiFI9CAUvHivYD2hD2Ww37drNJuxuhFr6S7x4UMSrP8Wb/8Ztm4O2Phh4vDfDzLwg4Uxp1/22cmvrG5tb+e3Czu7eftE+OGyqOJWENkjMY9kOsKKcCdrQTHPaTiTFUcBpKxjdzPzWI5WKxeJejxPqR3ggWMgI1kbq2cWH62oFXVWQ4zgV5F307JLruHOgVeJlpAQZ6j37q9uPSRpRoQnHSnU8N9H+BEvNCKfTQjdVNMFkhAe0Y6jAEVX+ZH74FJ0apY/CWJoSGs3V3xMTHCk1jgLTGWE9VMveTPzP66Q6vPQnTCSppoIsFoUpRzpGsxRQn0lKNB8bgolk5lZEhlhiok1WBROCt/zyKmmeOZ7reHfnpVo5iyMPx3ACZfCgCjW4hTo0gEAKz/AKb9aT9WK9Wx+L1pyVzRzBH1ifPyiEkBI=</latexit><latexit sha1_base64="Fw4Dw+WC/rWdb3Fl66YkH6yvZ6k=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiFI9CAUvHivYD2hD2Ww37drNJuxuhFr6S7x4UMSrP8Wb/8Ztm4O2Phh4vDfDzLwg4Uxp1/22cmvrG5tb+e3Czu7eftE+OGyqOJWENkjMY9kOsKKcCdrQTHPaTiTFUcBpKxjdzPzWI5WKxeJejxPqR3ggWMgI1kbq2cWH62oFXVWQ4zgV5F307JLruHOgVeJlpAQZ6j37q9uPSRpRoQnHSnU8N9H+BEvNCKfTQjdVNMFkhAe0Y6jAEVX+ZH74FJ0apY/CWJoSGs3V3xMTHCk1jgLTGWE9VMveTPzP66Q6vPQnTCSppoIsFoUpRzpGsxRQn0lKNB8bgolk5lZEhlhiok1WBROCt/zyKmmeOZ7reHfnpVo5iyMPx3ACZfCgCjW4hTo0gEAKz/AKb9aT9WK9Wx+L1pyVzRzBH1ifPyiEkBI=</latexit><latexit sha1_base64="Fw4Dw+WC/rWdb3Fl66YkH6yvZ6k=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiFI9CAUvHivYD2hD2Ww37drNJuxuhFr6S7x4UMSrP8Wb/8Ztm4O2Phh4vDfDzLwg4Uxp1/22cmvrG5tb+e3Czu7eftE+OGyqOJWENkjMY9kOsKKcCdrQTHPaTiTFUcBpKxjdzPzWI5WKxeJejxPqR3ggWMgI1kbq2cWH62oFXVWQ4zgV5F307JLruHOgVeJlpAQZ6j37q9uPSRpRoQnHSnU8N9H+BEvNCKfTQjdVNMFkhAe0Y6jAEVX+ZH74FJ0apY/CWJoSGs3V3xMTHCk1jgLTGWE9VMveTPzP66Q6vPQnTCSppoIsFoUpRzpGsxRQn0lKNB8bgolk5lZEhlhiok1WBROCt/zyKmmeOZ7reHfnpVo5iyMPx3ACZfCgCjW4hTo0gEAKz/AKb9aT9WK9Wx+L1pyVzRzBH1ifPyiEkBI=</latexit><latexit sha1_base64="Fw4Dw+WC/rWdb3Fl66YkH6yvZ6k=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIPZSQiFI9CAUvHivYD2hD2Ww37drNJuxuhFr6S7x4UMSrP8Wb/8Ztm4O2Phh4vDfDzLwg4Uxp1/22cmvrG5tb+e3Czu7eftE+OGyqOJWENkjMY9kOsKKcCdrQTHPaTiTFUcBpKxjdzPzWI5WKxeJejxPqR3ggWMgI1kbq2cWH62oFXVWQ4zgV5F307JLruHOgVeJlpAQZ6j37q9uPSRpRoQnHSnU8N9H+BEvNCKfTQjdVNMFkhAe0Y6jAEVX+ZH74FJ0apY/CWJoSGs3V3xMTHCk1jgLTGWE9VMveTPzP66Q6vPQnTCSppoIsFoUpRzpGsxRQn0lKNB8bgolk5lZEhlhiok1WBROCt/zyKmmeOZ7reHfnpVo5iyMPx3ACZfCgCjW4hTo0gEAKz/AKb9aT9WK9Wx+L1pyVzRzBH1ifPyiEkBI=</latexit>

j = 9, 11, 13, 15
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Figure A.3: Size of the imitation gap directly impacts performance. Training f
i-restricted stu-

dents with f
j-optimal teachers (in 2D-LH).

POINTNAV, OBJECTNAV, and COOPNAV tasks: use hyperparameters from in prior work.
Due to computational constraints, our strategy for choosing hyperparameters for the POINTNAV,
OBJECTNAV, and COOPNAV tasks was simply to follow prior work whenever possible. Of course,
there was no prior work suggesting good hyperparameter values for the ↵,� parameters in our new
ADVISOR loss. Following the intuitions we gained from our the 2D-LH, PD, and MINIGRID
experiments, we fixed ↵,� to (10, 0.1) for POINTNAV, ↵,� to (20, 0.1) for OBJECTNAV, and ↵,� to
(0.01, 0) for COOPNAV. For the OBJECTNAV task, we experimented with setting � = 0 and found
that the change had essentially no impact on performance (validation-set SPL after ⇡ 100Mn training
steps actually improved slightly from .1482 to .1499 when setting � = 0).

A.10 Training Implementation

As discussed previously, for our POINTNAV, OBJECTNAV, and COOPNAV experiments, we have
used standard training implementation details (e.g. reward structure) from prior work. Thus, in the
below, we provide additional details only for the 2D-LH, PD, and MINIGRID tasks.

A summary of the training hyperparameters and their values is included in Tab. A.3. Kindly see [58]
for details on PPO and [57] for details on generalized advantage estimation (GAE).

Max. steps per episode. The maximum number of steps allowed in the 2D-LH task is 1000. Within
the PD task, an agent can never take more than 11 steps in a single episode (1 action to select the
door and then, at most, 10 more actions to input the combination if d1 was selected) and thus we do
not need to set a maximum number of allowed steps. The maximum steps allowed for an episode of
WC/LC is set by [9, 8] to 4S

2, where S is the grid size. We share the same limits for the challenging
variants – SWITCH and CORRUPT. Details of task variants, their grid size, and number of obstacles
are included in Sec. A.5.

Reward structure. Within the 2D-LH task, the agent receives one of three possible rewards after
every step: when the agent finds the goal it receives a reward of 0.99, if it otherwise has reached the
maximum number of steps (1000) it receives a �1 reward, and otherwise, if neither of the prior cases
hold, it obtains a reward of �0.01. See Sec. A.5.1 for a description of rewards for the PD task. For
WC/LC, [9, 8] configure the environment to give a 0 reward unless the goal is reached. If the goal
is reached, the reward is 1� episode length

maximum steps . We adopt the same reward structure for our SWITCH and
CORRUPT variants as well.

Computing infrastructure. As mentioned in Sec. 4.3, for all tasks (except LH) we train 50 models
(with randomly sampled hps) for each baseline. This amounts to 750 models per task or 6700 models
in total. For each task, we utilize a g4dn.12xlarge instance on AWS consisting of 4 NVIDIA T4
GPUs and 48 CPUs. We run through a queue of 750 models using⇡ 40 processes. For tasks set in the
MINIGRID environments, models each require ⇡ 1.2 GB GPU memory and all training completes
in 18 to 36 hours. For the PD task, model memory footprints are smaller and training all models is
significantly faster (< 8 hours).
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Figure A.4: Additional results for MINIGRID tasks. Here we include the results on the MINIGRID
tasks missing from Figure 5.
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Figure A.5: Learning curves for POINTNAV. SPL (scaled by 100) and success rate (in %) are
plotted vs. training steps, following the standard protocols. We evaluate checkpoints after every
1024k frames of experience. This is plotted as the thin line. The thick line and shading depicts the
rolling mean (with a window size of 2) and corresponding standard deviation.

A.11 Additional results

Here we record additional results that were summarized or deferred in Section 4.4. In particular,

• Figure A.3 complements Figure 6 from the main paper and provides results for additional
baselines on the 2D-LH task. Notice that both the pipelined IL!PPO and ADVISOR
methods greatly reduce the impact of the imitation gap (Figures A.3c and A.3d versus Fig-
ure A.3b) but our ADVISOR method is considerably more effective in doing so (Figure A.3c
v.s. Figure A.3d).

• Figure A.4 shows the results on our remaining MINIGRID tasks missing from Figure 5.
Notice that the trends here are very similar to those from Figure 5, ADVISOR-based methods
have similar or better performance than our other baselines.

• Table A.5 shows an extended version of Table 1 where, rather than grouping methods
together, we display results for each method individually.

• Figure A.5 displays validation set performance of our POINTNAV baselines over training.
Note that static combination of RL and IL losses improves individual RL/IL baselines. Our
adaptive combination of these losses (ADVISOR) outperforms these baselines and is more
sample efficient.
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Figure A.6: Learning curves for COOPNAV. Rewards are plotted vs. training steps, following the
standard protocols. For a full-range teacher, we train students with different (and limited) visibility
range of 0.8, 1.2, 1.8, and 2.0. The networks are initialized with four different seeds and the mean
and standard deviation are plotted. Checkpoints are evaluated at every 25k steps.

Hyperparamter Value
Structural

Cell type embedding length 8
Cell color embedding length 8
Cell state embedding length 8
RNN type LSTM
RNN layers 1
RNN hidden size 128
# Layers in critic 1
# Layers in actor 1

PPO

Clip parameter (✏) [58] 0.1
Decay on ✏ Linear(1, 0)
Value loss coefficient 0.5
Discount factor (�) 0.99
GAE parameter (�) 1.0

Training

Rollout timesteps 100
Rollouts per batch 10
# processes sampling rollouts 20
Epochs 4
Optimizer Adam [29]
(�1, �2) for Adam (0.9, 0.999)
Learning rate searched
Gradient clip norm 0.5
Training steps (WC/LC & variants) 1 · 106

Training steps (2D-LH & PD) 3 · 105

Table A.3: Structural and training hyperparameters for 2D-LH, PD, and MINIGRID tasks.

• Figure A.6 lays out the performance of agents on the COOPNAV task. In the main paper
we include results for the limited visibility range of 1.6 for the student. Here, we include
results for four visibility range. RL only baseline is least sample-efficient. Overall, we find
ADVISOR is significantly more sample efficient – most of the learning is completed in just
0.2 million steps while the other baselines take over 1.5 million steps.
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Hyperparamter POINTNAV OBJECTNAV
Structural

RNN type GRU
RNN layers 1
RNN hidden size 512
# Layers in critic 1
# Layers in actor 1

PPO

Clip parameter (✏) [58] 0.1
Decay on ✏ None
Value loss coefficient 0.5
Discount factor (�) 0.99
GAE parameter (�) 0.95

Training

Rollout timesteps 128
Rollouts per batch 60 8
# processes sampling rollouts 60 16
Epochs 4
Optimizer Adam [29]
(�1, �2) for Adam (0.9, 0.999)
Learning rate 3 · 10�4 2.5 · 10�4

Gradient clip norm 0.5 0.1
Training steps 100 · 106 50 · 106

Table A.4: Structural and training hyperparameters for POINTNAV and OBJECTNAV.

Tasks! PD LAVACROSSING WALLCROSSING
Training routines # - Base Ver. Corrupt Exp. Faulty Switch Once Switch Base Ver. Corrupt Exp. Faulty Switch Once Switch

PPO 0 0 0 0.01 0 0.09 0.07 0.12 0.05
BC -0.6 0.1 0.02 0 0 0.25 0.05 0.01 0.01
DAgger (†) -0.59 0.14 0.02 0 0 0.31 0.03 0.01 0.01
BCtf=1 -0.62 0.88 0.02 0.02 0 0.96 0.03 0.17 0.11
BC+PPO (static) -0.59 0.12 0.08 0 0 0.27 0.09 0.01 0
BC! PPO -0.17 0.15 0.32 0.02 0 0.43 0.18 0.14 0.09
†! PPO -0.45 0.32 0.61 0.02 0 0.75 0.15 0.15 0.1
BCtf=1

! PPO -0.5 0.94 0.74 0.04 0 0.97 0.09 0.17 0.1
BCdemo -0.62 0.88 0.02 0.02 0 0.96 0.07 0.18 0.11
BCdemo+ PPO -0.64 0.96 0.2 0.02 0 0.97 0.03 0.17 0.11
GAIL -0.09 0 0 0.02 0 0.11 0.06 0.16 0.07
ADV 1 0.18 0.8 0.77 0.8 0.41 0.31 0.38 0.45
BCtf=1

! ADV -0.13 0.55 0.83 0.02 0 0.88 0.15 0.15 0.09
†! ADV -0.1 0.47 0.73 0.01 0 0.79 0.21 0.13 0.07
ADVdemo+ PPO 0 0.96 0.94 0.03 0 0.97 0.11 0.14 0.06

Table A.5: Expected rewards for the POISONEDDOORS task and MINIGRID tasks. Here we
show an expanded version of Table A.5 where results for all methods rather than grouped methods.
For each of our 15 training routines we report the expected maximum validation set performance
(when given a budget of 10 random hyperparameter evaluations) after training for ⇡300k steps in the
POISONEDDOORS environment and ⇡1Mn steps in our 8 MINIGRID tasks. The maximum possible
reward is 1 for the MINIGRID tasks.
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