
A SCALE and Appendices Overview421

Fundamentally, SCALE is a causal learning algorithm for discovering compact, diverse skills422

through interventions in simulation. Figure 3 provides an overview of the approach.423

Scaling to higher-dimensional context spaces. The SCALE algorithm scales linearly with the424

dimensionality of the context space, i.e., O(|C|), due to the necessity of performing interventions425

on each context variable. In the experiments examined in this work, the dimensionality of the426

context space was 36 and 8 for the block stacking and peg insertion domains, respectively. For other427

applications where the context space is very large, heuristics can be incorporated to first downselect428

the context space into a smaller candidate space that can be provided to SCALE. Example heuristics429

could include a distance metric (objects closer to the goal may be more likely to be relevant than430

those further away) or using other approaches such as meta-level priors [54].431

Structure of appendices. These appendices are structured as follows. Appendix B provides greater432

details into the formalization of the simulator and its role as a causal reasoning engine. Appendix D433

formalizes the SCALE algorithm using nomenclature introduced in App. C. Next, App. E provides434

a toy experiment that is designed to convey greater intuition and visualization of the mechanisms435

that underlie SCALE. Appendix F presents additional experimental details of the block stacking ex-436

periment presented in Sec. 6.1. Following this, App. G and H provides two additional experiments437

in the block stacking domain: a sim-to-real transfer experiment and a downstream task evaluation438

experiment, respectively. The remaining appendices concern the peg-in-hole insertion domain. Ap-439

pendix I details additional experimental details first presented in Sec. 6.2, and App. J presents an440

additional experiment that shows the robustness of SCALE under a task domain shift.441

Figure 3: In SCALE, the robot learns skills in simulation using causal reasoning. (a) The simulation
is used to solve task instances and conduct interventions to determine causally relevant context
variables. (b) Simulation data are used to train a library of skills, (c) which are suitable for sim-
to-real transfer learning. (d) Each skill that is learned is parameterized by the relevant variables
selected in simulation. Here, red context variables are unnecessary for the skill policy and can be
safely ignored. The boundary encircling the policy represents the skill DGR and precondition, which
are also learned.

13

(a) (b)

Figure 4: Illustrations of the scene structural causal model used in the simulator W . (a) From
context space C and robot interventions I, the scene SCM CS generates a context vector c that
represents a particular scene that defines objects and their properties. (b) In this block example, CS is
defined using scene variables Ψ := C∪zb and context variables C := {xb, hb, hπ}, where xb is block
x-position, hb is block height, hπ is table height upon which the block rests, and zb := 1

2hb + hπ is
block z-position. Normally, values of C are sampled from context space C, but the robot performs
an intervention I = {do(hb = 0.6)} to force the value of hb to be 0.6. As a result, the dependent
variable zb is determined as 0.7 using this intervened value. Lastly, the scene is constructed and
represented as context vector c = [0.1, 0.6, 0.4]T.

B Simulation as a Causal Reasoning Engine442

This appendix provides greater discussion of the simulator formalization used by SCALE. The sim-443

ulator model,W := (CS , T), is formalized as follows:444

1. a scene structural causal model CS (Fig. 4) that, given context space C and interventions I,445

instantiates a scene that can be represented as a context vector, c ∈ C;446

2. the transition model T that captures the domain forward dynamics as the robot interacts447

with the world through θ starting from the scene initialized from CS .448

A structural causal model (SCM) [25, 26] can be represented as a directed acyclic graph that is driven449

by exogenous variables (functional inputs of the graph) that produces the solution for all variables450

within the graph. These two components of the simulator capture the spatial structure inherent to451

the scene itself (CS), and the spatiotemporal structure of the robot interacting with the world (T).452

The simulator modelW , including the scene SCM and transition function, is provided for the robot453

to use. In principle, the scene SCM could be learned via causal representation learning [29], e.g., a454

world models approach that admits causal interventions.455

The scene SCM CS is defined by structural equations with scene variables Ψ, where C ⊆ Ψ. In the456

graph induced by CS , the scene variables are the nodes, and context variables C are the root nodes457

and exogenous variables (functional inputs) of the SCM. The value of the context variables is given458

by interventions I = {do(Ci = ci)} if specified, or otherwise sampled from the context space C.459

The robot only conducts interventions with respect to C that would yield a steady-state solution and460

are physically realizable, excluding physically invalid scenes (e.g., object penetration).461

The transition model T is the same as typical simulators. The forward dynamics are simulated462

through the initial state s0, obtained from the scene created by CS , and θ, the inputs to the low-level463

controller πl. With these inputs, the system temporally evolves as usual until the end of the episode,464

where reward Rf is obtained and compared to a threshold RS to determine if the task was solved.465

C Nomenclature466

Table 5 summarizes the nomenclature used in this paper and, in particular, the SCALE algorithm467

(c.f., App. D). Note the use of italics and bold type to disambiguate certain symbols. For example,468

X is a set of random variables, but X refers to a dataset matrix. The notation for a variable and its469

instantiation as a scalar may also be overloaded depending on the context.470

14

Table 5: Table of nomenclature.
Symbol Meaning
X set of d random variables,

i.e., X := {X1, . . . , Xd}
X space of X,

i.e., X := [X1, . . . ,Xd]
T

x vector instantiation of X
i.e., x := [x1 ∈ X1 ⊆ X1, . . . , xd ∈ Xd ⊆ Xd]

T

K set of k robot skills,
i.e., K := {K1, . . . ,Kk}

D dataset containing AX ∈ Rm×n samples from set A with size n and BY ∈
Rm×p labels from set B with size p

D SCALE Algorithm471

As explained in Sec. 5, the SCALE algorithm (Alg. 1) describes how the skills are learned through472

batch dataset collection and self-supervision. The procedure for batch dataset collection used by473

SCALE (SKILLTRAINDATA) is described in Alg. 2.474

Note that the number of skills is not a hyperparameter of the SCALE algorithm. Rather, the skill475

quantity emerges from SPLITINTOSKILLDATASETS from groups of highly-occurring CREST re-476

sults, where each group becomes the dataset for a particular skill.477

Algorithm 1: SKILLS FROM CAUSAL LEARNING

Input: causal reasoning engineW , context space C, controller πl, reward solved threshold RS ,
number of samples n, skill policy function class fπ , number of evaluations m, skill
timestep Tf

Initialize: skills K← ∅
// Collect training data
(D1, . . . ,Dk)← SKILLTRAINDATA(W, C, πl, n)
// Train skills
for j = 1 to k do

(CX, θY, DA, DD)← Dj

// Train DGR
DX← REDUCEDIMS(CX, DD)
D ← TRAINDGR(DX)
// Train Policy
AX← REDUCEDIMS(CX, DA)

(AX+, θY+)← DGRINLIERS(D ,AX,DX, θY)
πu ← TRAINPOLICY(fπ,

AX+, θY+)
π ← πlπu
// Train Preconditions

(CXe,
RY e)← EVALUATEPOLICY(W, C, π,m)

Pre← TRAINPRECONDITION(CXe,
RY e, RS)

// Set Termination Conditions
β ← Tf
// Construct Skill

K +← (π,Pre, β,D)
end

Result: learned skills K

15

Algorithm 2: SKILLTRAINDATA

Input: causal reasoning engineW , context space C, controller πl, reward solved threshold RS ,
number of samples n, local region fraction f

Initialize: batch dataset DB ← ∅
// Collect training data
for i = 1 to n do

c← SAMPLEVALIDSCENE(W, C)
(θ,Rf)← TRYTOSOLVETASK(W, c, πl)
TaskSolved← Rf > RS

if TaskSolved then
A← CREST(W, c, πl, θ, Rf , fC)
D← CREST(W, c, πl, θ, Rf , C)
DA ← DIMMATRIX(A)
DD ← DIMMATRIX(D)

DB
+← (c, θ,DA, DD)

end
end
// Separate into k skill datasets
(D1, . . . ,Dk)← SPLITINTOSKILLDATASETS(DB)

Result: skill training data (D1, . . . ,Dk)

E Block Stacking Intuitive Example478

To provide greater intuition for SCALE and the causal skill learning problem, we present the Height-479

Height experiment (Fig. 5): a simple example in the block stacking domain that can be easily visu-480

alized.481

Task and policy description. The Height-Height experiment contains 3 blocks: 1) a source block;482

2) a target block; and 3) an obstructing block between the source and target block. As in Sec. 6.1,483

the task is to place the source block on top of the target block. The same controller is used as in484

Sec. 6.1, which is parameterized by θ ∈ R4. Specifically, each parameter of the controller is defined485

as follows:486

1. θ∆x: the distance the source block is moved along the world coordinate frame’s +x-axis487

once it is picked up.488

2. θ∆y: the distance the source block is moved along the world coordinate frame’s +y-axis489

once it is picked up.490

3. θ∆zu : the distance the source block is lifted (moved along the world coordinate frame’s491

+z-axis) during the pick-up motion.492

4. θ∆zd : the distance the source block descends (moved along the world coordinate frame’s493

−z-axis) during the set-down motion.494

The controller behaves as follows:495

1. Move robot end-effector to source block and grasp it.496

2. Lift up the source block according to θ∆zu .497

3. Move the source block in the x-y plane according policy parameters θ∆x and θ∆y .498

4. Set down the source block according to θ∆zd .499

5. Ungrasp the source block.500

The context space of this experiment is just 2 variables, ht and ho, facilitating 2-dimensional visual-501

izations. For greater clarity, we refer to block properties by whether they belong to the target block502

16

Figure 5: The Height-Height experiment is an intuitive example for SCALE in the block stacking
domain. In this experiment, only two context variables can vary: the height (z-dimension) of the
obstructing and target blocks. All others variables (e.g., features of the source block) do not change
throughout this experiment.

(t) or the obstructing block (o), instead of their index (as in Sec. 6.1). For this experiment, only503

linear approaches are considered.504

Skill learning results. The SCALE results for the Height-Height experiment are shown in Tab. 6505

and Fig. 6. The dataset size for skill learning was 569 samples, from an original size of 581. The506

remaining 12 samples consisted of CREST results that occurred rarely (2.07%), and thus they were507

not used for skill learning. Additionally, Fig. 7 visualizes the policy parameters of the dataset.508

Two primary behaviors were learned: free motion (Kfree), and obstructed motion (Kobstr). These509

behaviors emerge because of the causal relationships between context variables.510

When the obstructing block is shorter than the target block (i.e., ht > ho), then the obstructing block511

height can safely be ignored in the robot action (thus, ho ⊈ A for Kfree). This is reflected by the512

values of θ∆zu and θ∆zd in Fig. 7. In the region corresponding to Kfree, θ∆zu varies linearly with513

respect to the target block height, but not with the obstructing block height. Thus, θ∆zd is generally514

0. The result is that the robot tends to lift the block to a value that depends on the target block height,515

and no set-down motion (θ∆zd) is needed.516

However, when the obstructing block is taller than the target block (i.e., ht < ho), the obstructing517

block’s geometry interferes with the robot’s motion, and the robot must take this into account when518

taking action. Specifically, the robot must first lift the source block over the obstructing block. After519

it moves laterally, the robot must descend to set the source block down; dropping the block would520

typically lead to inadequate reward to solve the task. Because both the heights of these blocks are521

needed to perform this action, {ht, ho} ⊆ A for Kobstr. In Fig. 7, the effect of ho appears in522

the θ∆zu parameter values, where the variation in the Kobstr region arises because of needing to lift523

above the obstructing block height, ho (and thus, this parameter no longer depends on ht). However,524

17

for θ∆zd , both ht and ho are needed, as the distances the robot descends through θ∆zd arises from525

the difference between ht and ho. Thus, the gradient here shows components for both ht and ho.526

These two skills encode the two distinct data generating processes within this context space. These527

processes — the reason why the data are generated a certain way — fundamentally depend on528

whether the obstructing block is shorter or taller than the target block. Whether a condition holds529

for a given context requires the value of both of the blocks heights, so both block heights are needed530

to define each skill’s data generating region (i.e., {ht, ho} ⊆ D).531

Note that neither skill can robustly solve the entire task space (55.63% for Kfree and 57.50% for532

Kobstr). However, when using the entire library KHH = {Kfree,Kobstr} (Tab. 7), the success rate533

becomes 100.00%, with each skill being selected at approximately 50% chance (49.38% for Kfree,534

and 50.62% for Kobstr). This is expected because the relationship ht > ho holds for half of the535

context space and Kfree should be used, whereas ht < ho (Kobstr) holds for the other half.536

Table 6: Skills KHH that were discovered for the Height-Height experiment. A and D are the
variables used for the skill’s policy and DGR, respectively. Data is the quantity of data used for each
skill (from a batch dataset of 581 samples, 569 samples were used to train skills). These samples
are used to train a linear policy (Bayesian Ridge regression) using the features from variables in A.
Task Solve % is the rate of task solves over the entire context space using only that skill.

Skill A D Data Task Solve %
Kfree {ht} {ht, ho} 253 (43.55%) 55.63% (178)
Kobstr {ht, ho} {ht, ho} 316 (54.39%) 57.50% (184)

Baseline comparisons. In addition to scale-lin, Tab. 7 shows comparisons against several baselines.537

The “monopolicy” baselines are monolithic policies; they contain neither a DGR nor a precondition.538

The “-sk” and “-all” suffixes denote whether the monolithic policy uses the same data as the SCALE539

library (“-sk”, 569 samples) or the entire batch dataset (“-all”, 581 samples). Given the similar540

amount of data, it is unsurprising that monopolicy-lin-sk and monopolicy-lin-all are essentially the541

same up to the stochasticity of the simulator (±2%). Note that, unlike in Sec. 6.1 and Sec. 6.2,542

CREST monopolicy baselines are not examined in this experiment; they are functionally equivalent543

to the monopolicy approaches because the most common CREST result is {ht, ho}, which is the544

same as the entire context space used for the monopolicy baselines.545

As shown in Tab. 7, the skill library obtained by SCALE vastly outperforms the baselines, provid-546

ing task evaluation performance similar to that of a ground truth policy. This outcome is possible547

because SCALE learns underlying regions of similar causal structure within the data, whereas mono-548

lithic policies ignore such structure. As shown in Fig. 7c–7d, this domain is nonlinear, but can be549

represented by two smaller linear regions (ht > ho and ht < ho). Learning to regress to both re-550

gions with a monolithic linear policy is not possible, but SCALE can solve this domain with separate551

linear skills, one per region.552

Table 7: Task evaluation results for using the skill library KHH for the block stacking task. Ctrl. is
the approach control (skills or one monolithic policy). Fn. Cl. is the approach’s function class.
Linear approaches use Bayesian ridge regression. Task Solve % is the rate of task solves over the
entire context space using the approach. Methods within ±2% (the stochasticity of the simulator)
of the best approach are bold. |A| is the quantity of input variables used for the approach’s policy.
Data is the amount of training data used for the approach. A ground truth policy is also shown, using
all context variables and additional domain knowledge.

Approach Ctrl. Fn. Cl. Task Solve % |A| Data
scale-lin (ours) 2 skills Linear 100.00% (320) 1/1 569
monopolicy-lin-sk 1 policy Linear 64.06% (205) 2 569
monopolicy-lin-all 1 policy Linear 62.19% (199) 2 581
ground-truth-policy 1 policy Nonlin. 100.00% (320) * –

Summary. Our approach for SCALE — learning skills that encode distinct causal processes —553

empowers the robot with a diversity of specialized behaviors to use, depending on the context.554

18

(a) (b)

(c) (d)

Figure 6: SCALE results for the Height-Height experiment. Two skills were found: Kfree (free
block motion), stylized in blue with rectangular markers, and Kobstr (obstructed block motion),
stylized in orange with diamond markers. (a) Learned data generating regions. Each datapoint is a
result from CREST. Datapoints that are crossed out are considered outliers and not used for training
the policy for that skill. (b–c) Preconditions forKfree andKobstr, respectively. The black line is the
decision boundary for the prediction of whether the task would or would not be solved with that skill.
Note that each skill’s DGR falls within the positive precondition boundary. Training and test data for
learning the preconditions are indicated by circle and thin diamond markers, respectively. Datapoints
that result in a different prediction than observed are crossed out. (d) Task evaluation when using
the skill library {Kfree,Kobstr} to solve the task. The marker and color of each datapoint indicate
which skill was selected for completing the task based on the skill preconditions (i.e., the skill with
the highest probability of success). Note that the separation between selecting Kfree and Kobstr is
consistent with each skills’ underlying precondition and DGR. Datapoints that were not solved by
the chosen skill are crossed out.

Generalization of the context space can be achieved then through the composition of these behaviors,555

rather than attempting to learn a monolithic skill or policy that can capture the entire variation. In this556

example, two skills each with a linear policy is sufficient for generalization with SCALE, whereas a557

monolithic approach would require a nonlinear policy.558

F Additional Details for Block Stacking Experiment559

This appendix provides greater information for the block stacking experiment first presented in560

Sec. 6.1.561

Context. Note that the block vertical position zwb ∈ Ψ is not part of the context, as we only consider562

cases where the scene can be initialized into a steady state condition. Thus, zwb := 1
2hb + hπ .563

19

(a) (b)

(c) (d)

Figure 7: Policy parameters for the Height-Height experiment (shown as interpolated across the
569 dataset samples to better visualize the gradients). The units of the parameters are in meters. The
parameters θ∆x (a) and θ∆y (b) are generally constant as they are unaffected by the variation in con-
text variables. The notable variations occur in θ∆zu (c) and θ∆zd (d). Specifically, the relationship
changes whether the obstructing block is taller or shorter than the target block (above or below the
ht − ho = 0 line, respectively).

Reward function. The reward function for the task isR = RB−αLL−αee−αdd, whereRB = 10564

is a bonus term obtained when the block is successfully stacked, L is the total end-effector path of565

the robot (αL = 1), e is the L2 norm error between the source block at the time of release and the566

goal (αe = 1), and d is the distance the source block travels between the point it was ungrasped567

to its final position (αd = 1). The task is considered solved if the final reward Rf exceeds solved568

threshold RS = 5.569

SCALE skill selection. In all SCALE approaches, the skills were complementary; using the entire570

skill library afforded greater coverage (greater task solve rate) than any single skill alone. For scale-571

lin, the skill selection distribution was almost even between K1 (43.28%) and K2 (56.72%), with572

K3 never being chosen. The skill K3 is dominated by the other two skills for this task, but K3573

could nonetheless be useful for a different downstream task. Empirically, it was observed that K1574

was chosen for shorter target block heights, whereas K2 was used elsewhere (see Fig. 8). In the575

nonlinear case, only K2 was selected.576

G Sim-to-Real Block Stacking Experiment577

In this appendix, we demonstrate that the skills learned by SCALE are suitable for sim-to-real trans-578

fer. As skills are constructed using only the relevant causal variables, this is a form of structural579

sim-to-real transfer. For this experiment, we evaluate the skill library Kblocks for a real block stack-580

20

Figure 8: Skill selection for the scale-lin approach for the block stacking task. Skill K1 is generally
selected when h2 is short, whereas taller h2 values perform better with K2 because h2 ⊆ A. Skill
K3 is dominated by the other two skills and is not selected. Datapoints that were not solved are
crossed out.

ing domain with a Franka Emika Panda robot manipulator (Fig. 2c). This experiment is generally581

similar to task evaluation in simulation, except with a smaller subset of the context space. We assess582

the SCALE approaches, scale-lin and scale-nonlin, against their monopolicy counterparts. Unlike583

in Sec. 6.1, we only consider the “-all” monopolicy approaches, as they were generally better per-584

forming.585

G.1 Experimental Setup586

For this experiment, a smaller subset of the context space is varied, as compared to the variation587

across the entire context space as tested in Tab. 2. From a pool of 20 blocks, 5 were randomly588

chosen to be used for each experimental trial. The 20 blocks consisted of variations of 10 different589

colors and 2 different heights (5.7 cm or 7.6 cm). The length and width of the blocks were 4.2590

cm. The 5 randomly chosen blocks were placed into the Panda robot workspace and randomly591

shuffled, producing variation in block x-position, y-position, and orientation. The table height hπ592

was determined from manual measurement and was not varied for this experiment.593

Perception. An Intel RealSense camera mounted to the robot wrist provided RGB-D perception of594

the x-position, y-position, and orientation of the blocks in the workspace. A depth observation was595

collected by commanding the robot above the workspace. This point cloud was then processed to596

yield five clusters via hidden point removal [55], RANSAC-based table plane fitting, and density-597

based clustering using DBSCAN [56]. Averaging the colors within each cluster yielded the block598

color. A least-squares optimization procedure fit a cuboid of known length and width to each cluster,599

yielding the position and orientation of the blocks. Block height was provided by manual input600

because of inaccuracies with estimation from depth alone. The camera extrinsics were obtained601

via computer-aided design models of the Panda robot and wrist mount, which were confirmed via602

manual measurement. The camera intrinsics were used as directly reported by the camera.603

Control. The FrankaPy library [57] is used to provide impedance-based control of the Panda robot.604

21

G.2 Experimental Results605

Table 8 presents the results. For each function class, the skill library learned by SCALE outperforms606

the full-dimensional monopolicy baseline and is generally comparable to or slightly outcompetes the607

CREST monopolicy baseline. The ground truth policy matched the linear SCALE approach and is608

only slightly better than the nonlinear SCALE approach. Compared to the task solve rate in simula-609

tion (Tab. 2), scale-lin performed consistently, and scale-nonlin had slightly better performance. All610

baseline approaches generally matched their evaluation in simulation, except for monopolicy-lin-all,611

which had a marked degradation. This may arise from domain differences between simulation and612

reality. Full-dimensional approaches are more susceptible to domain shifts due to their reliance on613

the entire context space (all 36 variables), whereas SCALE approaches are compressed, using only614

a minimal subset. Error was only loosely correlated with task solve rate, and likely explains the poor615

performance of monopolicy-nonlin-all. Even though their errors were similar, it was observed that616

monopolicy-lin-all tended to underpredict the height needed to clear the target block as compared617

to scale-lin. This caused the target block to be pushed away from where it should have been for the618

goal position, leading to block stacking failures.619

For both scale-lin and scale-nonlin, skill K2 was always chosen, as its precondition was on average620

greater than that of the other skills. Specifically, for scale-lin, the average preconditions were 58.88%621

for K1, 75.77% for K2, and 36.99% for K3. As the block heights used were only 5.7 cm and 7.6622

cm, it is reasonable to expect that skill K1 would have been chosen more for shorter target block623

heights (per Fig. 8). For scale-nonlin, the average preconditions were K1: 20.17%, K2: 51.84%,624

K3: 1.21%.625

Table 8: Sim-to-real evaluation results for using the skill library Kblocks for a real block stacking
domain. Table columns are as described in Tab. 2. Task Solve % is the rate of successful block
stacks. Error is the mean error (±1 standard deviation) in meters between the block position when
the block is ungrasped and the goal position determined at the beginning of the trial.

Approach Ctrl. Fn. Cl. Task Solve % Error |A|
scale-lin (ours) 3 skills Linear 90.00% (9) 0.010 ± 0.003 4/5/6
monopolicy-lin-all 1 policy Linear 50.00% (5) 0.008 ± 0.003 36
crest-monopolicy-lin-all 1 policy Linear 90.00% (9) 0.004 ± 0.001 5
scale-nonlin (ours) 3 skills Nonlinear 80.00% (8) 0.007 ± 0.002 4/5/6
monopolicy-nonlin-all 1 policy Nonlinear 10.00% (1) 0.093 ± 0.040 36
crest-monopolicy-nonlin-all 1 policy Nonlinear 70.00% (7) 0.013 ± 0.012 5
ground-truth-policy 1 policy Nonlinear 90.00% (9) 0.002 ± 0.003 *

H Skill Library Use in a Downstream Task: Stacking a Block Tower626

To demonstrate the utility of re-using skills learned by SCALE, a follow-up experiment is conducted627

wherein the skill library Kblocks is used for a task in which it was not specifically trained: stacking a628

block tower (Fig. 9). This long-horizon task can be decomposed into a number of sequential actions629

that must be performed correctly, so an approach that can capture the essence of a large problem630

and re-use smaller, modular components should perform best. Moreover, we do not perform any631

additional training or fine-tuning; we intentionally use the skills off-training data to test their gener-632

alization capability. This is a challenging task: in addition to the long-horizon precision involved,633

the skills are being evaluated increasingly out-of-distribution at each step, as the effective block634

heights increase beyond what is seen in training.635

Experimental setup. For this experiment, we assume that the robot has access to a planner and ad-636

ditional domain knowledge as a part of this downstream task. We assume that the robot understands637

that at any step, the target block should be adjusted in the following manner. First, the target block’s638

x- and y-position should be substituted with the bottom-most block’s x- and y-position. Then, the639

target block’s height should be substituted with the sum of all heights of the previous blocks, plus a640

small offset (1.5 cm). Effectively, this can be seen as treating each new step as stacking upon one,641

22

(a) (b) (c) (d) (e)

Figure 9: The block tower task. As previously, five blocks are initially available to the robot.
However, after each stack attempt, the task does not reset. Instead, the block enumeration changes,
so that the previous source block becomes the new target block. This happens four times, after which
the task resets. The robot must complete each of the four individual steps successfully, as failure in
any step renders the entire block tower task a failure. (a) Initial task scene. (b – d) Successful block
stacks for intermediate attempts. (e) A successfully stacked block tower.

increasingly taller block. We leave the development of such a planner that can provide this additional642

information for future work, but it suffices for this experiment that this information is available.643

Block tower results. Table 9 shows the results for stacking the block tower. For this experiment,644

we use the same linear and nonlinear approaches and baselines from Sec. 6.1. Included is a ground645

truth policy with access to oracle information.646

Overall, we see that the scale-lin approach does best for stacking a tower with five blocks, although647

a notable gap exists between the ground truth policy. However, a block tower success rate of 48.29%648

is not unreasonable, given that even the ground truth policy fails almost 30% of the time. The linear649

approaches are all comparable for the first stacking step, and for the second step with a NB = 3650

tall tower, three baseline methods slightly outperform scale-lin. However, for the last two steps,651

baseline approaches become markedly less performant, leading to scale-lin emerging as the best652

overall approach despite modest performance in an absolute sense. Each step requires successively653

greater extrapolation out of the training data, so an approach that can capture the smaller process654

well should perform best, assuming that this process also holds outside the training data. For the655

case of the block tower, this is generally true, so the skills learned by scale-lin are best suited for this656

downstream task despite the challenge of generalization to yet-unseen data.657

For the nonlinear function class, performance across all approaches suffers beyond the first stacking658

step, where the CREST baselines outperform scale-nonlin. The challenge of extrapolation for non-659

linear functions is evident here; the best linear approach for each step was better performing than660

any nonlinear approach (and markedly so for taller towers). Thus, out-of-distribution generalization661

is not observed for any nonlinear approach, whereas scale-lin exhibits modest performance in this662

area.663

For SCALE approaches, the skill selection rate is intriguing. The skillK1 does not contain the target664

block height, which is likely why it was only selected during the first block stack attempts. However,665

K2 continues to demonstrate its robustness, as it was used for all remaining block stack attempts in666

the linear case and for all attempts in the nonlinear case. Its inclusion of target block height in AK2
667

is in fact the reason this skill can extrapolate to taller towers. Like K2, K3 also contains the block668

height, but this skill was generally dominated, and thus it is not surprising it was not selected.669

In summary, in addition to the benefits of SCALE described previously for task learning, the capa-670

bility for SCALE to learn smaller, modular skills is evident in this experiment. Although out-of-671

distribution generalization was not observed in the nonlinear function class, we see that in principle672

SCALE does offer these benefits under certain conditions, such as in the linear case. We suggest673

that this aspect of causal learning is often overlooked for experiments that only concern single-674

23

task learning. However, the benefits of modularity become advantageous for re-using behaviors for675

downstream tasks at a later time in the robot’s operational lifetime.676

Table 9: Results for re-using learned behaviors in a representative downstream task: stacking a
block tower. The task solve percentage is shown for stacking a tower of at least NB blocks tall. The
sequence is executed in one attempt, so a fully stacked tower (NB = 5) requires 4 successful block
stacking attempts. Methods within ±2% (the stochasticity of the simulator) of the best approach at
each step are bold. For SCALE approaches, the skill selection rate at each step (not cumulative) is
also shown. The abbreviation “mp” stands for monopolicy.

Approach NB = 2 NB = 3 NB = 4 NB = 5
scale-lin (ours) 92.20% (272) 80.73% (222) 65.23% (167) 48.29% (113)

K1

K2

K3

15.59% (46)
84.07% (248)
0.34% (1)

0.00% (0)
100.00% (275)
0.00% (0)

0.00% (0)
100.00% (256)
0.00% (0)

0.00% (0)
100.00% (234)
0.00% (0)

monopolicy-lin-sk 93.22% (275) 87.23% (239) 55.08% (141) 1.27% (3)
monopolicy-lin-all 93.56% (276) 76.36% (210) 2.33% (6) 0.00% (0)
crest-mp-lin-subs 93.20% (274) 85.40% (234) 5.84% (15) 0.00% (0)
crest-mp-lin-all 93.92% (278) 85.51% (236) 5.84% (15) 0.00% (0)
scale-nonlin (ours) 67.46% (199) 2.55% (7) 0.00% (0) 0.00% (0)

K1

K2

K3

0.00% (0)
100.00% (295)
0.00% (0)

0.00% (0)
100.00% (275)
0.00% (0)

0.00% (0)
100.00% (256)
0.00% (0)

0.00% (0)
100.00% (235)
0.00% (0)

monopolicy-nonlin-sk 2.72% (8) 0.00% (0) 0.00% (0) 0.00% (0)
monopolicy-nonlin-all 11.86% (35) 0.00% (0) 0.00% (0) 0.00% (0)
crest-mp-nonlin-subs 84.75% (250) 27.37% (75) 0.78% (2) 0.00% (0)
crest-mp-nonlin-all 75.59% (223) 11.31% (31) 0.00% (0) 0.00% (0)
ground-truth-policy 96.25% (282) 90.48% (247) 83.14% (212) 69.96% (163)

I Additional Details for Sensorless Peg-in-Hole Insertion Experiment677

This appendix serves to provide greater detail for the peg insertion experiment that was described in678

Sec. 6.2.679

Reward function. Our reward function consists of two terms: 1) a penalty based on the Euclidean680

distance of the peg from the hole, and 2) a bonus of 10 for successful insertion. We also add a681

regularization term based on the norm of the policy parameters. The task is considered solved if the682

final reward Rf exceeds solved threshold RS = 8.683

SCALE skill K1. Unlike the other skills in Kpeg that were discovered by SCALE, skill K1 has684

an empty set of relevant variables. This is surprising as it is difficult to solve this task reliably685

without taking the help of one of the walls, in which case the wall should show up as a relevant686

variable. However, we observed that K1 actually localizes against 2 walls instead of just 1. Hence,687

when SCALE intervenes on any one of the two walls, the skill is still able to complete the assembly688

by taking advantage of the other wall. In other words, our assumption that the context space is689

disentangled does not hold in this case which leads to this erroneous relevant variable set. However,690

the precondition would limit where this skill would be applied, as skills K2−5 are generally more691

performant.692

SCALE skill selection. For scale-lin, skills K2 (48.44%) and K5 (51.56%) were chosen nearly693

equally. Conversely, the skill selection was more distributed for the nonlinear case: K2: 46.48%,694

K3: 35.16%, K4: 3.91%, K5: 14.45%. For both approaches, K1 was not chosen as it was dominated695

by the other skills.696

J Sensorless Peg-in-Hole Insertion: Domain Shift Experiment697

We evaluate the generalization capability of SCALE by evaluating it under a domain shift. All tasks698

are generated by uniformly sampling the relative position of the center of each wall with respect to699

24

the hole from a given range. The ranges used to generate the training and test tasks are specified in700

Tab. 10.701

We transfer all the policies zero-shot to the test distribution. However, we do re-learn the precon-702

ditions of the scale-lin policies for the test distribution. The evaluation results are summarized in703

Tab. 11. All approaches witness a sharp drop in performance. This is expected as (a) the test tasks704

are not guaranteed to be feasible and (b) the ranges used to generate the test task are more than dou-705

ble those used in training. However, our multi-skill approach scale-lin performs much better than706

the baselines. This highlights a key benefit of learning multiple skills. A skill may perform well on707

the training distribution but it can be rendered invalid due to an unforeseen domain shift. Having708

a repertoire of different skills allows the robot to still complete the task by switching to a different709

skill. This makes our multi-skill approach more robust than single-skill approaches.710

Table 10: Training and test distributions: relative position of the center of each of the 4 walls is
uniformly sampled from the given (min,max) range. The ranges used to generate test tasks are
more than double the ranges used to generate training tasks in the domain shift experiment. All
values are in meters.

Train Test
x-min x-max y-min y-max x-min x-max y-min y-max

Wall 1 0.01 0.05 -0.02 0.02 -0.04 0.10 -0.07 0.07
Wall 2 -0.02 0.02 -0.05 -0.01 -0.07 0.07 -0.10 0.07
Wall 3 -0.02 0.02 0.01 0.05 -0.07 0.07 -0.04 0.10
Wall 4 -0.05 -0.01 -0.02 0.02 -0.10 -0.04 -0.07 0.07

25

Table 11: Task evaluation results under domain shift for sensorless peg-in-hole insertion. We eval-
uate only linear policies as nonlinear policies perform worse in this domain (see Tab. 4).

Approach Ctrl. Fn. Cl. Task Solve % |A|
scale-lin (ours) 5 skills Linear 64.84% 0/1/1/1/1
monopolicy-lin-all 1 policy Linear 44.92% 8
crest-monopolicy-lin-all 1 policy Linear 39.83% 1

26

