
A Cloth-Splatting Implementation412

A.1 Action-Conditioned Dynamics Architecture and Training413

The action-conditioned dynamics model builds upon the GNS architecture [4], which consists of414

three parts: encoder, processor, and decoder. The encoder consists of two MLPs, φp and φe, which415

map vertices and edge features into latent embeddings hi and gjk respectively. The processor com-416

prises L = 15 Graph Network (GN) blocks with residual connections that propagate the information417

throughout the mesh. Each GN block includes an edge update MLP, a vertice update MLP, and a418

global update MLP. The decoder is an MLP ψ that outputs acceleration for each point: ẍi = ψ(hLi ),419

which we use to update the position of each vertice of the cloth mesh via Euler integration.420

The input vertice features consist of past k = 3 velocities and the vertice type. The vertice type421

is a binary flag used to distinguish grasped vertices from non-grasped vertices. The edge features422

include the distance vector (vj − vk) and its norm ∥vj − vk∥. To condition the model on the actions423

of the robot, we update the velocity of the pick point based on the robot’s action before giving the424

state of the cloth in input to the network. This facilitates the propagation of the actions throughout425

the GNS to predict future states.426

We train the action-conditioned dynamics on towel objects, using the mean-squared error between427

predicted and simulator-obtained accelerations for 200 epochs using Adam [48].428

A.2 Mesh-constrained Gaussian Splatting429

For the mesh-constrained Gaussian Splatting, we build upon the original Gaussian Splatting pro-430

cedure, with the main modification that we constrain the Gaussian positions on the surface of a431

pre-defined mesh as described in the 4.2. Details of Gaussian Splatting, such as the pruning, den-432

sification, and regular resetting of opacities, remain unchanged. Nevertheless, in order to keep the433

number of 3D Gaussians low, we increase the required opacity for Gaussians to not be pruned, since434

we can assume that there are no transparent parts on the reconstructed cloth. Therefore, a normal435

reconstruction of the appearance of cloth only requires about 4k Gaussians.436

We observe that when the Gaussians are optimized over the whole range of training, the visual ap-437

pearance and the tracking degrades. For example, the Gaussian position on the mesh starts to fit the438

deformed appearance instead of the residual dynamics model learning the proper offset. Therefore,439

the learning rates of the Gaussians’ attributes (color, position, scale, . . . ) are annealed over the first440

6k iterations and afterward frozen so only the residual dynamics model is optimized.441

A.3 Residual dynamics model442

We implement the residual dynamics model as a 3-layer ReLU MLP with a width of 256. The input443

to the MLP is a scalar value in the range 0− 1, corresponding to the normalized time step, which is444

encoded with the sinusoidal frequency encoding also used in NeRF [49], using 6 frequencies. The445

output size is 3×N , with N being the number of vertices in the mesh.446

We randomly initialize weights and biases of the output layer with a zero-centered normal distribu-447

tion with a covariance of 0.0001, to start with a residual close to zero.448

A.4 Regularization449

As discussed in Section 4.3, we learned the state updated by adding the following regularization450

losses: Lreg = LSSIM + Liso + Lmagn, where LSSIM is the SSIM loss [38], Liso ensures neighboring451

vertices in the cloth maintain a constant distance, and Lmagn minimizes overall motion.452

The isometric loss:453

Liso =

T−1∑

t=0

N−1∑

i=0

∑

N (vt,i)

|d(vt,i, vt,j)− d(vt+1,i, vt+1,j)| (11)
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ensures that the neighbouring vertices N (vt,i) of vt,i maintain a constant distance from time t to454

t+ 1.455

The structural similarity index measure loss (SSIM) [50] is estimated for windows of the images456

and goes beyond the purely per-pixel color loss in Eq. 10 and also considers the pixel neighbor. The457

loss between two windows w an v can be estimated with:458

LSSIM (v, w) =
(2µvµw + c1)(2σvw + c

p
2)

(µ2
v + µ2

w + c1)(σ2
v + σ2

w + c2)
, (12)

where µ is the mean color of each window, σ2 the color (co-)variances, and c1 and c2 are constants459

to stabilize the loss.460

The motion loss:461

Lmagn =

T−1∑

t=0

N−1∑

i=0

||vt,i − vt+1,i||
2
2 (13)

encourages to learn a solution with the smallest possible motion per vertice, which we found neces-462

sary to prevent instabilities during training.463

B Synthetic Data464

The synthetic dataset consists of meshes representing three types of cloth objects: t-shirts, shorts,465

and towels. We procedurally generate meshes with random configurations, sizes, and overall shapes466

for each category based on the methods detailed in [46]. Post-generation, the meshes are deformed467

using NVIDIA Flex [43, 44] with random manipulation trajectories.468

The manipulation trajectories are constructed using quadratic Bézier curves with three control469

points. Specifically, the pick and place locations represent the primary control points, which we ran-470

domly selected on the cloth particles. The third control point, positioned midway between the pick471

and place points, was set to a random height within the range [0.05, 0.15]cm. Additionally, this con-472

trol point was randomly tilted between [−π/4, π/4]rad around the axis formed by the pick and place473

points to add variability in the manipulation trajectories. We finally discretized the manipulation474

trajectory into a series of small displacements depending on the gripper velocity, ∆x1, . . . ,∆xT ,475

ensuring:476

xpick +
T∑

i=1

∆xi = xplace,

randomly sampling the gripper velocity in the interval [0.5, 2]cm/s.477

To bridge the simulation-to-reality gap, we rendered the complete manipulation trajectory using478

Blender [45].479

C Real-world Set-up and Data Collection480

The real-world set-up is shown in Fig. 6. We used 3 calibrated RealSense d435 cameras to collect481

RGB observations of the environment. We utilized one rectangular cloth for the experiments, also482

visualized in Fig. 6. The robot used for the experiments was a Franka-Emika Panda robot. We em-483

ployed a Cartesian position controller to execute a folding trajectory, which was randomly generated484

using the same procedure as the simulated data. We assumed prior knowledge of the pick and place485

locations and that the cloth was already in a grasped configuration.486

We recorded RGB observations from all three cameras throughout the manipulation process. Depth487

observations were additionally captured at t = 0 to initialize the cloth mesh for dynamics predic-488

tions. At each timestep, segmentation and video tracking modules pre-trained on Grounding-DINO489

[51] and Segment Anything (SAM) [52] were used to generate masks of the cloth and the gripper,490

respectively, using the prompts ”cloth” and ”robot gripper”. These masks were subsequently tracked491

over time using the video tracker XMEM [53].492
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(a) Towel: flat. (b) Shorts: flat. (c) T-shirt: flat.

(d) Towel: deformed. (e) Shorts: deformed. (f) T-shirt: deformed.

Figure 5: Example of synthetic images generated for the objects considered in our experiments (towel, shorts,
t-shirt). For each object, we show the flat (upper row) and the deformed (lower row) states, rendered with
Blender.

Figure 6: Overview of experimental set-up.
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