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In this supplementary material, we provide the detailed description of obtaining the pixel-aligned
frame-event data in Sec. 1. Then, we further present the generalization of the proposed method for
unseen dynamic scenes in Sec. 2.1 and unseen illumination scenes in Sec. 2.2 using the proposed
dataset. Next, we provide several analysis experiments about the proposed method, including impact
of boundary class number in Sec. 3.1, weight sensitivity in Sec. 3.2, and inference time in Sec. 3.3.
Finally, we provide the qualitative comparison on various datasets from Sec. 4.1 to Sec. 4.3.

1 PIXEL-ALIGNED FRAME-EVENT DATASET

The prerequisite for the spatiotemporal motion fusion is to obtain the pixel-aligned frame and event
data. To this end, we collect the paired frame-event data via two steps, including time synchronization
and spatial calibration. Regarding the issue of time synchronization, we utilize microcontroller to
generate two pulses with different frequencies but same timestamp as external trigger to synchronize
the time between frame and event cameras, including 30 Hz for frame camera and 1M Hz for
event camera. Regarding the issue of spatial calibration, we divide this step into two sub-steps, i.e.,
hardware calibration and software calibration. As shown in Fig. 1, in hardware, we set up a physically
coaxial optical device with a beam splitter for frame and event cameras, which allows the same light
to pass through the same lens and enter different cameras, thus achieving the overall field of view
alignment. In software calibration, we further perform a standard stereo rectification between frame
data and event data, and then fine tune the slight calibration errors via pixel offset ( s

). In this way, we can obtain the spatiotemporal pixel-aligned frame images and event stream.
Furthermore, we utilize the coaxial optical device to collect the pixel-aligned frame-event dataset,
which covers real complex scenes with various dynamic patterns and various illumination conditions.
Regarding the issue of optical flow GT, we further introduce LiDAR to obtain accurate scene depth,
which is projected to optical flow.
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Figure 1: Collection device and examples of the proposed pixel-aligned frame-event dataset.
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2 GENERALIZATION FOR VARIOUS UNSEEN SCENES

2.1 GENERALIZATION FOR VARIOUS DYNAMIC SCENES

In Fig. 2, we further verify the generalization of the proposed method for unseen scene with
various dynamic patterns using the proposed dataset. Compared with the competing multimodal
method BFlow (Gehrig et al., 2024), the proposed method is more robust to different degrees of
dynamic patterns, and the optical flow performance performs better with clear motion boundary.
This demonstrates that the proposed common spatiotemporal fusion framework is more adaptable to
unseen dynamic scenes.
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Figure 2: Visual comparison of optical flows on unseen scenes with various dynamic patterns.

2.2  GENERALIZATION FOR VARIOUS ILLUMINATION SCENES

In Fig. 3, we further verify the generalization of the proposed method for unseen scene with various
illumination conditions using the proposed dataset. As the luminance becomes lower, the optical
flows of competing methods (e.g., Selflow (Liu et al., 2019) and BFlow (Gehrig et al., 2024)) becomes
worse, while the proposed method can still perform well.
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Figure 3: Visual comparison of optical flows on unseen scenes with various illumination conditions.
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3 DISCUSSION

3.1 IMPACT OF BOUNDARY CLASS NUMBER ON OPTICAL FLOW

Boundary class number K is a parameter that measures the degree of motion boundary degradation.
As shown in Table 1, the boundary class number is not as more as possible, but there is a balance,
namely 10. The reason is that motion boundary classification depends on the probability threshold,
the larger the motion class number value, the larger the probability threshold corresponding to the
normal boundary feature, increasing the risk of misclassification of abnormal boundary features.
Therefore, an appropriate boundary class number is important to the final optical flow result.

Table 1: Discussion on the choice of boundary class number.

Boundary class number X | EPE  Fl-all
2 0.65 2.24%
5 0.60 2.03%
10 0.58 1.96%
15 0.61 2.11%

3.2  WEIGHT SENSITIVITY OF MODEL LOSSES

To choose the optimal weight parameters, we conduct the study on the weight sensitivity of the
typical fusion losses in Fig. 4, such as Ly, L5477, LIGTPET™ and L3375, In Fig. 4 (a), the K-L
divergence loss L is sensitive to the training of the proposed fusion framework. If the weight is
too large, the cackpropagation gradient will disappear, making the training curve coverage to zero.
In Fig. 4 (b) and (c), the larger the weights of £3P4ET and LI¢mPET™ | the more rapidly the fusion
framework coverages. In Fig. 4 (d), the flow consistency loss L;?g;fs is robust to the framework

training. Therefore, we set the main fusion losses weights as [A1, A3, A4, A5] as [0.01, 1.0, 1.0, 1.0].

0.6 T T T T T 15
. P A= 0. ) . e e spaErr 2= 0.4 )
(a) Weight sensitivity of £, N 7::‘:' (b) Weight sensitivity of £ x‘—:r."
A =01 P
Ah,o=10 A,=10 J
0.4 1.0 - 4
3
n
s £
.2 —
a
0.2 0.5F e
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Steps Steps
1.5 T T T T T T T T T 30 T T T T T
(c) Weight sensitivity of £/7""" LT (d) Weight sensitivity of £ " A, =001
corr A,=0.01 flow o= 0.01
A,=01 Ao=01
Ao=10 A.=10
10+ 1 20f
@
m
8 o
— m
0.5 10F
. . , . | i h : A . . , | . | ! i i
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Steps Steps

Figure 4: The weight sensitivity of model fusion losses.
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3.3 INFERENCE TIME

In Table 2, we choose inference time as the efficiency metric of different competing methods (e.g.,
Selflow (Liu et al., 2019), RAFT (Teed & Deng, 2020), GMA (Jiang et al., 2021), E-RAFT (Gehrig
et al., 2021), BFlow (Gehrig et al., 2024)) for optical flow estimation, and RTX 3090 as the inference
platform. We can observe that the multimodal methods do take a little more time to infer than
the unimodal methods, but the performance is significantly improved. The main reason is that
the multimodal methods need to process the data representation of more modalities and fuse the
cross-modal complementary motion knowledge, causing the more computing resources. Moreover,
compared with other competing methods, the proposed method can achieve state-of-the-art results
within the reasonable inference time.

Table 2: Discussion on inference time on image 640x480.

Method Selflow  RAFT GMA E-RAFT BFlow ComST-Flow
Runtime (ms) 53.3 1147 1374 107.4 141.6 155.5
EPE 16.16 1.35 1.24 0.95 0.87 0.58
F1-all 78.07% 6.26% 5.12%  3.65% 2.89% 1.96%

4 COMPARISON EXPERIMENTS

4.1 COMPARISON ON SYNTHETIC DATASET

The visual results of optical flow predicted by the proposed multimodal method and the competing
methods on the synthetic Event-KITTI dataset are presented in Fig. 5. The competing methods include
unimodal method Selflow (Liu et al., 2019) with frame-only and multimodal method BFlow (Gehrig
et al., 2024) with frame-event. We have two conclusion. First, the multimodal methods are superior
to the unimodal method. This is because these multimodal methods can fuse the complementary
knowledge between different modalities to improve optical flow. Second, compared to the multimodal
method BFlow with direct fusion, the proposed method with common fusion performs better.

. -

(a) Frames (b) Events (c) Selflow (frame-only)  (d) BFlow (frame-event) (e) Ours (frame-event)

Figure 5: Comparison of optical flows on synthetic Event-KITTI dataset.

4.2 COMPARISON ON REAL DATASET

We also show the visual results of the proposed method ComST-Flow and the competing methods
on the real DSEC dataset with various illumination conditions in Fig. 6, where we perform blurry
effect and frame extraction on images to simulate the spatiotemporal degradation. We have two
observations. First, the frame-based method Selflow almost cannot work normally in nighttime
scenes, while the event-based methods can still perform well. This is because event camera has
the advantage of high dynamic range to model the motion even in nighttime scenes. Second, the
proposed method is superior to other multimodal method BFlow in real scenarios. The main reason
is that other multimodal methods suffer the large gap between frame and event modalities, while
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Figure 6: Comparison of optical flows on real DSEC dataset.

the common-latent space of the proposed method bridges the modality gap, thus promoting the
spatiotemporal fusion of motion features for optical flow.

4.3 COMPARISON ON EVENT OPTICAL FLOW

In Fig. 7, we compare the state-of-the-art event optical flow models (EV-FlowNet (Zhu et al., 2018)
and E-RAFT Gehrig et al. (2021)) with our event model on the real event stream from DSEC dataset.
We can observe that the optical flow estimated by EV-FlowNet is over-smooth, and E-RAFT losses
slight motion details in the motion boundaries. Instead, our event optical flow E-ABDA still works
well, verifying its superiority.
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Figure 7: Comparison of event-based optical flows on event stream from DSEC dataset.
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