
1 APPENDIX

This file includes supplementary for all proofs and additional experiment details. The proofs for
Theorem 1, Theorem 2, Lemma 4, Theorem 3, Lemma 4a, Lemma 4b and Additional Experiment
are presented sequentially.

1.1 THE PROOF FOR THEOREM 1

Our goal is to find the optimal classifier, namely

h∗
i (X) = P(Y = y | X = x)∀i ∈ [c]

(1)
We can obtained the optimal classifier with modified loss function (equation 17) and assumption
1 when learning from examples with adversary-aware partial labels. The transition matrix of the
adversary-aware partial label is defined as P(Y⃗ | Y, Y ′, X) and denoted as Q∗ ∈ Rc×(2c−2). The
partial label transition matrix P(Y⃗ | Y ) is denotes as Q̄ ∈ Rc×(2c−2). Theoretically, if the true label
Y of the vector Y⃗ is unknown given an instance X , where y⃗ ∈ Y⃗ and there are 2c − 2 candidate
label sets.The ϵx is the instance-dependent rival label noise for each instance where ϵx ∈ R1×c.
The class instance-dependent transition matrix is defined as T̄yy′ ∈ [0, 1]C×C , in which T̄yy′=
P(Y ′ = y′ | Y = y) and we assume T̄yy = 0, for ∀yy′ ∈ [c], The inverse problem is to identify a
sparse approximation matrix A given T̄ to estimate the true posterior probability.

P (Y⃗ | X)︸ ︷︷ ︸
Adversary-aware PLL

= ([Q̄T + ϵ]T̄ ) P (Y | X)︸ ︷︷ ︸
True Posterior Probability

,

T̄−1A−1 P (Y⃗ | X = x)︸ ︷︷ ︸
Adversary-aware PLL

≈ P (Y | X = x)︸ ︷︷ ︸
True Posterior Probability

,

which further ensures

P (Y⃗ | X)︸ ︷︷ ︸
Adversary-aware PLL

= ([Q̄T + ϵ]T̄ ) h∗(X)︸ ︷︷ ︸
True Posterior Probability.

(2)
where Q∗ = ([Q̄T + ϵ]T̄ )T . If the transition matrix T̄ is full rank and Q∗ is identified, then we can
define the optimal classifier h∗(X) = P(Y = y | X = x), which guarantees f̂∗ = f∗. The proof is
completed.
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1.2 THE PROOF FOR THEOREM 2

for any x ∈ X , there holds

R̂(L⃗, f(X))

=EY⃗ |X [L⃗(Y⃗ , f(x)) | X = x]

=
∑

y⃗∈2[C]

L⃗(y⃗, f(x))P(Y⃗ = y⃗ | X = x)

=
∑

y⃗∈2[C]

L⃗(y⃗, f(x))
∑
y∈Y

P(Y⃗ = y⃗, Y = y | X = x)

=
∑

y⃗∈2[C]

L⃗(y⃗, f(x))
∑
y∈Y

∑
y′∈Y ′

P(Y⃗ = y⃗, Y = y, Y ′ = y′ | X = x)

=
∑

y⃗∈2[C]

L⃗(y⃗, f(x))

(
∑
y∈Y

∑
y′∈Y ′

P(Y⃗ = y⃗ | Y = y, Y ′ = y′, X = x)P(Y ′ = y′ | Y = y,X = x)P(Y = y | X = x))

=
C∑

y=1

P(Y = y | X = x)

(
∑

y⃗∈2[C]

∑
y′∈Y ′

P(Y⃗ = y⃗ | Y = y, Y ′ = y′, X = x)P(Y ′ = y′ | Y = y,X = x)L⃗(y⃗, f(x)))

=
C∑

y=1

P(Y = y | X = x)

(
∑

y⃗∈2[C]

∑
y′∈Y ′

P(Y⃗ = y⃗ | Y = y, Y ′ = y′, X = x)T̄yy′L⃗(y⃗, f(x)))

=

C∑
y=1

P(Y = y | X = x)

(3)
and

R(L, f(X)) = EY |X [L(Y, f(x)) | X = x]

=

C∑
y=1

L(y, f(x))P(Y = y | X = x).

(4)
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Since P(Y⃗ = y⃗ | Y = y,X = x) = 0 for y⃗ does not have y for the condition that

L(y, f(x))

=

C∑
y=1

P(Y = y | X = x)
∑

y⃗∈2[C]

∑
y′∈Y ′

P(Y⃗ = y⃗ | Y = y, Y ′ = y′, X = x)T̄yy′L⃗(y⃗, f(x))

=
∑
y⃗∈Y⃗y

C∑
y=1

∑
y′∈Y ′

P(Y = y | X = x)
∏

b′∈y⃗,b′ ̸=y,

pb′ ·
∏
t′ /∈y⃗

(1− pt′) T̄yy′L⃗(y⃗, f(x))

=
∑
y⃗∈Y⃗y

∏
b′∈y⃗,b′ ̸=y,

pb′ ·
∏
t′ /∈y⃗

(1− pt′) L⃗(y⃗, f(x)).

(5)

1.2.1 THE PROOF FOR LEMMA 4

L(y, f(x)) =
∑
y⃗∈Y⃗y

∏
b′∈y⃗,b′ ̸=y,

pb′ ·
∏
t′ /∈y⃗

(1− pt′) L⃗(y⃗, f(x)) = L⃗(y⃗, f(x)),

(6)
Ultimately, we can conclude that

R̂(L⃗, f(x)) = R(L, f(x)).

(7)
The proof is completed.

1.2.2 THE PROOF FOR THEOREM 3

The goal is to design a new loss function that will enable the hypothesis with adversary-aware
partial labels to converge to the optimal classifier trained with true labels. We define L⃗ as
the new proposed loss function for the adversary-aware partial labels learning. Subsequently,
the true and empirical loss function regarding the adversary-aware partial labels is stated as
R̂(f) = E(X,Y⃗ )∼P(XY⃗ )[L⃗(f(X), Y⃗ )] and R̂pn(f) = 1

n

∑n
i=1 L⃗ (f (xi) , y⃗i), correspondingly.

Moreover, we have defined {(xi, y⃗i)}1≤i≤n as the adversary-aware partial label sample space.
The functions f̂∗ and f̂pn are the optimal classifier with minimum expected risk function
R̂(f) and empirical R̂pn(f) risk function respectively. Specifically, the model is formalised as
f̂∗ = argminf∈F R̂(f) and f̂pn = argminf∈F R̂pn(f). The objective of the newly proposed
loss function L⃗ is to ensure the convergence of the classifier trained with sample adversary-aware
partial label to the optimal classifier trained with population dataset with true labels. Formally, the
convergence of f̂pn

n−→ f⋆ is obtained.

Definition. Lets denote y⃗k as kth element of the vector y⃗ being 1 and others being 0 if y⃗k ∈
y⃗. The y⃗ is a candidate set of the adversary-aware partial label of an instance. Based on Lemma 1
and Theorem 1, the estimation error bound has been proven through
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R̂
(
f̂pn

)
−min

f∈F
R̂(f) = R̂

(
f̂pn

)
− R̂

(
f̂⋆
)

= R̂
(
f̂pn

)
− R̂pn(f̂) + R̂pn(f̂)− R̂pn

(
f̂⋆
)
+ R̂pn

(
f̂⋆
)
− R̂

(
f̂⋆
)

≤ R̂
(
f̂pn

)
− R̂pn(f̂) + R̂pn

(
f̂⋆
)
− R̂

(
f̂⋆
)

≤ 2 sup
f∈F

∣∣∣R̂(f)− R̂pn(f)
∣∣∣

≤ 4ℜ (Fv) +M

√
log 2

δ

2n

≤ 4
√
2L

c∑
k=1

ℜn (Fy⃗k
) +M

√
log 2

δ

2n
.

(8)
Given R̂pn(f̂)− R̂pn (f

⋆) ≤ 0, the first inequality equation is established. The first three equations
proof have been shown in Mohri et al. (2018).
The whole proof is based according to Bartlett & Mendelson (2002).

The definition 1 Suppose a space D and a sample distribution DS are given in which S =
{s1, . . . , sn} is a set of examples drawn independent, identically distributed from the distribution
DS . In addition, F is defined as a class of functions f : S → R. The empirical Rademacher
complexity of F is defined as

ℜ̂n(F) = Eσ

[
sup
f∈F

(
1

n

n∑
i=1

σif (xi)

)]
.

(9)
The expected Rademacher complexity of the function space F is denoted as

ℜ = EDS
Eσ

[
sup
f∈F

(
1

n

n∑
i=1

σif (xi)

)]
.

(10)
The independent random variables σ1, . . . , σm are uniformly selected from {−1, 1}. We have de-
fined the random variables as Rademacher variables. M is the upper bound of the loss function.
Subsequently, for any δ > 0, we will have at least probability 1− δ

sup
f∈F

∣∣∣R̂(f)− R̂pn(f)
∣∣∣ ≤ 2ℜ(L⃗ ◦ F) +M

√
log 1/δ

2n
,

(11)
where

ℜ(L⃗ ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σiL⃗
(
f (Xi) , Y⃗i

)]
,

(12)
is the function space with the expected Rademacher complexity and {σ1, · · · , σn} are Rademacher
variables which takes with value of positive and negative 1, such as {−1, 1} with uniform probabil-
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ity. The modified loss function L⃗ has been defined in the following equations

L⃗(f(X), Y⃗ ) = −
c∑

i=1

(q̄i) log
((

((T̄+ I)
⊤
f(X))i

))
,

(13)

FV =

{
(X, Y⃗ ) 7→

c∑
i=1

(q̄i) log
((

((T̄+ I)
⊤
f(X))i

))
| f ∈ F

}
,

(14)

sup
f∈F

∣∣∣R̂(f)− R̂pn(f)
∣∣∣ ≤ 2ℜ(FV) +M

√
log 1/δ

2n
.

(15)
According to McDiarmid’s inequality McDiarmid et al. (1989), for any δ > 0, with probability at
least 1-δ/2 the following equitation holds, namely

sup
f∈F

∣∣∣R̂(f)− R̂pn(f)
∣∣∣ ≤ E

[
sup
f∈F

∣∣∣R̂(f)− R̂pn(f)
∣∣∣]+M

√
log 1/δ

2n
,

(16)
applying the symmetrization property Vapnik (1999) that we can acquire the following

E

[
sup
f∈F

∣∣∣R̂(f)− R̂pn(f)
∣∣∣] ≤ 2R (FV) .

(17)
Assume the loss function L⃗

(
f(X), Y⃗

)
has satisfied the L-Lipschitz property with respect to

f(X)(0 < L < ∞) with all y⃗k ∈ Y⃗ and lastly regarding to the Rademacher vector contraction
inequality rule Maurer (2016) the inequality can be held

R (FV ) ≤
√
2L

c∑
k=1

ℜn (Fy⃗k
).

(18)

The proof is completed.

1.2.3 THE PROOF FOR LEMMA 4B

Since the loss function has been modified, we will show proof of the modified loss function. The
modified loss function consisted of two components, the cross entropy loss function L̄ and a tran-
sition matrix and identity matrix. In this section, we introduce the modified loss function L̄ and
proven through

L⃗(f(X), Y⃗ ) = −
c∑

i=1

(q̄i) log
((

((T̄+ I)
⊤
f(X))i

))
,

= −
c∑

i=1

1(q̄i) log

(∑c
j=1(T̄ji)) exp (gj(X))∑c

k=1 exp (gk(X))

)
,

(19)
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in which ((T+ I)
⊤
f(X))i is defined as the i-th row of (T+ I)⊤f ;h : X → Rc, fi(X) ∈ H,∀i ∈

[c]; In addition fi(X) = exp(gi(X))∑c
k=1 exp(gk(X)) .

The proof is completed.

1.2.4 ADDITIONAL EXPERIMENTAL DETAILS

We have compared with most recent partial label learning algorithms, which are PICO Wang et al.
(2022), LWSWen et al. (2021), and PRODENLv et al. (2020) on CIFAR-10Krizhevsky et al. (2009),
CIFAR-100Krizhevsky et al. (2009) and CUB200Wah et al. (2011). The negative and rival labels
of adversary-aware partial labels datasets are generated according to the probability q∗b,l := P(b, l ∈
Y⃗ | Y = y, Y ′ = l,X = x) with b ̸= y. The class instance-dependent partial labels are manually
generated. We have used the 0.02 proportion of the output ∆(fi(X)) corresponding to each instance
after the softmax layer from the pre-trained classifier Resent18 He et al. (2016a). More specifically,
we have defined all C−1 negative label where ȳ ̸= y with a uniform probability to be flipped to false
positive. Finally, the probability can be defined as q∗b,l±0.02. The projection head of the contrastive
network has 128-dimensional embedding with a 2-layer MLP. The data augmentation modules are
following the previous work Wang et al. (2022). The queue size is fixed at 8192, 8192 and 4192 for
the CIFAR-10, CIFAR-100 and CUB200 correspondingly. The momentum coefficients are 0.999
for the contrastive network update. The α is the hyperparameter of the immature teacher within
momentum (ITWM), controlling the proportion of prototype updates. The α = 0.1 and β = 0.01 are
selected for the immature teacher within momentum (ITWM) without adversary-aware loss and the
immature teacher within momentum (ITWM). The optimizer SGD with a momentum of 0.9 and 256
batch size are used to train the model for 299 epochs with a cosine learning rate schedule. Except for
the total epochs, others are identical to the previous work Wang et al. (2022). For the temperature
parameter τ , we have set it to 0.07. The loss weighting factors are set to λ = {0.5}. The partial
label rate at q ∈ {0.1, 0.3, 0.5} have been implemented for CIFAR-10 and q ∈ {0.03, 0.05, 0.1} for
CIFAR-100 and CUB200. The adversary partial label rate at q∗ ∈ {0.1 ± 0.02, 0.3 ± 0.02, 0.5 ±
0.02} have been implemented for CIFAR-10 and q∗ ∈ {0.03 ± 0.02, 0.05 ± 0.02, 0.1 ± 0.02} for
CIFAR-100 and CUB200. Training without contrastive learning for CIFAR-10 is 1 epoch for all the
partial rates with respect to clean partial labels. For CIFAR10 adversary-aware partial labels, the
setting of 50 epochs training without contrastive learning is applied for q ={0.1, 0.3, 0.5}. We have
trained without contrastive learning for the clean partial label with q = {0.01, 0.05, 0.1} for epochs
of {20, 20, 100} on CIFAR-100 and CUB200. Moreover, the epochs of {20, 100, 100} is set for the
adversary-aware partial rate at q∗={0.03± 0.02, 0.05± 0.02, 0.1± 0.02} of adversary-aware partial
labels learning problem on CIFAR-100 and CUB200.

1.2.5 ADDITIONAL EXPERIMENT FOR CIFAR-10

We have verified our method on an additional synthetic dataset, CIFAR-10. The implementation
setting is mainly identical to Wang et al. (2022). For CIFAR-10 clean partial label learning, we
have implemented the experiments according to each baseline’s implementation details, and the best
results were replicated from the baseline worksWang et al. (2022). The CIFAR-10 adversary-aware
partial label problem has used the ResNet18 neural networkHe et al. (2016b) as the backbone. The
α = 0.1 and β = 0.01 are chosen for the immature teacher within momentum (ITWM) without
(Clean partial label) and immature teacher within momentum (ITWM) method. The learning rate
is 0.01, and the weight decay is 1e − 3. The ResNet-18 is used for training. For the clean partial
label, q at {0.1, 0.3, 0.5} is used for the experiments. The adversary-aware partial label is set to q∗ =
{ 0.1±0.02, 0.3±0.02, 0.5±0.02 } for experiments. We have trained the model without contrastive
loss for the epochs of {1, 1, 1} with the clean partial label at partial rate of q = {0.1, 0.3, 0.5}. We
have trained the model without contrastive learning for epochs of {50, 50, 50} for the adversary-
aware partial labels with partial rates of q∗ = { 0.1±0.02, 0.3±0.02, 0.5±0.02 }.

1.2.6 THE CLASSIFICATION ACCURACY COMPARISONS

Our proposed methods have consistently outperformed the previous works for the most challenging
scenarios q ={0.5,0.5,0.1} on CIFAR-10, CIFAR-100 and CUB200.
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(a) (b)

(c)

Figure 1: The Classification Accuracy Comparisons

1.2.7 THE HYPERPARAMETER COMPARISONS

We have also conducted a comparative analysis on the impact of hyperparameter α on the final
classification performance. The larger the hyperparameter, the better the classification performance.
Our proposed method has compared the hyperparameter α at {0.1,0.5,0.9} for all dataset. The α =
0.1 has been chosen throughout the experiments.

(a)

Figure 2: The Classification Accuracy of our proposed method using α =[0.1,0.5,0.9] for CUB200

1.2.8 ADVERSARY-AWARE LOSS COMPARISON.

Figure 3 shows the experimental result comparisons for CIFAR100 between the modified loss func-
tion and cross-entropy loss function before and after the momentum updating strategy. Our method
achieves SOTA performance. The adversary-aware matrix plays an indispensable role. In the first
stage, the divergence becomes more apparent as the epoch reaches 100 epochs for CIFAR100 in
Top-1 classification accuracy. The comparison demonstrated that the modified loss function works
consistently throughout the whole stage of learning, especially for the more challenging learning
scenario where the partial rate is at 0.1.

7



(a) (b)

Figure 3: The Top 1 and Prototype Accuracy of the Proposed Method and the Method in Wang et al. (2022)
PiCO on CIFAR100.

1.3 IMPLEMENTATION DETAILS

Adversary-Aware Matrix. The transition matrix is a common tool for building statistically con-
sistent classifiers in noise label and complementary label problems Yu et al. (2018); Huang et al.
(2006); Liu & Dietterich (2014). In this paper that we have introduced the adversary-aware matrix
for building statistically consistent classifiers for the adversary-aware partial label problem. The
Adversary-Aware Matrix ∈ Rc×c is constructed as Ty,y′ = T̄ + I . We set the diagonal element of
T̃ to one to ensure y ∈ y⃗.
New rival Label. The rival label is generated according to the label noise transition matrix T̄ . We
have defined ordinary partial label generation B. The B is defined as P(Y⃗ | X), general partial
label generation, is defined accordingly as E.q 2. In application, we can randomly give out pro-
portional of survey with rival and other without the rival according to the adversary aware matrix.
This will ensure that adversary will not be able to retrieve the insightful data by purposely enquiry a
participant to reveal given out answers. By formulating the rival as R = P(Y⃗ | X), which equal to
min{1, B(2c−2)×cT̄ c,c} and Ri,j ∈ [0, 1](2

c−2)×c, for ∀i,j ∈ [c]. We now have the adversary aware
partial label.

1.4 ABLATION STUDY FOR T̄

In the following, we have shown how the classification performance is impacted if the entries of the
class instance-dependent transition matrix T̄Original is updated to T̄New to show the robustness of our
proposed method. For instance if the number of class is equal to 10, then the entries of T̄ is defined
as below. In our problem setting, each row has five entries equal to 0.2 in the original T̄ and has five
entries equal to 0.3 each row for new T̄ .

T̄Original =


0 0.2 0 0.2 0.2 0.2
0.2 0 0.2 0.2 0 0.2
0.2 0.2 0 0.2 0 0.2
0.2 0.2 0 0 0.2 0.2
0.2 0.2 0 0.2 0 0.2
0.2 0 0.2 0.2 0.2 0

 T̄New =


0 0.3 0 0.3 0.3 0.3
0.3 0 0.3 0.3 0 0.3
0.3 0.3 0 0.3 0 0.3
0.3 0.3 0 0 0.3 0.3
0.3 0.3 0 0.3 0 0.3
0.3 0 0.3 0.3 0.3 0


Data Method q∗=0.1

CIFAR100 PiCOWang et al. (2022) 20.941(24.015)%
Data Method q∗=0.1

CIFAR100 ATM 54.156(0.066)%

Data Method q∗=0.1
CUB200 PiCOWang et al. (2022) 21.22(-25.155)%

Data Method q∗=0.1
CUB200 ATM 48.62(-7.64)%
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1.5 WHY ADVERSARY AWARE PARTIAL LABEL LEARNING IS A MORE CHALLENGING
PROBLEM

By adding the rival, the partial label generation process compare with the new label generation is
easier:

A =


0 0.25 0 0.25 0.25 0.25
0.2 0 0.25 0.25 0 0.25
0.2 0.25 0 0.25 0 0.25
0.25 0.25 0 0 0.25 0.25
0.25 0.25 0 0.25 0 0.25
0.25 0 0.25 0.25 0.25 0



B =


1 0.5± 0.02 0.5± 0.02 0.5± 0.02 0.5± 0.02 0.5± 0.02

0.5± 0.02 1 0.5± 0.02 0.5± 0.02 0 0.5± 0.02
0.5± 0.02 0.5± 0.02 1 0.5± 0.02 0 0.5± 0.02
0.5± 0.02 0.5± 0.02 0 1 0.5± 0.02 0.5± 0.02
0.5± 0.02 0.5± 0.02 0 0.5± 0.02 1 0.5± 0.02
0.5± 0.02 0 0.5± 0.02 0.5± 0.02 0.5± 0.02 1


By adding the rival using the label noise transition matrix as such A× B and we can conclude that
[A×B]ij > [B]ij . Even though noises added to the partial label noise has made the problem more
challenging, unless the adversary-aware transition matrix is given, it will greatly help us to reduce
the uncertainty from the transition matrix.

1.5.1 ALGORITHM TABLE

Algorithm 1 Adversary Aware Partial label learning
Goal: Minimise the Total loss function λ Input: The Adversary-Aware PLL D̄ and Batch size Samples D̄b. Output: The optimal W of the
Total Loss Function.

for x_i ∈ Total Epochs do
D⃗b ∈ D⃗
Dq = {ui = f

(
Augq (xi)

)
| xi ∈ D⃗b}

Dk = {zi = f ′ (Augk (xi)) | xi ∈ D⃗b}
C̄ = Dq ∪ Dk ∪ queue
for xi ∈ D⃗ do

ŷi = argmaxc∈Yi
fc

(
Augq (xi)

)
vt+1
i =

√
1 − α2vt

i + α g
∥g∥2

N+(xi) =
{
z′ | z′ ∈ C̄ (xi) , ȳ

′ = (ŷi = c)
}
)

end for
for ui ∈ Dq do

rc =

{
1 if c = argmaxj∈Y u⊤

i vj

0 otherwise
,

q̄ = ϕq̄ + (1 − ϕ)rc

end for
L=λL(f(xi), τ, C)+L⃗(f(xi), Y⃗ ) ▷ Equation 18 + Equation 17
L=λL + L⃗ ▷ Total Loss

end for
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